琼脂糖接枝透明质酸共聚物作为多肽载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发掘大型海藻多糖的新功能,应用于生物医学领域,是提高其附加值的重要途径,也是获得新型生物医学材料的希望之所在。大型海藻多糖,特别是琼脂糖主要缺点是降解慢,因此需要预降解成分子量小、甚至低温可溶解的琼脂糖,以便用于诸如药物载体、组织再生修复用支架等领域;另外琼脂糖没有细胞或蛋白受体,不与它们发生作用,因此需要与其它降解快、可与细胞或蛋白受体发生特殊相互作用、有生物活性的组分(如透明质酸)共混或接枝共聚改性,得到具有生物活性的大型海藻多糖基材料。由于透明质酸能与细胞表面的CD44膜蛋白特异结合,并与蛋白或多肽产生离子相互作用而物理附载它们,因此琼脂糖接枝透明质酸共聚物有望成为一种新型的多肽载体,广泛应用于生物医学领域。
     过氧化氢将琼脂糖氧化降解成小分子,以环氧氯丙烷活化琼脂糖,得到琼脂糖环氧基含量超过1.42 mmol/g。加入分子量为5.7 kDa的透明质酸反应,得到琼脂糖接枝透明质酸共聚物。红外光谱及元素分析结果表明透明质酸成功与琼脂糖进行了接枝反应,接枝量受透明质酸加入比例调控。埋植在小鼠皮下降解,结果证实该聚合物(接枝HA量为37.7%)在28天内完全降解,而琼脂糖仅降解23.65±3.33%。生物学初步评价结果表明该材料具有良好的细胞相容性,无热原反应,无全身急性毒性反应,溶血率小于5%,是一种生物安全的可降解功能材料。
     以胰岛素为酸性多肽模型药物,在不同pH环境下测试琼脂糖接枝透明质酸共聚物对胰岛素的控制释放性能。建立Caco-2细胞模型,考察琼脂糖接枝透明质酸共聚物是否具有特异促进胰岛素吸收的作用。研究结果表明,琼脂糖接枝透明质酸共聚物对胰岛素的载药量达40%,包封率可达80%,并有一定的缓释作用,初步显示琼脂糖凝胶效应对包封率的积极作用。但受pH值的影响较大,在pH 6.8缓释时间为3 h。Caco-2细胞模型实验表明琼脂糖接枝透明质酸共聚物有特异促进胰岛素吸收的作用,表明HA的特异生物学功能得到维持。
     以碱性成纤维细胞生长因子(bFGF)为碱性多肽模型药物,将琼脂糖接枝透明质酸共聚物与bFGF复合后制备成海绵状皮肤敷料,该敷料具有20~22倍的吸水率。体外释放实验结果表明琼脂糖接枝透明质酸海绵中bFGF呈缓慢持续释放特性,14 d释放总量为41.42±5.07%。在小鼠体内血清中探测到bFGF的含量随时间而衰减,进一步证明缓释海绵不断释放bFGF的有效性。MTT实验结果表明琼脂糖接枝透明质酸共聚物具有良好的细胞相容性,同时也证实琼脂糖接枝透明质酸海绵中的bFGF仍保持其生物学活性。建立小鼠全层皮肤创伤模型,研究琼脂糖接枝透明质酸共聚物复合bFGF促进创伤愈合的效果。实验结果表明琼脂糖接枝透明质酸共聚物复合5μg/mL bFGF海绵在伤口愈合的效果理想,皮肤中大部分组织得到再生。。
     因此,琼脂糖接枝透明质酸共聚物有望成为一种新型的多肽药物载体,应用于生物医药以及组织再生修复等领域。
Agarose(abbr Ag) is a naturally polysaccharide derived from red-purple seaweed.To find its new features and broaden its application,the key work is to tailor agarose to the need in biomedical fields.The major drawbacks of agarose are that it is slowly degraded and has no specific binding motif for protein or cell.So it is necessary to lower molecular weight of agarose for easier solution at lower temperature or quicker degradation,and composite with some quickly degradable polymer for promoting its degradation rate,or with some bioactive agents(such as hyaluronan,abbr HA) to provide advantages in specific interaction with protein, peptide or cell.Hyaluronan not only can bind to cell surface CD44 receptor,but also can be used as a component to induce the ionic interaction with peptide for efficient loading and sustained release.In addition,peptides can keep their activation when complexing with hydrophilic polymer by a physical loading process.Agarose grafting hyaluronan copolymer might be a promising carrier for protein,peptides or a regenerative tissue scaffold..
