基于间接电感法的永磁无刷直流电机无位置传感器控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁无刷直流电机采用无位置传感器控制技术,可以省去位置传感器,更能节省空间,并能够让电机在高温、高压等恶劣环境中以及某些不能安装位置传感器的场合正常工作,增加系统的可靠性。永磁无刷直流电机的无位置传感器控制技术是当前该领域的研究热点之一。
     永磁无刷直流电机的无位置传感器技术的关键点在于利用简单易行的方法在全转速范围内准确可靠的估计转子位置。纵观目前的永磁无刷直流电机的无位置传感器控制方法,比较成熟而可行的方法多集中于电机在中高速区域运行时,能够较准确估计转子位置;电机处于低速、极低速、静止状态时,因为反电动势幅值较小或者为零,而无法正常工作。因此这是永磁无刷直流电机的无位置传感器技术领域所面临的急待解决的问题,也是研究的难点。
     内置式永磁体转子为典型的凸极结构,凸极效应有助于提高永磁无刷直流电机的起动性能、过载能力,因而广泛地应用于家用电器及电动车等领域。论文对这种类型的永磁无刷直流电机的无传感器控制方法做了深入的研究,提出了一种新的无位置传感器控制方法。取得如下的研究成果:
     在借鉴国内外研究成果特别是电感法和反电动势法的基础上,提出了一种新型的无位置传感器控制方法-间接电感法,以解决电机低速和静止状态时电机转子位置的检测问题。理论和实验证明这种方法与电机转速无关,在整个电机转速范围内方法都不涉及电机转速,能解决常见的无位置传感器控制方案中低速和静止时无法正确估计转子位置的难题。
     为了扩大间接电感法的适用范围,对间接电感法进行了推广。分析了三角形连接的永磁无刷直流电机的无位置传感器控制问题,理论证明间接电感法也同样适用于此类连接方式的电机。对于目前广泛使用的星型连接的无中性点引出线的永磁无刷直流电机,理论和实验也证明改进的间接电感法的有效性。
     提出了把间接电感法和反电动势法相融合的方法。间接电感法由于采用H_PWM-L_PWM调制方式,因此逆变器的损耗和电机的转矩脉动比较大,为了克服这些缺点,把该方法与考虑电枢反应的反电动势法相结合,当电机转速达到一定速度后,无位置传感器控制方法由间接电感法切换到采用单极性调制的反电动势法,这样可以实现从低速到高速范围内的无位置传感器的高效率运行。
     针对内置式永磁无刷直流电机的特点,提出了一种新型的转子初始位置估计方法。该方法利用了内置式电机的凸极性和磁饱和特性来获得静止状态下转子初始位置的信息,具有30电角度的分辨率。
Using certain method without position sensors, permanent brushless dc motor (PMBLDCM) can work well in both high-temperature& high-pressure and some place where position sensor can not be installed. So motor space can be saved and those expensive sensors cost can be cut with sensorless method. At the same time, the PMBLDCM has higher reliability. As a result, the study for the sensorless technology has been a hot topic in PMBLDCM.
     The key points of sensorless technology in PMBLDCM are to study a method which can detect rotor position accurately by simply method in whole speed range. After analyzing current sensorless methods of the PMBLDCM, it is found that those methods are successful at middle and high speed, but they often fail to detect rotor position at low speed when the back electromotive force(back-EMF) is small or zero. Therefore, how to detect rotor position at very low speed is the problem to be solved and the difficulty in sensorless control of PMBLDCM.
     Interior permanent magnet (IPM) rotor is typical salient structure, which helps to starting performance, over-load capacity. So IPM PMBLDCM is used widely in household and electric vehicle field. The sensorless control for IPM PMBLDCM is studied deeply in this thesis and primary achievements are in the following:
     First, after benefiting from exist sensorless schemes, such as the inductance method and the back-EMF method, a novel sensorless method, Indirect Inductance Method, is presented to solve the problem that it was very difficult to detect the rotor position at low speed. The method is proved to be independent to rotor velocity in whole speed scope by theoretical derivation and be successful to detect rotor position at very low speeds.
     Second, Indirect Inductance Method is modified to expand its application scope. For delta-connected PMBLDCM, it is proved that Indirect Inductance Method is also successful. Moreover, for widely used Y-connected PMBLDCM whose neutral point voltage can not be detected directly, the validity of improved new sensorless method is proved by theory inference and experimental results.
