机体铁超负荷对冠心病影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     冠状动脉粥样硬化性心脏病即冠心病(CAD)是目前我国及大多数国家的主要死因与疾病负担之一。随着我国社会经济的快速发展、人们生活方式的改变以及人口老龄化的加剧,CAD的发病率呈逐年增长的趋势。因此及早对CAD危险因素的识别,为该病的人群防制提供依据,是预防和控制该病发生发展的重要措施。尽管CAD许多危险因素如高血压、高脂血症、吸烟等目前已被确认,但资料显示,这些传统因素的病因作用仅约占50%,说明其它危险因素在CAD的发病中同样具有重要作用。
     铁是一种维持生命与健康的重要微量元素,在氧运输、细胞呼吸、能量代谢、基因表达、DNA复制和修复等细胞过程中均发挥重要作用。机体中的铁约66%以二价铁(Fe+2)形式存在于血红素中,另外27%以三价铁(Fe+3)形式存在于组织中的铁蛋白(ferritin)。当铁量超过细胞内的存储能力时,多余的铁与含铁血黄素(hemosiderin)结合及部分存储于网状内皮系统。机体中游离的Fe+2可通过Fenton及Haber-Weiss反应产生羟自由基(·OH-),使DNA损伤、脂质及蛋白氧化导致氧化应激。并且铁能损伤内皮细胞功能,降低一氧化氮(NO)生物合成与利用,因而当机体铁超负荷时对机体产生致病作用。
     众所周知,绝经期前女性CAD发病率显著低于同龄男性,而绝经期后女性CAD的发病率逐渐增加,并逐步变得与同龄男性相似。针对这一现象以及有关研究结果,学者Sullivan于1981年首次提出了“铁假说”,认为女性经期周期性的铁丢失,导致机体铁水平较低,可能有助于女性CAD的预防;而男性由于机体铁进行性积累导致CAD危险性的增加。自“铁假说”提出以来,学者们对机体铁超负荷与包括CAD在内的动脉粥样硬化性疾病的关系从流行病学研究到临床试验做了许多探讨,但研究结果不尽一致,包括两者存在显著正相关、无显著相关及显著负相关。尽管造成研究结果不一致的原因众多,但是以下几个方面则是主要的影响因素:
     ①反映机体铁负荷的指标不一:目前所应用的反映机体铁负荷的指标包括血清铁蛋白、血清铁、总铁结合力、可溶性转铁蛋白受体等,然而上述指标在独立反映机体铁负荷状态时皆存在一定缺陷,无法准确评价机体铁负荷状态。如血清铁蛋白是一种急性期反应物,容易受炎症、感染等因素的影响,因此其很难准确反映机体铁负荷水平。然而到目前为止,尚无准确反映机体铁负荷的特异指标,基于上述原因,Ramakrishna指出,对上述铁负荷指标应该同时予以检测,以反映机体铁负荷状态。
     ②研究的结局变量不一:目前关于铁负荷与心血管病关系的人群研究所应用的结局变量主要包括心肌梗塞发病与死亡、CAD发病与死亡、心血管病总死亡等,虽然上述疾病皆以粥样硬化为病理基础,但由于其均为多因子疾病,所以在其它病因学方面可能不尽相同。
     ③潜在的混杂与偏倚控制不全:由于以动脉粥样硬化为病理基础的心血管系统疾病包括CAD是多因子疾病,吸烟、高血压、高脂血症等皆为重要的危险因素,因此如果不能有效地控制有关混杂,很难准确揭示出机体铁超负荷的致病作用。
     针对上述目前研究现状及存在的问题,本课题采用以医院为基础的病例对照研究,以冠状动脉造影新诊断的CAD患者为病例组,以正常健康者为对照组,通过同时测定血清铁蛋白、血清铁、总铁结合力、可溶性转铁蛋白受体四个目前最常用的反映机体铁负荷的指标,利用多因素分析模型控制有关潜在的混杂后,探讨机体铁超负荷与CAD的关系,并探讨与CAD相关的反映铁负荷的相对敏感指标或相对敏感指标的组合。另外,由于CAD是受多种因素共同作用的多因子疾病,本文也初步探讨铁负荷相对敏感指标与环境因素的交互作用在CAD致病中的效应。并利用meta分析,进一步探寻机体铁超负荷与CAD关系的证据。通过上述研究,阐明机体铁超负荷与CAD的关系,为该病的预防、诊断与治疗提供科学依据。本课题来源于国家自然基金资助项目(81072357)。
     研究目的
     1.明确机体铁超负荷与CAD的关系;
     2.探寻与CAD相关的反映机体铁负荷的相对敏感指标或相对敏感指标的组合;
     3.分析反映机体铁负荷的相对敏感指标与环境因素之间的交互作用对CAD的效应。
     研究方法
     1.采用以医院为基础的病例对照研究,以新诊断的CAD患者为病例组,选择在医院体检的健康人为对照组。用酶联免疫吸附法测定血清铁蛋白、血清铁、总铁结合力及可溶性转铁蛋白受体的浓度。
     2.通过贝叶斯模型平均法筛选对CAD发病有重要影响的协变量,然后在logistic回归模型框架下,运用限制性立方样条函数估计各个机体铁负荷指标与CAD发病风险的剂量反应关系。
     3.通过受试者工作特征曲线(Receiver Operating Characteristic curve, ROC)下面积(Area Under the Curve, AUC)的比较,探讨与CAD关系最为密切的机体铁负荷的相对敏感指标或相对敏感指标的组合。
     4.利用广义多因子降维法,探讨反映机体铁负荷的相对敏感指标与环境因素之间的高阶交互作用。
     5.采用meta分析的方法,系统的检索以往发表的研究机体铁负荷与CAD关系的相关文献,根据异质性检验的结果采用固定效应模型(I2<50%)或者随机效应模型(I2>50%)。 Meta回归和亚组分析用来探索异质性的来源,影响性分析用来衡量单篇文献对总的合并结果的影响,应用漏斗图法和Egger检验法检测可能的发表偏倚。
     研究结果
     1.一般情况:本研究共调查258例CAD病例和282例对照,年龄、高血压、体质指数、吸烟、人8异前列腺素F2a及糖尿病史CAD组显著高于对照组(P<0.05),而高密度脂蛋白CAD组显著低于对照组(P<0.05)。
     2.单因素分析:结果表明,血清铁水平CAD组显著高于对照组(P<0.01),总铁结合力和可溶性转铁蛋白受体水平CAD组显著低于对照组(P<0.01)。
     3.协变量的筛选:在Occam窗中共筛选了25个模型用来估计贝叶斯模型平均法的参数估计值,最佳模型的后验概率为0.15,最佳模型对应的BIC值为-2950.08。选入的变量有9个,包括年龄、糖尿病史、总胆固醇、低密度脂蛋白、高血压、饮酒、性别、人8异前列腺素F2a及高密度脂蛋白。
     4.多因素分析:
     (1)血清铁蛋白:调整了年龄、糖尿病史、总胆固醇、低密度脂蛋白、高血压、饮酒、性别、人8异前列腺素F2a、高密度脂蛋白后,多因素分析结果显示,血清铁蛋白与CAD的相关关系具有统计学意义(P<0.01),且存在显著地非线性剂量效应关系(P<0.01)。剂量效应关系表明,血清铁蛋白的参照值为200ug/L时,血清铁蛋白浓度为100ug/L、150ug/L、250ug/L、300ug/L及350ug/L时对应的OR(95%CI)分别为:1.69(1.18-2.41)、1.15(1.00-1.31)、1.07(0.93-1.21)、1.40(0.99-1.97)及1.83(1.09-3.07)。
     (2)血清铁:调整了年龄、糖尿病史、总胆固醇、低密度脂蛋白、高血压、饮酒、性别、人8异前列腺素F2a、高密度脂蛋白后,多因素分析结果表明,血清铁与CAD的相关关系具有统计学意义(P<0.01),且存在显著地非线性剂量效应关系(P<0.01)。剂量效应关系显示,血清铁的参考值为19μmol/L时,血清铁的浓度为16μmol/L、22pmol/L、26μmol/L、30μmol/L时对应的OR(95%CI)分别为:0.36(0.21-0.60)、0.66(0.54-0.81)、1.41(1.20-1.66)、2.00(1.45-2.75)及2.52(1.67-3.82)。