     Agarose was degraded by hydrogen peroxide to lower molecular weight,then activated with epichlorohydrin,and had epoxy group content of over 1.42 mmol/g, then grafted with 5.7 kDa hyaluronan to obtain agarose grafting hyaluronan copolymer(Ag-g-HA).Results of IR and EA experiments proved that HA was succeedly grafted into agarose chain and the grafting ratio was changed with the adding amount of HA.The result of the implanted experiments Showed that Ag-g-HA copolymer with HA content 37.7%totally degraded in 28d,but the agarose degraded with H_2O_2 for 8h only lost 23.65±3.33%under mice subdermis.Results of preliminary biocompatibility evoluations disclosed that the copolymer had no pyrogen reaction and no irritant toxicity reaction,haemolysis rate being less than 5%.It is concluded that Ag-g-HA copolymer is a degradable biomaterial with good biocompatibility.
     As an acidic peptide model,insulin was capsuled into Ag-g-HA copolymer microparticles by an ionic interaction process,and its release behavior in the copolymer was tested in different pH environments.Using Caco-2 cell monolayer model,we also evaluated if the copolymer enhanced insulin transport effects or not in vitro.The copolymer could load 40%weight percentage of insulin and capsule 80% of insulin added into solution.It might disclose that the gel effect of agarose chain in the copolymer does faver to increasing capsulation rate of the copolymer to insulin. Results suggested that the stability of the insulin loaded Ag-g-HA complexes in distinct pH environments significantly affected their insulin release profiles and these microparticles had sustained-release effect in the environment of pH 6.8 with a complete release within 3 h.The result of Caco-2 cell model experiment showed that Ag-g-HA could specificly enhance insulin transportation.It means that HA maintains its biological effect in the copolymer.
     As a basic peptide model,basic fibroblast growth factor(bFGF) was loaded into Ag-g-HA sponge for accelerating wound skin healing with an ionic interaction process.Water uptake ratio of the sponge was 20 to 22 times.Results of in vitro measurements showed that the release of bFGF in the sponge was sustained over 14 days and the cumulative release percent was 41.42±5.07%.Also bFGF could be effectively detected in mice plasma which proved again that the bFGF loading sponge could sustainedly release bFGF.MTT test result revealed that the sponge had good biocompatibility and bFGF in it remained active to accelerate cell proliferation. Animal experiments disclosed that the Ag-g-HA sponge loading 5μg/mL bFGF was excellent one for accelerating wound skin healing,and most f tissues in skin are regenerated.
     In conculsion,the degradable Ag-g-HA copolymer is a safety biomaterial,and is convienent to load peptides.It has the potential to be a novel peptide carder and be widely applied in biomedical fields.
引文
1 Stanley SD.Delivery of peptide and non-peptide drugs through the respiratory tract [J].Parm Sci and Tech Today,1999,11(2):450-457.
    2 De Campos A M,Alejandro S,Alonso MJ.Chitosan nanoparticles:a new vehicle for the improvement of the delivery of drugs to the ocular surface[J].Int J Pharm,2001,224(1-2):159-168.
    3 袁弘,胡富强,应晓英,韩刚.胰岛素纳米粒的制备[J].中国药学杂志,2002,37(5):349-352.
    4 郑彩虹,梁文权,虞和永.海藻酸-壳聚糖-聚乳酸羟乙醇酸复合微球的制备及其对蛋白释放的调节[J].药学学报,2005,40(2):182-186.