     Third, the inverter loss and torque ripple in PMBLDCM are very serious because H_PWM-L_PWM modulation is used in indirect inductance method. In order to overcome the shortcoming, the indirect inductance method will be switched to the back-EMF method considering armature reaction in which the H_PWM-L_PWM modulation is used when the motor speed is beyond a certain speed. Thus, The PMBLDCM is high efficient in whole speed field.
     In the end, a new initial rotor position estimation method is presented in the sensorless control. The novel method is based on the salient effect and magnetic saturation effect of the IPM PMBLDCM. The proposed method is successful at the standstill and 30 electrical angle resolution.
引文
[1]国家自然科学基金委员会工程与材料科学部.电气科学与工程(2006-2010年)[M].科学出版社.2006.31-32.
    [2]谭建成.无刷直流电机技术发展动向[J].电气技术.2006, 7(17).
    [3]唐任远,安忠良,赫荣富.高效永磁电机的现状与发展[J].电气技术. 2008, 9(9).
    [4]龚春雨,施进浩.无刷直流电动机的发展现状和质量特点[J].微特电机.2006,(8)
    [5]张龙,王正元.新型电动车发展前瞻.电气技术[J].2006,5:11-13.
    [6]张传林,胡文静.稀土永磁材料的发展及在电机中的应用[J].微电机.36(1),2003.
    [7]陈全世.先进电动汽车技术[M].化学工业出版社.2007.
    [8]谭建成.变频家电用永磁无刷直流电机的新结构新工艺[J].家电科技.2002,(12).
    [9]权利,碟正文.无刷直流电机的应用.电气技术[J].2006,7:5-20.
    [10]贡俊,陆国林.无刷直流电机在工业中的应用和发展[J].微特电机.2000,(5):15-19.
    [11]陶桂林.大功率永磁无刷直流电机及其系统研究[D].华中科技大学博士论文.2004.
    [12]严岚.永磁无刷直流电机弱磁技术研究[D].浙江大学博士论文. 2004.
    [13] J.S.Lawler. Extending the constant power speed range of the brushless do motor through dual-mode inverter control[J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2004,19(3).
    [14]余莉.高速永磁无刷直流电机性能分析与设计的研究[D].东南大学博士论文. 2007.
    [15]刘思华,张树一春.用扩展卡尔曼滤波器估计无刷直流电机转子位置和转速[J].微电机,2006,39(6).
    [16] J.C.Moreira. Indirect sensing for rotor flux position of permanent magnet AC motors operating in a wide speed range[J]. IEEE Trans. Ind. Appl, 1996, 32(6):1391-1401.
    [17]陈剑,陆云波,鱼振民.无刷直流电机驱动控制的3次谐波检测法[J],微电机. 2002,35(5):23-25.
    [18]董富红,沈艳霞,纪志成.永磁无刷直流电机无位置传感器估计方法综述[J].微电机.2003,36(5):39-46.
    [19] Tae-Hyung Kim,Byung-Kuk Lee, Mehrdad Ehsani. Sensorless Control of the BLDC Motors From Near Zero to High Speed [J]. IEEE, 2004, 19(6): 1635-1645.
    [20] A.B.Kulkami, M.Ehsani. A Novel Position Sensor Elimination Technique for the Interior Permanent Magnet Synchronous Motor Drive[J].IEEE Trans.on Industry Application, 1992,28(2):144-150.
    [21] Paul P, Acarnley and John F. Review of Position Sensorless Operation of Brushless Permanent Magnet Machines[J]. IEEE Transactions On Industrial Electronics, 2006 , 53(2):252-262.
    [22] Jianwen Shao, Dennis Nolan. A Novel Direct Back EMF Detection for Sensorless Brushless DC (BLDC) Motor Drives. Applied Power Electronics Conference and Exposition[C]. Seventeenth Annual IEEE .2002,10(3):33-37.
    [23] J. P. Johnson, M. Ehsani, and Y. Guzelgunler. Review of sensorless methods for brushless DC[C]. in Conf. Rec. IEEE-IAS Annu. Meeting, 1999: 143-150.
    [24] S.Ogasawara and H.Akagi. An approach to position Sensorless Drive for Brushless DC Motors[J]. IEEE Transactions on Industry Applications.1991.27: 928-933.