     (3)总铁结合力:调整了年龄、糖尿病史、总胆固醇、低密度脂蛋白、高血压、饮酒、性别、人8异前列腺素F2a、高密度脂蛋白后,多因素分析结果表明,总铁结合力与CAD的相关关系具有统计学意义(P<0.01),且存在显著地非线性剂量效应关系(P<0.01)。剂量效应关系显示,总铁结合力的参考值为90μmol/L时,总铁结合力的浓度为50μmol/L、70μmol/L、110pmol/L、130μmol/L及150μmnol/L时对应的OR(95%CI)分别为:4.58(2.61-8.03)、2.03(1.58-2.62)、0.59(0.49-0.68)、0.41(0.30-0.53)及0.33(0.22-0.49)。
     (4)可溶性转铁蛋白受体:调整了年龄、糖尿病史、总胆固醇、低密度脂蛋白、高血压、饮酒、性别、人8异前列腺素F2a、高密度脂蛋白后,多因素分析结果显示,可溶性转铁蛋白受体与CAD的相关关系具有统计学意义(P<0.01),且存在显著地线性剂量效应关系(P>0.05)。剂量效应关系表明,可溶性转铁蛋白受体的参考值为10mg/L时,可溶性转铁蛋白受体的浓度为6mg/L、8mg/L、12mg/L、16mg/L及20mg/L时对应的OR(95%CI)分别为:1.33(0.97-1.84)、1.16(1.00-1.35)、0.87(0.79-0.96)、0.67(0.53-0.86)及0.53(0.35-0.79)。
     5.ROC分析:血清铁蛋白、血清铁、总铁结合力与可溶性转铁蛋白受体的ROC曲线下面积AUC(95%CI)分别为:0.53(0.48-0.58)、0.73(0.69-0.77)、0.74(0.69-0.78)及0.61(0.56-0.66),而血清铁和总铁结合力两个铁负荷相对敏感指标的组合的AUC(95%CI)为0.86(0.83-0.90),显著优于单个铁负荷指标或其他铁负荷指标的组合(P<0.05)。
     6.高阶交互作用:广义多因子降维结果显示,交互作用最优模型为血清铁与总铁结合力铁负荷敏感指标的组合、体质指数和高密度脂蛋白的三因子交互作用模型,其检验样本准确度为0.85,置换检验P<0.01,交叉验证一致性为10/10。另外,与多因子降维法相比,调整年龄与性别两个协变量后三因子组合模型的预测准确度要明显高于不调整协变量的情况。
     7. Meta分析:根据筛选排除标准,最终共有26篇包含血清铁蛋白、血清铁、总铁结合力及可溶性转铁蛋白受体四个铁指标在内的关于机体铁负荷与CAD关系的相关研究纳入meta分析。
     (1)对于合并标准化均差(SMD)的meta分析,总共包含4,410例CAD病例和7,357例对照。其中血清铁蛋白、血清铁、总铁结合力与可溶性转铁蛋白受体的合并SMD(95%CI)结果分别为:0.74(0.46,1.01)、-0.06(-0.28,0.16)、-0.24(-0.59,0.10)及0.13(0.02,0.24)。除了可溶性转铁蛋白受体,其他三个铁指标的研究均检测到较大的异质性,排除了对异质性有较大影响的研究之后,血清铁蛋白、血清铁与总铁结合力合并SMD(95%CI)结果分别为:0.12(0.07,0.17)、-0.17(-0.31,-0.03)及-0.23(-0.39,-0.07)。上述所有研究的影响性分析皆没有发现对总的合并结果有明显影响的单篇文献,Egger检验均没有检测到明显的发表偏倚。
     (2)对于合并OR值的1meta分析,累计纳入病例5,738例,对照98,362例。血清铁蛋白、血清铁、总铁结合力与可溶性转铁蛋白受体合并的OR(95%CI)值的结果分别为1.13(0.98,1.30)、1.21(0.95,1.55)、0.97(0.94,0.99)及1.54(0.85,2.77)。仅有血清铁的研究检测到较大的异质性,排除了对异质性有较大影响的研究之后,血清铁的合并的OR(95%CI)值的结果为1.19(1.08,1.45)。上述所有研究的影响性分析皆没有发现对总的合并结果有明显影响的单篇文献,Egger检验均没有检测到明显的发表偏倚。
     主要结论
     1.本研究人群中,血清铁蛋白浓度高于200ug/L是CAD的危险因素,且与CAD之间存在显著的非线性剂量效应关系;血清铁浓度高于19μmol/L时是CAD的危险因素,与CAD之间存在显著的非线性剂量效应关系;总铁结合力浓度低于90μmol/L时是CAD的危险因素,与CAD之间存在显著的非线性剂量效应关系;可溶性转铁蛋白受体浓度低于10mg/L时是CAD的危险因素,与CAD之间存在显著的线性剂量效应关系。因此,在调整了贝叶斯模型平均法筛选的重要混杂变量之后,多因素分析结果均提示,机体铁超负荷增加了CAD发病的危险性。
     2.血清铁和总铁结合力两个铁指标的组合与CAD关系最为密切,是反映CAD患者机体铁负荷的相对敏感指标。
     3.血清铁和总铁结合力两个反映机体铁负荷相对敏感指标的组合与体质指数、高密度脂蛋白在CAD发病中存在高阶交互作用。
     4.本项1meta分析结果显示,血清铁蛋白、血清铁及总铁结合力与CAD的相关性具有统计学意义,而可溶性转铁蛋白受体由于受到文献数量限制,尚无法得到明确结论。
     意义与创新
     1.本研究利用限制性立方样条函数拟合了各个机体铁负荷指标与CAD的剂量效应关系,特别是估计了血清铁蛋白、血清铁、总铁结合力与CAD的非线性剂量效应关系,提高了模型的预测能力,目前罕见报道。
     2.因目前国内外未见关于机体铁负荷敏感指标的筛选研究。本课题筛选出血清铁与总铁结合力两个指标的组合,是反映机体铁负荷对CAD发病影响的相对敏感指标,为今后有关机体铁负荷与疾病关系研究中铁负荷指标的选择提供了依据。
     3.运用广义多因子降维法,探讨了反映机体铁负荷相对敏感指标的组合与体质指数、高密度脂蛋白对CAD的高阶交互作用,该方面研究目前亦未见报道。
Background
     Coronary artery disease (CAD) is the leading cause of death and disease burden in China and other most countries. With the developing of economy, the change of life style and the population aging in our country, the morbidity and mortality of CAD has been increasing significantly. Therefore, identifying the risk factors and population at high risk early is very important for preventing and controlling CAD. Although many risk factors for CAD such as hypertension, hyperlipemia and smoking have been identified, however, data showed that these traditional risk factors only account for50%of the CAD etiology, which indicates that other factors also play an important role in the incidence of CAD.