    5 Sarmento B,Martins S,Ribeiro A,Veiga F,Neufeld R,Ferreira D.Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers[J].International Journal of Peptide Research and Therapeutics,2006,12(2):131-138.
    6 俞怡晨,姚炎庆,张亚琼,陆轶业,郭圣荣,范华骅.壳聚糖.海藻酸盐纳米粒子的制备及其对BSA的载药与释放特性[J].功能高分子学报,2005,18(4):598-601.
    7 韩钢,陈海靓,孙晓译,高建青,梁文权.包埋PLGA微球壳聚糖支架的构建及其对蛋白释放的调节[J].药学学报,2006,41(6):493-497.
    8 DE Rosa G,Larobina D,Immacolata La Rotonda M,Musto P,Quaglia F,Ungaro F.How cyclodextrin incorporateion affects the properties of protein-loaded PLGA-based microspheres:the case of insulin/hydroxypropyl-beta-cyolodextrin system[J].J Control Release,2005,102(1):71-83
    9 Ilium L,Fisher AN,Jabbal-Gill I,Davis S.Bioadhesive starch microsperes and absorption enhancing agents act synergistically to enhance the nasal absorption of polypeptides[J].Int J Pharm,2001,222:109-119.
    10 Rubinstein A,Radai R.In vitro and in vivo analysis of colon specificity of calcium pectinate formulations[J].EurJPharm Biopharm,1995,41(5):291-295.
    11 Kim MR,.Park TG.Temperature-responsive and degradable hyaluronic acid/pluronic composite hydrogels for controlled release of human growth hormone [J].J Control Release,2002,80(1-3):69-77.
    12 秦松.新世纪海洋生命科学发展若干可能走向的思考[J],海洋科学,2000,24(9):56.
    13 Wang JX,Jiang XL,Mou H J,Guan HS.Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium[J].J Appl Phycol,2004,16:333-340.
    14 Chen HM,Yan XJ.Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system[J].BBA,2005,1722:103-111.
    15 Chen HM,Yan X J,Zhu P,Lin J.Antioxidant activity and hepatoprotective potential of agar-oligosaccharides in vitro and in vivo[J].Nutrition Journal,2006,5:31-42.
    16 Lindenbaum ES,Tendler M,Beach D.Serum free cell culture medium induces acceleration of wound healing in guinea-pigs[J].Burns,1995,21(2):110-115.
    17 Wang N,Wu XS.Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery[J].Pharmaceutical Development and Technology,1997,2(2):135-142.
    18 Soparkar CNS,Wong JF,Patrinely JR,Appling D.Growth factors embedded in an agarose matrix enhance the rate of porous polyethyleme implant biointegration[J].Ophthal.Plast.Reconstr.Surg,2000,16(5):341-346.
    19 Meilander N J,Pasumarthy MK,Kowalczyk TH,Cooper M J,Bellamkonda RV.Sustained release of plasmid DNA using lipid microtubules and agarose hydrogel[J].J Controlled Release,2003,88:321-331.
    20 Lin NJM,Cheung P J,Wilson DL,Bellamkonda RV.Sustained in vivo gene delivery from agarose hydrogel prolongs nonviral gene expression In skin[J].Tissue Engineering,2005,11(3/4):546-555.
    21 Yang H,Iwata H,Shimizu H,Takagi T,Tsuji T,Ito F.Comparative studies of in vitro and in vivo function of three diffent shaped bioartificail pancreases made of agarose hydrogel[J].Biomatedals,1994,15:113-120.
    22 Iwata H,Kobyashi K,Takagi T,Oka T,Yang H,Amemiya H,Tsuji T,Ito F.Feasibility of agarose microbeads with xenogeneic islets as a bioartificial pancreas[J].J.Biomed.Mater.Res,1994,28(9):1003-1011.
    23 Sakai S,Kawabata K,Tsutomu Oo,Hiroyuki I,Kawakami K.Development of mammalian cell-enclosing subsieve-size agarose capsules(<100um) for cell therapy [J].Biomaterials,2005,26:4786-4792.