    [25] S. Bolognani, R. Oboe, and M. Ziglitto. Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position[J]. IEEE Trans. Ind. Electron.1999.46(2): 184–191.
    [26] K.J.Bins, D.W.Shimmin.and K.M. AL Aubidi. Implicit Rotor Position Sensing Using Motor Winding for a Self Commutating Permanent Magnet Drive System[J]. IEE PROCEEDINGS-B,1991,138(1):28-34.
    [27] P.L.Jansen, M.Coley,R.D.Lorenz. Flux,Position,and Velocity Estimation in AC Machines at Zero Speed via Trackong of Hign Frequency Saliencies[C]. 5th European Power Electronics(EPE) Conf. Rec, 1995:154-160.
    [28] Takashinma.H,Tomita.M,Zhiqian Chen, Satoh.M, Doki. S, Okuma.S. Sensorless Polition and Velocity Control of Cylindrical Brushless DC Motor at Low Speed Using Eddy Current[C].Osaka 2002. Proceedings of the 2002 Power Conversion Confer-ence, 2002,3:1300-1303.
    [29] Hyeong-GeeYee, Chang-Seok Hong. Sensorless drive for interior permanent magnet brushless DC motors[C].1997 IEEE International Electric Machines and Drives Conference.
    [30]王丽梅.基于高频信号注入的永磁同步电机无位置传感器控制[D].沈阳工业大学博士论文.2005.
    [31]张磊,瞿文龙.一种新颖的无刷直流电机无位置传感器控制系统[J].电工技术报.2006, 21(10):26-32.
    [32] Qin Feng,He Yingkang,Liu Yi,Zhang Wei.Rotor position sensorless estimation of permanent magnet synchronous motors[J].Journal of Zhejiang University (Engineering Science),2004,38(4):465-469(in Chinese).
    [33]刘毅,贺益康,秦峰.基于转子凸极跟踪的无位置传感器永磁同步电机矢量控制研究[J].中国电机工程学报.2005,25(17):121-126.
    [34]王丽梅,田明秀,郑建芬.基于观测器的永磁电机转子位置和速度估计方法[J].沈阳工业大学学报.2005,27(2):175-178.
    [35] J. Shao, D. Nolan, M. Teissier, and D. Swanson. A Novel Microcontroller-Based Sensorless Brushless DC (BLDC) Motor Drive for Automotive Fuel Pumps[J]. IEEE Trans. on Ind. Applicat. 2003.39(11): 1734-1740.
    [36]曹永娟.高性能永磁同步电机性能分析与设计[D].东南大学硕士论文.2005.
    [37]陈阿莲,何湘宁.IEEE第17届应用电力电子技术会议概述[C].第十五届全国电源技术年会论文集,2003年11月10日,上海.
    [38] Nobuyuki Matsui,Hironori Ohashi. DSP-based adaptive control of a brushless motor[J]. IEEE Transactions on Industry Applications,1992,28(2):448-454.
    [39] T.Noguchi and S.Kohno. Mechanical sensorless permanent magnet motor drive using relative phase information of harmonic currents caused by frequency-modulated three-phase PWM carriers[J]. IEEE Trans. Ind. Appl. 2003.39(4).
    [40]钱照明,陈恒林.电力电子装置电磁兼容研究最新进展[J].电工技术学报.2007,22(7):1-10.
    [41] G.-J.Su and J.W.McKeever. Low Cost Sensorless Control of Brushless DC Motors With Improved Speed Range[J]. IEEE Transactions on Power Electronics. 2004.19:296-302.
    [42] C.C.Chan,K.T.Chau. An Overview of Power Electronics in Electric Vehicles[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS. 1997.44(1): 313.
    [43] Fengtai Huang, Dapeng Tien. A neural network approach to position sensorless control of brushless DC motors[C]. Industrial Electronics, Control, and Instrumentation, 1996. Proceedings of the 1996 IEEE IECON 22nd International Conference, 1996:1167-1170.
    [44]陈中.无刷直流电动机优化设计和参数分析[D].合肥工业大学硕士论文.2004.
    [45] R. Mizutani, T. Takeshita and N. Matsui. Current model-based sensorless drives of salient-pole PMSM at low speed and standstill[J]. IEEE Trans. Ind. Applicat. 1998.3434(6): 841-846.