     Iron is an essential microelement for life and health which plays an important role in the transportation of oxygen, respiration of cell, metabolism of energy, expression of gene, and repairation and replication of DNA in the cellular process. Approximately66%is found in hemoglobin in the ferrous (Fe2+) form. An additional27%of the body's iron is incorporated as tissue ferritin inthe ferric (Fe3+) state. When the intracellular storage capacity is exceeded, additional intracellular iron is incorporated into hemosiderin and iron may besequestered in the reticuloendothelial system. Free Fe2+can produce hydroxyl radical (·OH-) through Fenton and Haber-Weiss reaction that promotes lipid peroxidation and causes severe damage to membranes, proteins, and DNA, and induces oxidative stress. Besides, iron may act as a nitric oxide (NO) scavenger and thus induce endothelial cell dysfunction.
     As we all know, the incidence of CAD in premenopausal women is significantly lower than men, and the CAD risk in postmenopausal women increased gradually to be similar with men. Based on the above-mentioned phenomenon and the relevant researches, Sullivan proposed the "iron hypothesis" in1981suggesting that body iron stores were positively related to CAD risk. The theory was that the low level of iron by the menstruation periodic iron loss could be helpfulfor the prevention of CAD in women, while progressive accumulation of the body's iron in men lead to increased risk of CAD. Since the hypothesis was first proposed, extensive debates have been generated from epidemiological studies and clinical trials. The possible main reasons for the conflicting results are as follows:
     ①Different biomarkers of body iron stores:So far, a good deal of serum iron indicators including serum ferritin (SF), serum iron (SI), total iron-binding capacity (TIBC), and serum transferrin receptor (sTfR) were used in the present publications to assess the relation of body iron stores. Among them, almost no one could independently and exactly reflect the body iron levelsfor various weakness. For example, SF, an acute-phase protein, was prone to be increased by infection and inflammation. Based on the above-mentioned reasons, Ramakrishna suggested that a well designed research with complete measurements of SF, SI, TIBC and sTfR should conducted to properly reflect the status of iron overload.
     ②Inconsistent outcomes:Myocardial infarction, coronary artery disease and total death of cardiovascular diseases are all used in studies about association of body iron and cardiovascular disease as outcomes. Although atherosclerosis is the pathological mechanism of the above diseases, the etiology of them might be not the same as they are all multiple factor diseases.
     ③Partial adjustment of covariates:As CAD is multiple factor and complex disease, smoking, hypertension and hyperlipemia are all important risk factors, thus, it is hard to indicate the effects of iron overload on CAD risk without complete adjustments.
     Above all, we conducted a hospital-based case-control study included newly diagnosed CAD patients by percutaneous coronary angiography and healthy controls and simultaneously measured SF, SI, TIBC and sTfR to evaluate the association of body iron and CAD and explore the ideal iron indicator or combination of iron indicators that has best effect on CAD risk. Besides, CAD is a chronic disease of multifactorial origin that develops from the interplay of lifestyle, this study explored the high-order interaction between iron overload indicators and enviroment factors on CAD risk. A meta-analysis was also performed to confirm the association of body iron overload and CAD risk. This study was sponsored by a grant from National Natural Science Foundation of China (81072357).
     Objectives1.To assess the association between body iron indicators and CAD risk;
     2. To explore the ideal iron indicator that has best effect on CAD risk;
     3.To study the interaction effects between iron indicators and enviroment factors on CAD risk.
     Materials and Methods
     1. A hospital-based case-control study was conducted with newly-diagnosed CAD patients. Healthy controls were recruited from the healthy persons who came to the Physical Examination Center for a medical checkup.The concentration of SF、SI、TIBC and sTfR were measured by enzyme-linked immunosorbent assay (ELISA).
     2. Bayesian model averaging (BMA) was applied to select the significant covariates that influence on CAD risk. Restricted cubic spline was performed to assess the concentration-risk association between each serum iron parameter and CAD risk.
     3. The areas under each Receiver Operating Characteristic (ROC) curve (AUC) were compared with each other toindicate the one showing strongest association with CAD risk.
     4. Generalized Multifactor Dimensionality Reduction (GMDR) was used to explore the high-order interaction between iron overload indicators and enviroment factors on CAD risk.
     5. A meta-analysis was performed with comprehensive search for relevant articles. Fixed or random effect pooled measure was selected on the basis of the results of homogeneity test, I2was used to evaluate the heterogeneity among studies. Meta regression and subgroup analysis were used to explore potential sources of between-study heterogeneity. An analysis of influence was carried out, which describes how robust the pooled estimator is to removal of individual studies. Publication bias was estimated using funnel plot and Egger's test.
     Results
     1. Study characteristic:A hospital-based case-control study was conducted with258newly-diagnosed CAD patients and282healthy controls. The traditional CAD risk factors such as age, hypertension, BMI, prevalence of smoking, serum8-iso-prostaglandin F2a and diabetes in the CAD group are significantly higher than those in controls (P<0.05). Serum high density lipoprotein in the control group are significantly higher than that in CAD group (P<0.05).
     2. Univariate analysis:All iron parameters showed significant differences among the cases and controls except for SF(P=0.06). SI in the CAD group is significantly higher than that in controls (P<0.01), TIBC and sTfR in the CAD group are significantly lower than those in controls (P<0.01).
     3. Covariates selection:There were25models in Occam's window, and these were used to calculate the BMA estimates of the regression coefficients. The posterior probabilities and BIC value of the best model are0.15and-2950.08, respectively. Nine variables were selected by BMA on the selected models and they were age, history of diabetes, total cholesterol, low density lipoprotein, hypertension, alcohol, sex, serum8-iso-prostaglandin F2a and serum high density lipoprotein.