    24 Sakai S,Kawabata K,Tanaka S,Harimoto N,Hashimoto I,Mu C,Salmons B,Ijima H,Kawakami K.Subsieve-size agarose casules enclosing ifosfamideactivating cells:a strategy toward chemotherapeutic targeting to tumors [J].Mol.Cancer.Ther,2005,4:1786-1790.
    25 Upadrashta S,Haglund BO,Sundelof LO.Diffusion and concentration profiles of drugs in gels [J].J.Pharm.Sci,1993,82(11):1094-1098.
    26 Liu J,Li L.SDS-aided immobilization and controlled release of camptothecin from agarose hydrogel [J].Eur.J.Pharm.Sci,2005,25:237-244.
    27 Jain A,Kim YT,Robert J.McKeon,Ravi V.Bellamkond.In situ gelling hydrogels for conformal repair of spinal cord defects,and local delivery of BDNF after spinal cord injury [J].Biomaterials,2006,27:497-504.
    28 Gruber HE,Fisher EC,Desai B,Stasky AA,Hoelscher G,Hanley EN Jr.Human intervertebral disc cells from the annulus:three-dimensional culture in agarose or alginate and responsiveness to TGF-01 [J].Exp.Cell.Res,1997,235:13-21.
    29 Gruber HE,Hoelscher GL,Leslie K,Ingram JA,Hanley EN Jr.Three-dimensional culture of human disc cells within agarose or a collagen sponge:assessment of proteoglycan production [J].Biomaterials,2006,27:371-376.
    30 Bao L,Yang W,Mao X,Mou SS,Tang SQ.Agar/collagen membrane as skin dressing for wounds [J].Biomed Mater,2008,3(4):044108.
    31 Rahfoth B,Weisser J,Sternkopf F,Aigner T,Von der Mark K,Brauer R.Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits [J].Osteoarthritis.Cartilage,1998,6:50-55
    32 Athawale VD,Padwaldesai MP.Free redical graft copolymerization of methacrylamide onto agar [J].Eur.Ploymer.J,1999,35:1237-1243.
    33 Sakai S,Hashimoto I,Kawakami K.Synthesis of an agarose-gelatin conjugate for use as a tissue engineering scaffold [J].J.Biosci.Bioengineering,2007,103(1):22-26.
    34 Sakai S,Hashimoto I,Kawakami K.Agarose-gelatin conjugate for adherent cell-enclosing capsules [J].Biotechnol Lett,2007,29(5):731-735.
    35 Sakai S,Hashimoto I,Kawakami K.Agarose-gelatin conjugate membrane enhances proliferation of adherent cells enclosed in hollow-core microcapsules [J].J Biomater Sci Polym Ed,2008,19(7):937-944.
    36 Meyer K,Palmer JW.The Polysaccharide of the vitreous humor [J].J.Boil.Chem,1934;107:629-634.
    37 Laurent TC.Structure of hyaluronic acid.In chemistry and molecular biology of the intercellular matrix (Balazs EA,ed) [J].Academic,London,1970,703-732.
    38 Heinegard D,Oldberg A.Structure and biology of cartilage and bone matrix noncollageous macromolecules [J].FASEB J,1989,3:2042-2051.
    39 Underhill CB.The interaction of hyaluronate with the cell surface:the hyaluronate receptor and the core protein.In The Biology of Hyaluronan,Ciba Foundation Symposium,1989,143:87-106.
    40 Toole BP.Hyaluronan and its binding proteins,the hyaladherins [J].Curr.Opin.Cell Biol,1990,2:839-844.
    41 Miyake K,Underhill CB,Lesley J,Kincade PW.Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition [J].J.Exp.Med,1990,172:69-75.
    42 Culty M,Miyake K,Kincade PW,Silorski E,Butcher EC.The hyaluronate receptor is a member of the CD44(H-CAM) family of cell surface glycoproteins [J].J.Cell Biol,1990,111:2765-2774.