    [46] Consoli, G. Scarcella and A. Testa. Industry application of zero-speed sensorless control techniques for PM synchronous motors[J]. IEEE Trans. Ind. Applicat. 2001. 37(3): 513-521.
    [47] J. Jang, S. Sul, J. Ha and et al. Sensorless drive of surface-mounted permanentmagnet motor by high-frequency signal injection based on magnetic saliency[J]. IEEE Trans. Ind. Applicat. 2003.39(1:) 1031-1039.
    [48] J. Jang, J. Ha and A. Testa. Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection[J]. IEEE Trans. Ind. Applicat. 2004.40(11): 1595-1603.
    [49] K. W. Lim, K. S. Low and M. F. Rahman. A position observer for permanent magnet synchronous motor drive[C]. IECON Annu. ConferenceRecord, pp. 1004–1008, 1994.
    [50] Bozo Terzic,Martin Jadric. Design and Implementation of the Extended Kalman Filter for the Speed and Rotor Position Estimation of Brushless DC Motor[J].IEEE Transactions on Industri al Electronics.200 1,48(6):1065-1073.
    [51] J. Kim and S. Sul. New approach for high-performance PMSM drives without rotational position sensors[J]. IEEE Trans. Power Electron. Sept. 1997.12(9): 904–911.
    [52] G. Zhu, A. Kaddouri, and et al. Nonlinear state observer for the sensorless control of a permanent-magnet AC machine[J].IEEE Trans. Ind. Electron, 2001.48(12): 1098-1108.
    [53] Y. Yamamoto, Y. Yoshida and T. Ashikaga. Sensorless control of PM motor using full order flux observer[J]. IEEJ Transactions on Industry Applications, 2004,124(8):743-749.
    [54] M. Tursini, R. Petrella, F. Parasiliti. Initial Rotor Position Estimation Method for PM motors[J]. IEEE Trans. Ind. Applicat, 2003, 39(11): 1630-1640.
    [55] M. Boussak.Implementation and Experimental Investigation of Sensorless Speed Control with Initial Rotor Position Estimation for Interior Permanent Magnet Synchronous Motor Drive[J]. IEEE Trans.Power Electron,2005, 20(11): 1413-1422.
    [56] Hyunbae Kim, Kum-Kang Huh, Lorenz, R.D, Jahns T.M.A. novel method for initial rotor position estimation for IPM synchronous machine drives[J]. IEEE Transactions on Industry Applications, 2004, 40(5):1369-1378.
    [57] Boussak, M. Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for interior permanent magnet synchronous motor drive[J]. IEEE Transactions on Power Electronics, 2005, 20(6):1413-1422.
    [58]翟波,李建春.无位置传感器无刷直流电机起动新方法[J].中国惯性技术学报.2007, 15(3).
    [59] Marco Tursini, Roberto Petrella. Initial Rotor Position Estimation Method for PM Motors[J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2003,39(6):485-491.
    [60] Yen-Shin Lai, Fu-San Shyu,Shau-Shian Tseng. New Initial Position Detection Technique for Three-phase Brushless DC Motor without Position and Current Sensors[J]. IEEE Transactions on Industry Applications.2003, 39( 2):485-491.
    [61]余莉,胡虔生.内置式永磁无刷直流电机的分析和设计[J].微特电机.2005年第9期.
    [62]马隽,董仕镇,沈建新.内置永磁体嵌放深度对自起动永磁同步电机性能的影响[J].微特电机. 2007(11).
    [63]张琛著.直流无刷电机原理及应用(第二版) [M].机械工业出版社.2004.
    [64]叶金虎.现代无刷直流永磁电动机的原理和设计[M].科学出版社.2007.
    [65]唐任远.现在永磁电机理论与设计[M].机械工业出版社.1997.
    [66]孙建忠,白凤仙编著.特种电机及其控制[M].中国水利水电出版社.2005.
    [67]李钟明,刘卫国.稀土永磁电机[M].机械工业出版社.1999.
    [68]张飞.地铁用永磁同步电机设计中的关键技术问题研究[D] .沈阳工业大学硕士论文.2006.
    [69]许家群,徐衍亮,邢伟,唐任远.电动汽车驱动用永磁同步电机转子结构选择[J].微特电机. 2004, (3).