     4. Multivariate analysis:
     (1) SF:After adjusted for age, history of diabetes, total cholesterol, low density lipoprotein, hypertension, alcohol, sex, serum8-iso-prostaglandin F2a and serum high density lipoprotein, the overall (P<0.01) and non-linear (P<0.01) associations between SF and CAD were both signifcant in the multivariable analysis. The reference value for SF was200ug/L in the concentration-risk analysis, and the OR(95%CI) were1.69(1.18-2.41),1.15(1.00-1.31),1.07(0.93-1.21),1.40(0.99-1.97) and1.83(1.09-3.07) for100ug/L,150ug/L,250ug/L,300ug/L and350ug/L, respectively.
     (2) SI:After adjusted for age, history of diabetes, total cholesterol, low density lipoprotein, hypertension, alcohol, sex, serum8-iso-prostaglandin F2a and serum high density lipoprotein, the overall (P<0.01) and non-linear (P<0.01) associations between SI and CAD were both signifcant in the multivariable analysis. The reference value for SI was19dμmol/L in the concentration-risk analysis, and the OR(95%CI) were0.36(0.21-0.60),0.66(0.54-0.81),1.41(1.20-1.66),2.00(1.45-2.75) and2.52(1.67-3.82) for12μmol/L,16μmol/L,22μmol/L,26μmol/Land30μmol/L, respectively.
     (3) TIBC:After adjusted for age, history of diabetes, total cholesterol, low density lipoprotein, hypertension, alcohol, sex, serum8-iso-prostaglandin F2a and serum high density lipoprotein, the overall (P<0.01) and non-linear (P<0.01) associations between TIBC and CAD were both signifcant in the multivariable analysis. The reference value for TIBC was90μmol/L in the concentration-risk analysis, and the OR(95%CI) were4.58(2.61-8.03),2.03(1.58-2.62),0.59(0.49-0.68),0.41(0.30-0.53) and0.33(0.22-0.49) for50μmol/L,70μmol/L,110μmol/L,130μmol/L and150μmol/L, respectively.
     (4) sTfR:After adjusted for age, history of diabetes, total cholesterol, low density lipoprotein, hypertension, alcohol, sex, serum8-iso-prostaglandin F2a and serum high density lipoprotein, the overall (P<0.01) and linear (P>0.05) associations between sTfR and CAD were both signifcant in the multivariable analysis. The reference value for sTfR was10mg/L in the concentration-risk analysis, and the OR(95%CI) were:1.33(0.97-1.84),1.16(1.00-1.35),0.87(0.79-0.96),0.67(0.53-0.86) and0.53(0.35-0.79) for6mg/L,8mg/L,12mg/L,16mg/L and20mg/L, respectively.
     5. ROC analysis:The AUC(95%CI) were0.73(0.69-0.77),0.74(0.69-0.78),0.53(0.48-0.58), and0.61(0.56-0.66) for SI, TIBC, SF, and sTfR, respectively. After comparing the AUC with each other, the combination of SI and TIBC (AUC (95%CI):0.86(0.83-0.90)) was superior to other examined iron parameters or the combination of iron indicators (P<0.05).
     6. High-order interaction:The best prediction model identified in our analysis included SI-TIBC, BMI and HDL that scored10for cross-validation consistency,10for permutation test (P<0.01) and0.85for testing accuracy, suggesting that these three factors together significantly contributed to CAD risk. The accuracy of the best model with covariates (age and sex) adjustment was better than that without adjustment.
     7. Meta-analysis:A total of26studies on SF, TIBC, SI and sTfR were included in the meta-analysis.
     (1) For the pooled SMD analysis, a total of4,410cases and7,357controls were eligible for the meta-analysis performed on SMD. The SMD(95%CI) for SF, TIBC, SI and sTfR were0.74(0.46,1.01),-0.06(-0.28,0.16),-0.24(-0.59,0.10) and0.13(0.02,0.24), respectively. Substantial between-study heterogeneity were found in SF, TIBC and SI, and after excluding the studies exerting substantial impact on between-study heterogeneity, the SMD(95%CI) for SF, TIBC and SI were0.12(0.07,0.17),-0.22(-0.39,-0.07) and-0.17(-0.31,-0.04), respectively. No significant influence and publication bias were observed before and after sensitivity analysis.
     (2) For the pooled OR analysis, a total of5,738cases and98,362controls were included for the meta-analysis performed on OR. The OR(95%CI) for SF, TIBC, SI and sTfR were1.13(0.98,1.30),1.21(0.95,1.55),0.97(0.94,0.99) and1.54(0.85,2.77), respectively. Substantial between-study heterogeneity was found in SI, and after excluding the studies exerting substantial impact on between-study heterogeneity, the pooled OR(95%CI) was1.19(1.08,1.45) for SI. No significant influence and publication bias were observed before and after sensitivity analysis.
     Conclusions
     1. In this study, compared with SF concentrations less than200ug/L, SF was found significantly positively correlated with CAD risk in nonlinear in the concentration-risk analysis. Compared with SI concentrations less than19μmol/L, SI was found significantly positively correlated with CAD risk in nonlinear. Compared with TIBC concentrations more than90μmol/L, TIBC was found significantly negatively correlated with CAD risk in non-linear. Compared with sTfR concentrations more than10mg/L, sTfR was found significantly negatively correlated with CAD risk in linear. Thus, after adjusted for the important covariates screened by BMA, iron overload were positively correlated with CAD.
     2. The combination of SI and TIBCwere found to be the ideal iron indicator that have best effect on CAD risk.
     3. Our results showed that combination of SI-TIBC, BMI and HDL conferred a significant three factors interaction on CAD risk.
     4. In this meta-analysis, SF, SI and TIBC were found significantly associated with CAD risk. Meta analysis of sTfR can not be fully conducted because of insufficient studies.
     Innovations
     1. This study assessed the concentration-risk association between body iron parameters and CAD risk with restricted cubic spline, and indicated the non-linear association of SF, SI and TIBC and CAD risk which improved the predictive power of the model.
     2. Information is presently absent about better iron status biomarkers on CAD disease risk, this study explored the ideal iron indicator(SI-TIBC) that has best effect on CAD risk with ROC analysis and provided evidence for future studies related to iron overload metabolism research worldwide.
     3. This research explored the statistically significant high-order interaction among SI-TIBC, BMI and HDL associated with CAD risk, further studies with big sample are needed to confirm these novel results.
引文
1. Lusis AJ, Mar R, Pajukanta P. Genetics of atherosclerosis [J]. Annual review of genomics and human genetics.2004;5:189-218.
    2. Katz LN, Pick R, Stamler J. Atherosclerosis and coronary heart disease [J]. The Journal-lancet Nov 1956;76(11):355-362.
    3. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors,2001:systematic analysis of population health data [J]. Lancet. May 27 2006;367(9524):1747-1757.