    43 Stamenkovic I,Aruffo A,Amoit M,Seed B.The hematopoietic and epithelial forms of CD44 are distict polypeptides with different adhesion potentials for hyaluronate-bearings cells [J].EMBO J,1991,10:343-348.
    44 Toole BP.Hyaluronate turnover during chondrogenesis in the developing chick limb and axial skeleton [J].Develop.Biol,1972,29:321-329.
    45 Turley EA,Austen L,Vandeligt K,Clary C.Hyluronan and a cell-associated hyaluronan binding protein regulate the locomotion of ras-transformed cells [J].J.Cell Biol,1991,112:1041-1047.
    46 Turley EA,Austen L,Moore D,Hoare K.Ras-transformed cells express both CD44 and RHAMM hyaluronan receptors-only RHAMM is essential for hyaluronan-promoted locomotion[J].Exp.Cell.Res,1993,207:277-282.
    47 Yang B,Zhang L,Turley EA.Identification of two hyaluronan-binding domains in the hyaluronan recepter RHAMM[J].J.Biol.Chem,1993,268:8617-8623.
    48 Abatangelo G,Martelli M,Vecchia P.Healing of hyaluronic acid-enriched wounds:histological observations[J].J.Surg.Res,1983,35:410-416.
    49 Burd D Andrew R,Ritz M,Regauer S,Longaker MT,Siebert JW,Garg H.Hyaluronan and wound healing:a new perspective[J].Bri.J.Plast.Surg,1991,44:579-584.
    50 Vander GR,Broersma L,Koomneef L.The influence of high molecular weight sodium hyaluronate(Healon) on the production of migration inhibitory factor[J].Curr.Eye.Res,1987,6(12):1433-1440.
    51 Hakansson L,Venge P.The molecular basis of the hyaluronic acid-medicated stimulation of granulocyte function[J].J.Immunol,1987,138:4347-4352.
    52 Laurent TC.Biochemistry of hyaluronan[J].Acta Otolaryngol Suppl,1987,442:7-24.
    53 Zwilling E.Morphogenetic phases in development[J].Dev.Biol,1968,2(suppl):184-207.
    54 Underhill CB.CD44:the hyaluronate receptor[J].J Cell Sci,1992,103:293-298.
    55 U.nderhill CB.Interaction of hyaluronate with surface of simian virus 40-transformed 3T3 cells:aggregation and binding studies[J].J Cell Sci,1982,56(5):177-189.
    56 Felicity RR,Richard OO.Breakthroughs and views bone tissue engineering:hope vs hype[J].Biochemical and Biophysical Research Communications,2002,292(1):1-7.
    57 杨志明.组织工程.北京:化学工业出版社,2002:248-253.
    58 凌沛学.透明质酸.北京:中国轻工业出版社,2000:74.
    59 Brunella G,Gina L,Anna P,Mauro F,Pietro G,Giovanni M,Manuela D,Alessandra P,Andrea F.Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial(HYAFFs11):molecular,immunohistochemical and ultrastructural analysis[J].Biomaterials,2002,23(4):1187-1195.
    60 蒋丽霞.透明质酸的医学研究新进展[J].上海生物医学工程,2001,22(1):40-42.
    61 Chandy T,Sharma CP.Chitosan-as a biomaterial[J].Biomat Art Cells Art Org,1999,18(1):1-24.
    62 Shintaro Y,Norimasa I,Tokifumi M,Tadanao F,Tatsuya M,Kazuo H,Akio M,Kenji M,Nishimura S.Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering[J].Biomaterials,2005,26(6):611-619.
    63 Hyuk Sang Yoo,Eun Ah Lee,Jun Jin Yoon,Tae Gwan Park.Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering[J].Biomaterials 2005,26(14):1925 -933.
    64 Tan HP,Gong YH,Lao LH,Mao ZW,Gao CY.Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering[J].J Mater Sci:Mater Med,2007,18:1961-1968.