    [70]刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究[D].东南大学博士论文. 2002.
    [71]张丽丽.永磁交流牵引电机弱磁特性研究及其设计[D].沈阳工业大学硕士论文. 2007.
    [72]杨杰.无刷直流电机无位置传感器控制系统研究[D].浙江大学.硕士学位论文, 2008.
    [73]刘和平,刘平,王贵.永磁无刷直流电动机换向过程分析[J].微电机.2008,41(10):10-13.
    [74]刘和平等著. dsPIC通用数字信号处理器原理及应用—基于dsPIC30F系列[M].北京航空航天大学出版社. 2007.
    [75] http://www.microchip.com/[Z].
    [76]邱建琪,史涔激,陈永校. PWM调制方式对永磁无刷直流电机电磁转矩的影响[J].《微特电机》. 2003 (12):37-39.
    [77]韦鲲.永磁无刷直流电机电磁转矩脉动抑制技术的研究[D].浙江大学博士论文. 2005.
    [78]符强,林辉,贺博.四开关三相无刷直流电机的直接电流控制[J].中国电机工程学报. 2006,26(4):149-153.
    [79]韦鲲,胡长生,张仲超.一种新的消除无刷直流电机非导通相续流的PWM调制方式[J].中国电机工程学报. 2005,25(7):105-108.
    [80]杜永红,邵定国,许路,钱儿.基于三角形连接的空心杯电机无位置传感器控制方案[J].电机与控制应用. 2008,35(6).
    [81]王贵.电动高尔夫球车永磁无刷直流电机驱动系统研究[D].重庆大学硕士论文.2008.
    [82]刘平.无位置传感器无刷直流电机控制系统与换相研究[D].重庆大学硕士论文.2008.
    [83]张相军.无刷直流电机无位置传感器控制技术的研究[D].上海大学博士论文. 2001.
    [84] J.X. Shen, Tseng KJ. Analyses and compensation of rotor position detection error in sensorless PM brushless DC motordrives[J]. IEEE Transactions on Energy Conversion, 2003,18 (1):87-93.
    [85]陈炜.永磁无刷直流电机换相转矩脉动抑制技术研究[D].天津大学博士论文. 2006.
    [86]熊志学,邱建琪,林瑞光.无刷直流电机新型弱磁控制的仿真研究[J].微电机. 2006,39(3):3-6.
    [87]李鲲鹏,胡虔生,黄允凯.计及绕组电感的永磁无刷直流电动机电路模型及其分析[J].中国电机工程学报. 2004,1(1):76-80.
    [88]邱建琪.永磁无刷直流电机转矩脉动抑制的控制策略研究[D].浙江大学博士论文. 2002.
    [89]李强.无位置传感器无刷直流电动机运行理论和控制系统研究[D].东南大学博士论文. 2005.
    [90]林明耀,王永.反电势法无位置传感器无刷直流电机最佳换相逻辑分析[J].中小型电机.2003,30(5):14-16,38.
    [91] Tan Hui. Controllability analysis of torque ripple due to phase commutation in brushless DC motors 2001[C]. Proceedings of the Fifth International Conference on Electrical Machines and Systems. 2001,2(2):1317~1322.
    [92] Chan T F,Yan L T,Fang S Y. In-wheel permanent magnet brushless DC motor drive for an electric bicycle[J]. IEEE Transaction on Energy Conversion. 2002,17 (2): 229~233.
    [93] Rubaai A,Yalamanchili R C. Dynamic study of an electronically brushless DC machine via computer simulations[J]. IEEE Transaction on Energy Conversion. 1992, 7(1): 132~138.
    [94] Yong Wang, Chau, K.T, Jinyun Gan, et al. Design and analysis of a new multiphase polygonal winding permanent-magnet brushless DC machine[J]. IEEE Transactions on Magnetics, 2002, 38 (5) :3258~3260.
    [95] Waikar S; Gopalarathnam T; Toliyat H A. Evaluation of multiphase brushless permanent magnet (BPM) motors using finite element method (FEM) and experiments[C]. Fourteenth Annual Applied Power Electronics Conference and Exposition, 1999,1(1):396-402.