    4. Cheng J, Zhao D, Zeng Z, et al. The impact of demographic and risk factor changes on coronary heart disease deaths in Beijing,1999-2010 [J]. BMC public health.2009;9:30.
    5. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J,3rd. Factors of risk in the development of coronary heart disease-ssix year follow-up experience. The Framingham Study [J]. Annals of internal medicine. Jul 1961;55:33-50.
    6. Doyle JT, Dawber TR, Kannel WB, Heslin AS, Kahn HA. Cigarette smoking and coronary heart disease. Combined experience of the Albany and Framingham studies [J]. The New England journal of medicine. Apr 19 1962;266:796-801.
    7. Wilson PW, Castelli WP, Kannel WB. Coronary risk prediction in adults (the Framingham Heart Study) [J]. The American journal of cardiology. May 29 1987;59(14):91G-94G.
    8. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories [J]. Circulation. May 12 1998;97(18):1837-1847.
    9. Smith SC, Jr., Greenland P, Grundy SM. AHA Conference Proceedings. Prevention conference V: Beyond secondary prevention:Identifying the high-risk patient for primary prevention:executive summary. American Heart Association [J]. Circulation. Jan 4-112000;101(1):111-116.
    10. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease [J]. Arteriosclerosis, thrombosis, and vascular biology. Jan 2005;25(1):29-38.
    11. 荣爽.荔枝壳原花青素对动脉粥样硬化的保护作用及其机制研究[博士],华中科技大学;2012.
    12. Victor VM, Rocha M, Sola E, Banuls C, Garcia-Malpartida K, Hernandez-Mijares A. Oxidative stress, endothelial dysfunction and atherosclerosis [J]. Current pharmaceutical design. 2009;15(26):2988-3002.
    13. Kaneda H, Taguchi J, Ogasawara K, Aizawa T, Ohno M. Increased level of advanced oxidation protein products in patients with coronary artery disease [J]. Atherosclerosis. May 2002;162(1):221-225.
    14. Reif DW. Ferritin as a source of iron for oxidative damage [J]. Free Radic Biol Med. 1992;12(5):417-427.
    15. 康佩佩.总铁结合力与冠心病关系的研究[硕士],山东大学;2013.
    16. Ramakrishna G, Rooke TW, Cooper LT. Iron and peripheral arterial disease:revisiting the iron hypothesis in a different light [J]. Vasc Med.2003;8(3):203-210.
    17. Levi S, Rovida E. The role of iron in mitochondrial function [J]. Biochim Biophys Acta. Jul 2009;1790(7):629-636.
    18. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease [J]. Int J Biochem Cell Biol.2007;39(1):44-84.
    19. Brieland JK, Clarke SJ, Karmiol S, Phan SH, Fantone JC. Transferrin:a potential source of iron for oxygen free radical-mediated endothelial cell injury [J]. Arch Biochem Biophys. Apr 1992;294(1):265-270.
    20. Duffy SJ, Biegelsen ES, Holbrook M, et al. Iron chelation improves endothelial function in patients with coronary artery disease [J]. Circulation. Jun 12 2001;103(23):2799-2804.
    21. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction:a marker of atherosclerotic risk [J]. Arteriosclerosis, thrombosis, and vascular biology. Feb 12003;23(2):168-175.
    22. Keys A, Thomas WA, Lee KT. Sex factor in coronary artery disease [J]. Br Med J. Jul 14 1956;2(4984):98-99.
    23. Sullivan JM, Vander Zwaag R, Hughes JP, et al. Estrogen replacement and coronary artery disease. Effect on survival in postmenopausal women [J]. Arch Intern Med. Dec 1990; 150(12):2557-2562.
    24. Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group [J]. JAMA. Aug 19 1998;280(7):605-613.
    25. Herrington DM, Reboussin DM, Brosnihan KB, et al. Effects of estrogen replacement on the progression of coronary-artery atherosclerosis [J]. The New England journal of medicine. Aug 24 2000;343(8):522-529.
    26. Ritterband AB, Jaffe IA, Densen PM, Magagna JF, Reed E. Gonadal Function and the Development of Coronary Heart Disease [J]. Circulation. Feb 1963;27:237-251.
    27. Kannel WB, Hjortland MC, McNamara PM, Gordon T. Menopause and risk of cardiovascular disease:the Framingham study [J]. Annals of internal medicine. Oct 1976;85(4):447-452.
    28. Gordon T, Kannel WB, Hjortland MC, McNamara PM. Menopause and coronary heart disease. The Framingham Study [J]. Annals of internal medicine. Aug 1978;89(2):157-161.
    29. 钱忠明,柯亚.铁代谢与相关疾病.北京:科学出版社;2010.
    30. Cook JD, Finch CA, Smith NJ. Evaluation of the iron status of a population [J]. Blood. Sep 1976;48(3):449-455.
    31. Sullivan JL. Iron and the sex difference in heart disease risk [J]. Lancet Jun 13 1981;1(8233):1293-1294.
    32. Salonen JT, Nyyssonen K, Korpela H, Tuomilehto J, Seppanen R, Salonen R. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men [J]. Circulation. Sep 1992;86(3):803-811.
    33. Meyers DG, Strickland D, Maloley PA, Seburg JK, Wilson JE, McManus BF. Possible association of a reduction in cardiovascular events with blood donation [J]. Heart Aug 1997;78(2):188-193.
    34. Meyers DG, Jensen KC, Menitove JE. A historical cohort study of the effect of lowering body iron through blood donation on incident cardiac events [J]. Transfusion. Sep 2002;42(9):1135-1139.
    35. Yuan XM, Anders WL, Olsson AG, Brunk UT. Iron in human atheroma and LDL oxidation by macrophages following erythrophagocytosis [J]. Atherosclerosis. Jul 1996; 124(1):61-73.
    36. Minqin R, Rajendran R, Pan N, et al. The iron chelator desferrioxamine inhibits atherosclerotic lesion development and decreases lesion iron concentrations in the cholesterol-fed rabbit [J]. Free Radic Biol Med. May 12005;38(9):1206-1211.
    37. Lee TS, Lee FY, Pang JH, Chau LY. Erythrophagocytosis and iron deposition in atherosclerotic lesions [J]. Chin J Physiol. Mar 31 1999;42(1):17-23.
    38. Lee TS, Shiao MS, Pan CC, Chau LY. Iron-deficient diet reduces atherosclerotic lesions in apoE-deficient mice [J]. Circulation. Mar 9 1999;99(9):1222-1229.
    39. Tuomainen TP, Punnonen K, Nyyssonen K, Salonen JT. Association between body iron stores and the risk of acute myocardial infarction in men [J]. Circulation. Apr 21 1998;97(15):1461-1466.
    40. Wolff B, Volzke H, Ludemann J, et al. Association between high serum ferritin levels and carotid atherosclerosis in the study of health in Pomerania (SHIP) [J]. Stroke. Feb 2004;35(2):453-457.