    65 Fan HB,Hu YY,Qin L,Li X,Wu H Lv R.Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-β1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair[J].J Biomed Mater Res A,2006,77:785-794.
    66 Galassi G.In vitro reconstructed dermis implanted in human wounds:degradation studies of the HA-based supporting scaffold[J].Biomaterials,2000,21(1):2183-2191.
    67 Cardona L R.Application of benzyl hyaluronate membranes as potential wound dressings:evaluation of water vapour and gas permeabilities[J].Biomaterials,1996,17(2):1639-1643.
    68 Choi YS,Hong SR,Lee YM,Song KW,Park MH,Nam YS.Studies on gelatin-containing artificial skin Ⅱ:.Preparation and characterization of cross-linked gelatin-hyaluronate sponge[J].J Biomed Mater Res(Appl Biomater),1999,48:631-639.
    69 Park SN,Kim JK,Suh H.Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute[J].Biomaterials,2004,25:3689-3698.
    70 Wang TW,Sun JS,Wu HC,Tsuang YH,Wang WH,Lin FH.The effect of gelatin-chondroitin sulfate-hyaluronic acid skin substitute on wound healing in SCID mice[J].Biomaterials,2006,27:5689-5697.
    71 Scuderi N,Onesti Maria G,Bistoni G,Ceccarelli,Rotolo S,Angeloni A,Marchese C.The clinical application of autologous bioengineered skin based on a hyaluronic acid scaffold[J].Biomaterials,2008,29:1620-1629.
    72 Toole BP.Hyaluronate and hyaluronidase in morphogenesis and differentiation[J].Am Zool,1973,13(4):1061-1065.
    73 Aguayo Aj.Rat schwann cell culture in vitro can enhanch axonal regeneration in mouse nerve[J].Neurol,1979,29(1):589-591.
    74 刘伟治,刘万顺,孟祥红,贺君,刘成圣,刘晨光.天然可降解生物材料在组织工程中的应用研究进展[J].中国生物工程杂志,2002,22(6):56-59.
    75 LoSavio P,Walner D,Williams J,Kaiser K,Mark V,Caldarelli D.The effect of hyaluronic acid on tracheal wound healing[J].Otolaryngology-Head and Neck Surgery,1994,131(2):127-132.
    76 Germain L,Carder P,Auger F,Salesse C,Guerin SL.Can We Produce a Human Corneal Equivalent by Tissue Engineering[J]? Progress in Retinal and Eye Research,2000,19(5):497-527.
    77 陈家祺,张胜,郭琳洁,杨琨.体外培养重建角膜组织的技术探讨[J].中国实用眼科杂志,200l,19(11):815-817.
    78 刘兴光,汪钢,俞世强,张其清,顾春虎,卫向阳.组织工程心脏瓣膜支架材料的血液相容性[J].中国临床康复,2004,30(8):6659-6662.
    79 Yerushalmi N,Arad A,Margalit R.Molecular and cellular studies of hyaluronic acid-modified as bioadhesive carriers for topical drug delivery in wound healing[J].Arch Biochem Biophys,1994,313(2):267-273.
    80 吴东儒.糖类的生物化学。北京:高等教育出版社,1987:627-665.
    81 Prisell PT,Camber O,Hiselius J,Norstedt G.Evaluation of hyaluronan as a vehicle for peptide growth factors[J].Int J Pharm,1992,85(1-3):51-56.
    82 Igari Yasutaka,Hahn SK,Oh E J,Miyamoto H.Sustained-release preparation of erythropoietin using sodium hyaluronate[J].Drug Delivery Syst,1993,8(4):237-241.
    83 Meyer J,Whitcomb L,Trevheit M.Collns D.Sustained in vivo activity of recombinant human G-CSF incorporate into hyaluronan[J].Proc Int Symp Controlled Release Bioact Mater,1995,22nd:510-511.
    84 Yerushalmi N,Margalit R.Bioadhesive,hyaluronic acid ligandod liposomes,for topical drug delivery[J].Proc Int Symp Controllod Release Bioact Mater,20th,1993:374-375.