    [96] Toliyat H A, Sultana N,Shet D S,et al. Brushless permanent magnet (BPM) motor drive system using load-commutated inverter[J] . IEEE Transactions on Power Electronics,1999,14 ( 5):831-837.
    [97] Hemati N,Leu M C. A complete model characterization of brushless DC motors[J]. IEEE Transaction on Industry Applications,1992,28 (1):172-180.
    [98] ChenY S,Zhu Z Q,Howe D. Slotless brushless permanent magnet machines:influence of design parameters[J]. IEEE Transactions on Energy Conversion. 1999,14( 3 ):686-691
    [99] Linear brushless motor by space harmonics field analysis[J]. IEEE Transactions on Magnetics,2001,37 (5 ):3732-3736.
    [100] Tae Kyung Chung; Suk Ki Kim; Song-Yop Hahn. Optimal pole shape design for the reduction of cogging torque of brushless DC motor using evolution strategy[J]. IEEE Transactions on Magnetics,1997,33 ( 2):1908-1911.
    [101] Zhi Yang Pan,Fang Lin Luo. Novel soft-switching inverter for brushless DC motor variable speed drive system[J]. IEEE Transactions on Power Electronics, 2004,19( 2):280-288.
    [102] Wook-Jin Lee. A New Starting Method of BLDC Motors Without Position Sensor[J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2006,42(6).
    [103]王成元,夏加宽,杨俊友.电机现代控制技术[M].机械工业出版社.2006.
    [104]韦鲲,金辛海.表面式永磁同步电机初始转子位置估计技术[J].中国电机工程学报.2006.
    [105]贾洪平,贺益康.基于高频注入法的永磁同步电机转子初始位置检测研究[J].中国电机工程学报.2007,25(15).
    [106] M. Tursini, R. Petrella and F. Parasiliti. Initial rotor position estimation method for PM motors[J]. IEEE Trans. Ind. Applicat. 2003.39(11): 1630-1640.
    [107]廖勇,沈朗,姚骏.改进的面贴式永磁同步电机转子初始位置检测[J].电机与控制学报.2009,13(2).
    [108]石坚,汤宁平,谭超.永磁同步电机无位置传感器控制系统[J].电机与控制学报.2007,11(1).
    [109]陆华才.无位置传感器永磁直线同步电机进给系统初始位置估计及控制研究[D].浙江大学博士论文.2008.
    [110] Mitja Flisar, Uros Nedeljkovic, David Ambrozic. Accurate Detection of Initial Rotor Position in a Multi-Pole Synchronous Machine [C]. IEEE International Symposium on Industrial Electronics. 2007.7:2274-2277.
    [111]董仕镇.新型永磁开关磁链电机的无位置传感器控制[D].浙江大学硕士论文.2007.
    [112]陆华才,徐月同等.表面式永磁直线同步电机初始位置检测方法[J].浙江大学学报(工学版). 2008,42(5).
    [113]王大方,谢顺依.无位置传感器开关磁阻电机的转子位置检测与启动[J].海军工程大学学报.2004,16(3).
    [114]宋正强.表面式永磁同步电机无传感器控制策略及初始位置检测[D].沈阳工业大学硕士论文.2004.
    [115]夏长亮,刘均华,俞卫,李志强.基于扩张状态观测器的永磁无刷直流电机滑模变结构控制[J].中国电机工程学报. 2006,26(20):139-143.
    [116]李先祥,徐小增,肖红军.基于小波神经网络控制的无刷直流电机调速系统[J].中国电机工程学报. 2005,25(9):126-129.
    [117]王晓远,田亮,冯华.无刷直流电机直接转矩模糊控制研究[J].中国电机工程学报.2006,26(15):134-138.
    [118]魏佳丹,周波,姜雷.基于全桥变换器的电励磁双凸极电机中点电位的研究[J].中国电机工程学报.2007,27(30):82-86.
    [119]刘金琨.先进PID控制MATLAB仿真[M].电子工业出版社.2004.
    [120]吴晓红.内置式永磁伺服电机及其系统的研究及其系统的研究[D].山东大学硕士论文.2007.
    [121]高景德,王祥珩,李发海.交流电机及其系统的分析(第2版)[M].清华大学出版社.2005.
    [122]杨顺昌.电机矩阵的分析[M].重庆大学出版社.1988.
    [123]夏长亮.无刷直流电机控制系统[M].科学出版社.2009.