    41. Sempos CT, Looker AC, Gillum RF, Makuc DM. Body iron stores and the risk of coronary heart disease [J]. The New England journal of medicine. Apr 21 1994;330(16):1119-1124.
    42. van der AD, Marx JJ, Grobbee DE, et al. Non-transferrin-bound iron and risk of coronary heart disease in postmenopausal women [J]. Circulation. Apr 25 2006; 113(16):1942-1949.
    43. Ascherio A, Rimm EB, Giovannucci E, Willett WC, Stampfer MJ. Blood donations and risk of coronary heart disease in men [J]. Circulation. Jan 2 2001;103(1):52-57.
    44. Galan P, Noisette N, Estaquio C, et al. Serum ferritin, cardiovascular risk factors and ischaemic heart diseases:a prospective analysis in the SU.VI.MAX (SUpplementation en VItamines et Mineraux AntioXydants) cohort [J]. Public Health Nutr. Feb 2006;9(1):70-74.
    45. 邓家栋,杨崇礼,杨天楹.邓家栋临床血液学.上海:上海科学技术出版社;2001.
    46. 黄蓓婷.血清铁与原发性高血压的关系研究[硕士],中国医科大学;2004.
    47. Hallberg L, Hulthen L. High serum ferritin is not identical to high iron stores [J]. Am J Clin Nutr. Dec 2003;78(6):1225-1226.
    48. 李振有,陈礼鹏,郑海洲.实验室数据的临床应用.天津:天津科技翻译出版公司;2000.
    49. Ahluwalia N, Genoux A, Ferrieres J, et al. Iron status is associated with carotid atherosclerotic plaques in middle-aged adults [J]. J Nutr. Apr 2010;140(4):812-816.
    50. Morrison HI, Semenciw RM, Mao Y, Wigle DT. Serum iron and risk of fatal acute myocardial infarction [J]. Epidemiology. Mar 1994;5(2):243-246.
    51. 李影林.中华医学检验全书.北京:人民卫生出版社;1996.
    52. 钱忠明.铁代谢一基础与临床.北京:科学出版社;2000.
    53. Magnusson MK, Sigfusson N, Sigvaldason H, Johannesson GM, Magnusson S, Thorgeirsson G. Low iron-binding capacity as a risk factor for myocardial infarction [J]. Circulation. Jan 1994;89(1):102-108.
    54. Sun Q, Ma J, Rifai N, Franco OH, Rexrode KM, Hu FB. Excessive body iron stores are not associated with risk of coronary heart disease in women [J]. J Nutr. Dec 2008;138(12):2436-2441.
    55. Yuan XM, Li W. The iron hypothesis of atherosclerosis and its clinical impact [J]. Ann Med. 2003;35(8):578-591.
    56. Sing CF, Stengard JH, Kardia SL. Genes, environment, and cardiovascular disease [J]. Arteriosclerosis, thrombosis, and vascular biology. Jul 12003;23(7):1190-1196.
    57. Khot UN, Khot MB, Bajzer CT, et al. Prevalence of conventional risk factors in patients with coronary heart disease [J]. JAMA. Aug 20 2003;290(7):898-904.
    58. Berrington de Gonzalez A, Hartge P, Cerhan JR, et al. Body-mass index and mortality among 1.46 million white adults [J]. The New England journal of medicine. Dec 2 2010;363(23):2211-2219.
    59. Dudina A, Cooney MT, Bacquer DD, et al. Relationships between body mass index, cardiovascular mortality, and risk factors:a report from the SCORE investigators [J]. Eur J Cardiovasc Prev Rehabil. Oct 2011;18(5):731-742.
    60. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome [J]. J Clin Invest. Dec 2004;114(12):1752-1761.
    61. Vassalle C, Pratali L, Boni C, Mercuri A, Ndreu R. An oxidative stress score as a combined measure of the pro-oxidant and anti-oxidant counterparts in patients with coronary artery disease [J]. Clin Biochem. Oct 2008;41(14-15):1162-1167.
    62. Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, et al. Inflammation, oxidative stress, and obesity [J]. Int J Mol Sci.2011; 12(5):3117-3132.
    63. Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization task force on standardization of clinical nomenclature [J]. Circulation. Mar 1979;59(3):607-609.
    64. 王莉莉NAD(P)H氧化酶p22phox基因A640G变异与冠心病关系的研究[硕士],山东大学;2010.
    65. Leng C, Ma S. Path consistent model selection in additive risk model via Lasso [J]. Stat Med. Sep 10 2007;26(20):3753-3770.
    66. Breiman L. Heuristics of instability and stabilization in model selection [J]. The annals of statistics. 1996;24(6):2350-2383.
    67. Learmer EE. Specification Searches. New York:Wiley; 1978.
    68. 张志杰,彭文祥,周艺彪,庄建林,姜庆五.贝叶斯模型平均法的基本原理及其在logistic回归中的应用实例[J].中国卫生统计.2007(05);467-471.
    69. 罗剑锋.贝叶斯平均模型及其在医学研究中的应用探索[硕士],复旦大学:2003.
    70. Hoeting J, Madigan D, Raftery AE. Bayesian Model Average [J]. Statistic Science.1999; 14(4).
    71. Raftery AE, Madigan D, Hoeting JA. Bayesian model averaging for linear regression models [J]. Journal of the American Statistical Association.1997;92(437):179-191.
    72. Raftery AE, Richardson S. Model Selection for Generalized Linear Models via GLTB, with Application to Epidemiology. [J].1993.
    73. Harrell FE. Regression modeling strategies:with applications to linear models, logistic regression, and survival analysis. Springer; 2001.
    74. 董英.结合踝臂指数预测死亡风险及预测模型研究[博士],复旦大学;2011.
    75. 罗剑锋,金欢,李宝月,赵耐青.限制性立方样条在非线性回归中的应用研究[J].中国卫生统计.2010(03):229-232.
    76. Hastie T, Tibshirani R. Generalized additive models for medical research [J]. Stat Methods Med Res. Sep 1995;4(3):187-196.
    77. Cleves MA, Rock L. From the help desk:Comparing areas under receiver operating characteristic curves from two or more probit or logit models [J]. The Stata Journal.2002;2(3):301-313.
    78. Tsukinoki R, Murakami Y, Huxley R, et al. Does body mass index impact on the relationship between systolic blood pressure and cardiovascular disease?:meta-analysis of 419 488 individuals from the Asia pacific cohort studies collaboration [J]. Stroke. Jun 2012;43(6):1478-1483.
    79. Pierce TW, Grim RD, King JS. Cardiovascular reactivity and family history of hypertension:a meta-analysis [J]. Psychophysiology. Jan 2005;42(1):125-131.
    80. Kodama S, Tanaka S, Heianza Y, et al. Association between physical activity and risk of all-cause mortality and cardiovascular disease in patients with diabetes:a meta-analysis [J]. Diabetes Care. Feb 2013;36(2):471-479.
    81. 赵国阳,徐又佳.铁过载的研究进展[J].江苏医药.2012(02):205-207.
    82. Aronow WS, Ahn C, Schoenfeld MR. Serum ferritin is not a risk factor for extracranial carotid arterial disease in men and women aged> or= 60 years [J]. The American journal of cardiology. Feb 15 1997;79(4):525-526.
    83. Ponikowska B, Suchocki T, Paleczny B, et al. Iron status and survival in diabetic patients with coronary artery disease [J]. Diabetes Care. Dec 2013;36(12):4147-4156.
    84. Braun S, Ndrepepa G, von Beckerath N, Vogt W, Schomig A, Kastrati A. Value of serum ferritin and soluble transferrin receptor for prediction of coronary artery disease and its clinical presentations [J]. Atherosclerosis. May 2004;174(1):105-110.
    85. Morkedal B, Laugsand LE, Romundstad PR, Vatten LJ. Mortality from ischaemic heart disease: sex-specific effects of transferrin saturation, serum iron, and total iron binding capacity. The HUNT study [J]. Eur J Cardiovasc Prev Rehabil. Oct 2011;18(5):687-694.
    86. Bridges KR, Bunn HF. Anemias with distrubed iron metabolism. New York:McGraw Hill 1991.
    87. Hawkins RC. Total iron binding capacity or transferrin concentration alone outperforms iron and saturation indices in predicting iron deficiency [J]. Clin Chim Acta. May 12007;380(1-2):203-207.
    88. Regnstrom J, Tornvall P, Kallner A, Nilsson J, Hamsten A. Stored iron levels and myocardial infarction at young age [J]. Atherosclerosis. Mar 1994;106(1):123-125.
    89. Gabay C, Kushner 1. Acute-phase proteins and other systemic responses to inflammation [J]. The New England journal of medicine. Feb 11 1999;340(6):448-454.
    90. Harrison PM, Arosio P. The ferritins:molecular properties, iron storage function and cellular regulation [J]. Biochim Biophys Acta. Jul 31 1996;1275(3):161-203.
    91. Rogers JT. Ferritin translation by interleukin-land interleukin-6:the role of sequences upstream of the start codons of the heavy and light subunit genes [J]. Blood. Mar 15 1996;87(6):2525-2537.
    92. Dominguez-Rodriguez A, Carrillo-Perez Tome M, Hernandez-Garcia C, et al. Serum ferritin and acute coronary syndrome:a strong prognostic factor? [J]. Int J Cardiol. Oct 6 2011;152(1):129-130.
    93. 罗云,潘海涛Bayesian模型平均法及其在Cox回归中的应用[J].统计与决策.2011(24):8-11.
    94. Viallefont V, Raftery AE, Richardson S. Variable selection and Bayesian model averaging in case-control studies [J]. Stat Med. Nov 15 2001;20(21):3215-3230.
    95. Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic spline functions in public health research [J]. Stat Med. Apr 30 2010;29(9):1037-1057.
    96. Steenland K, Deddens JA. A practical guide to dose-response analyses and risk assessment in occupational epidemiology [J]. Epidemiology. Jan 2004;15(1):63-70.
    97. Brenner H, Blettner M. Controlling for continuous confounders in epidemiologic research [J]. Epidemiology. Jul 1997;8(4):429-434.
    98. Moore JH. The ubiquitous nature of epistasis in determining susceptibility to common human diseases [J]. Hum Hered.2003;56(1-3):73-82.
    99. Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer [J]. Am J Hum Genet Jul 2001;69(1):138-147.
    100. 唐迅,李娜,胡永华.应用多因子降维法分析基因-基因交互作用[J].中华流行病学杂志.2006(05):437-441.
    101. Coffey CS, Hebert PR, Ritchie MD, et al. An application of conditional logistic regression and multifactor dimensionality reduction for detecting gene-gene interactions on risk of myocardial infarction:the importance of model validation [J]. BMC bioinformatics. Apr 30 2004;5:49.
    102. Moore JH. Computational analysis of gene-gene interactions using multifactor dimensionality reduction [J]. Expert Rev Mol Diagn. Nov 2004;4(6):795-803.
    103. Lou XY, Chen GB, Yan L, et al. A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence [J]. Am J Hum Genet. Jun 2007;80(6):1125-1137.
    104. 陈卿,唐迅,胡永华.应用广义多因子降维法分析数量性状的交互作用[J].中华流行病学杂志.2010(08):938-941.
    105. Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions [J]. Bioinformatics. Feb 12 2003;19(3):376-382.
    106. Gustavsson J, Mehlig K, Leander K, et al. Interaction of apolipoprotein E genotype with smoking and physical inactivity on coronary heart disease risk in men and women [J]. Atherosclerosis. Feb 2012;220(2):486-492.
    107. Liu X, Li Y, Lu X, et al. Interactions among genetic variants from SREBP2 activating-related pathway on risk of coronary heart disease in Chinese Han population [J]. Atherosclerosis. Feb 2010;208(2):421-426.
    108. Oshaug A, Bugge KH, Bjonnes CH, Borch-Iohnsen B, Neslein IL. Associations between serum ferritin and cardiovascular risk factors in healthy young men. A cross sectional study [J]. Eur J Clin Nutr. Jun 1995;49(6):430-438.
    109. Crist BL, Alekel DL, Ritland LM, Hanson LN, Genschel U, Reddy MB. Association of oxidative stress, iron, and centralized fat mass in healthy postmenopausal women [J]. J Womens Health (Larchmt). Jun 2009;18(6):795-801.
    110. Motsinger-Reif AA, Reif DM, Fanelli TJ, Ritchie MD. A comparison of analytical methods for genetic association studies [J]. Genet Epidemiol. Dec 2008;32(8):767-778.
    111. Lee JH, Moore JH, Park SW, et al. Genetic interactions model among Eotaxin gene polymorphisms in asthma [J]. J Hum Genet.2008;53(10):867-875.
    112. Lin E, Pei D, Huang YJ, Hsieh CH, Wu LS. Gene-gene interactions among genetic variants from obesity candidate genes for nonobese and obese populations in type 2 diabetes [J]. Genet Test Mol Biomarkers. Aug 2009;13(4):485-493.
    113. Wu LS-H, Hsieh C-H, Pei D, Hung Y-J, Kuo S-W, Lin E. Association and interaction analyses of genetic variants in ADIPOQ, ENPP1, GHSR, PPARy and TCF7L2 genes for diabetic nephropathy in a Taiwanese population with type 2 diabetes [J]. Nephrology Dialysis Transplantation. 2009;24(11):3360-3366.
    114. 武光林,张安玉.混杂因素和相互作用对病例对照研究样本大小的影响[J].中国卫生统计.1990(04):55-57.
    115. 赵仲堂.流行病学研究方法与应用.北京:科学出版社;2000.
    116. Glowa JR, Barrett JE. Effects of alcohol on punished and unpunished responding of squirrel monkeys [J]. Pharmacol Biochem Behav. Feb 1976;4(2):169-173.
    117. Klipstein-Grobusch K, Koster JF, Grobbee DE, et al. Serum ferritin and risk of myocardial infarction in the elderly:the Rotterdam Study [J]. Am J Clin Nutr. Jun 1999;69(6):1231-1236.
    118. Baer DM, Tekawa IS, Hurley LB. Iron stores are not associated with acute myocardial infarction [J]. Circulation. Jun 1994;89(6):2915-2918.
    119. Corti MC, Guralnik JM, Salive ME, et al. Serum iron level, coronary artery disease, and all-cause mortality in older men and women [J]. The American journal of cardiology. Jan 15 1997;79(2):120-127.
    120. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis [J]. Stat Med. Jun 15 2002;21(11):1539-1558.
    121. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses [J]. BMJ. Sep 6 2003;327(7414):557-560.
    122. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test [J]. BMJ. Sep 13 1997;315(7109):629-634.
    123. Tobias A. Assessing the influence of a single study in the meta-analysis estimate. [J]. Stata Tech Bull.1999;47:15-17.
    124. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis [J]. Am J Epidemiol. Jun 1 1992;135(11):1301-1309.
    125. Orsini N, Bellocco R, S. G. Generalized least squares for trend estimation of summarized doseresponse data. [J]. Stata Journal.2006;6(1):40-57.
    126. Armaganijan D, Batlouni M. Serum ferritin levels and other indicators of organic iron as risk factors or markers in coronary artery disease [J]. Revista portuguesa de cardiologia:orgao oficial da Sociedade Portuguesa de Cardiologia=Portuguese journal of cardiology:an official journal of the Portuguese Society of Cardiology. Feb 2003;22(2):185-195; discussion 197-201.
    127. Haidari M, Javadi E, Sanati A, Hajilooi M, Ghanbili J. Association of increased ferritin with premature coronary stenosis in men [J]. Clinical chemistry. Sep 2001;47(9):1666-1672.
    128. Knuiman MW, Divitini ML, Olynyk JK, Cullen DJ, Bartholomew HC. Serum ferritin and cardiovascular disease:a 17-year follow-up study in Busselton, Western Australia [J]. Am J Epidemiol. Jul 15 2003;158(2):144-149.
    129. Li H, Li LY. Levels and clinical significance of blood lipid, ferritin and lipid peroxidation for coronary artery disease patients [J]. Linchuang Xin Xue Guan Bing Za Zhi.1994;10(6):360-361.
    130. Manttari M, Manninen V, Huttunen JK, et al. Serum ferritin and ceruloplasmin as coronary risk factors [J]. European heart journal. Dec 1994; 15(12):1599-1603.
    131. Sun G, B W. Results of serum ferritin in 136 coronary artery disease patients. [J]. World J Med Today.2003;4(5):400-401.
    132. Zhao YQ, Bao Y, Yu K, et al. The Changes of Serum Ferritin and β2-microglobulin in the Cardiovascular and Cerebrovascular Diseases and Their Clinical Significance [J]. Labeled Immunoassays & Clin Med.2002;9(2):68-70.
    133. Ahmad M, Khan MA, Khan AS. Oxidative stress and level of-iron indices in coronary heart disease patients [J]. Journal of Ayub Medical College, Abbottabad:JAMC. Apr-Jun 2009;21(2):56-59.
    134. Ekblom K, Marklund SL, Jansson JH, Hallmans G, Weinehall L, Hultdin J. Iron stores and HFE genotypes are not related to increased risk of first-time myocardial infarction A prospective nested case-referent study [J]. Int J Cardiol. Jul 15 2011;150(2):169-172.
    135. Shi Y, Zhou L, Huang LH, et al. Plasma ferritin levels, genetic variations in HFE gene, and coronary heart disease in Chinese:A case-control study [J]. Atherosclerosis. Oct 2011;218(2):386-390.
    136. Wang Y, Sun GL. Clinical rearch of serum ferritin and coronary heart disease. [J]. Zhongguo Jiaotong Yi Xue Za Zhi.2004;18(1):20-21.
    137. Wei LQ, Xu W, LJ W. Clinical significance of serum ferritin and 02 microglobulin in coronary artery disease. [J]. Ji Lin Yi Xue.2004;25(4):54-55.
    138. Zhou Y, Liu T, Tian C, Kang P, Jia C. Association of serum ferritin with coronary artery disease [J]. Clin Biochem. Nov 2012;45(16-17):1336-1341.
    139. Kang P, Liu T, Tian C, Zhou Y, Jia C. Association of total iron binding capacity with coronary artery disease [J]. Clin Chim Acta. Oct 9 2012;413(19-20):1424-1429.
    140. Marniemi J, Alanen E, Impivaara O, et al. Dietary and serum vitamins and minerals as predictors of myocardial infarction and stroke in elderly subjects [J]. Nutr Metab Cardiovasc Dis. Jun 2005; 15(3):188-197.
    141. Kervinen H, Tenkanen L, Palosuo T, Roivainen M, Manninen V, Manttari M. Serum iron, infection and inflammation; effects on coronary risk [J]. Scand Cardiovasc J. Dec 2004;38(6):345-348.
    142. Reunanen A, Takkunen H, Knekt P, Seppanen R, Aromaa A. Body iron stores, dietary iron intake and coronary heart disease mortality [J]. J Intern Med, Sep 1995;238(3):223-230.
    143. Liao Y, Cooper RS, McGee DL. Iron status and coronary heart disease:negative findings from the NHANES I epidemiologic follow-up study [J]. Am J Epidemiol. Apr 1 1994;139(7):704-712.
    144. van Asperen IA, Feskens EJ, Bowles CH, Kromhout D. Body iron stores and mortality due to cancer and ischaemic heart disease:a 17-year follow-up study of elderly men and women [J]. Int J Epidemiol. Aug 1995;24(4):665-670.
    145. Neghina AM, Anghel A. Hemochromatosis genotypes and risk of iron overload--a meta-analysis [J]. Annals of epidemiology. Jan 2011;21 (1):1-14.
    146. Bao W, Rong Y, Rong S, Liu L. Dietary iron intake, body iron stores, and the risk of type 2 diabetes:a systematic review and meta-analysis [J]. BMC medicine.2012;10:119.
    147. Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk--a systematic review and meta-analysis of the epidemiological evidence [J]. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. Jan 2014;23(1):12-31.
    148. Danesh J, Appleby P. Coronary heart disease and iron status:meta-analyses of prospective studies [J]. Circulation. Feb 23 1999;99(7):852-854.
    149. 郑频频,傅华.中国女性乳腺癌部分危险因素的Meta分析[J].复旦学报(医学科学版).2001(05):438-440.
    150. 张欢.中国人群总胆固醇水平与脑卒中及其亚型关系的前瞻性研究暨脂联素与心血管疾病的meta分析[博士],北京协和医学院;2012.