    85 山本隆.徐放性组成物,日[P],6-100468,1994.
    86 北野静雄.生理活性ぺプチド持续制剂,日[P],2-213,1990.
    87 朱广华,方煜平.透明质酸制备方法及应用研究进展[J].中国医药工业杂志,1996,2(8):21-25.
    88 张可喜.日完成人工合成透明质酸[EB/OL].http://japan.people.com.on/2001/11/25/riben20011125-14005.html,2005-06-15.
    89 Laurent TC.The chemistry,biology and medical applications of hyalurona and its derivatives[M].London:Portland Press Ltd,1998:33-37.
    90 Kim MR,Park TG.Temperature-responsive and degradable hyaluronic acid/Pluronic composite hydrogels for controlled release of human growth hormone [J].Journal of Controlled Release,2002,80:69-77.
    91 Cho K Y,Chung T W,Kim B C,Kim MK,Lee JH,Wee WR,Cho CS.Release of ciprofloxacin from poloxamer-graft-hyaluronic acid hydrogels in vitro[J].International Journal of Pharmaceutics,2003,260(1):83-91.
    92 Luo Y,Bernshaw N J,Lu ZR,Kopecek J,Prestwich GD.Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan[J].Pharmaceutical Research,2002,19(4):396-402.
    93 Asayama S,Nogawa M,Takei Y,Akaike T,Maruyama A.Synthesis of novel polyampholyte comb-type copolymers consisting of a poly(L-lysine) backbone and hyaluronic acid side chains for a DNA cartier[J].Bioconjugate Chemistry,1998,9(4):476-481.
    94 Yan C E,Maysinger D,Winnik F.poly(ethylene glycol)-grafted hyaluronic acid as peptide carrier.Asia Polymer Symposium,Hangzhou,2004:10-14.
    95 Chen H,Yan X,Zhu P,Lin J.Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo[J].Nutr J,2006,5(1):31-42.
    96 Tang SQ,Yang W,Mao X.Agarose/collagen composite scaffold as an anti-adhesive sheet[J].Biomedical Materials,2007,2(3):2-6.
    97 Lee JB,Hayashi K,Hirata M,Kuroda E,Suzuki E,Kubo Y,Hayashi T.Antiviral sulfated polysaccharide from Navicula directa,a diatom collected from deep-sea water in Toyama Bay[J].Biol.Pharm.Bull,2006,29(1):2135-2139.
    98 Anthony J D,John K S.Hyaluronan:polysaccharide chaos to protein organization [J].Carbohydrates and glycoconjugates,2001,99:617-622.
    99 Ghoshi I,Chattopadhaya R,Kumar V,Chakravarty BN,Datta K.Hyaluronan binding protein-1:a modulator of sperm-oocyte interaction[J].Soc Reprod Fertil Suppl,2007,63:539-543.
    100 Jederstrom G.Hydrophobe biomolecular structure[P],United States Patent.US 6448093:1-28(2002)
    101 Jederstrom G,Andersson A,Grasjo J,Sjoholm I.Formulating insulin for oral adminstration:preparation of hyaluroman-insulin complex[J].Pharm Res,2004,99:2040-2047.
    102 Costa SA,Reis RL.Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics[J].J.Mater.Sci.Mater.Med.,2004,15:335-342.
    103 Porath J,Janson J C,Loos T.Agar derivatives for chromatography,electrophoresis and gel-bound enzymes:I.desulphated and reduced cross-linked agar and agarose in spherical bead form[J].J.Chromatogr.,1971,60:179-184.
    104 魏琪,鲍时翔,姚汝华.固定化金属螫合亲和层析技术研究进展[J].化学通报(网络版),1999,99130.
    105 金艳,凌沛学,张天民.透明质酸钠的光谱学性质研究[J].食品与药品2007.9:6-8.
    106 Roether JA,Gough JE,Boccaccini AR,Henchl L,Maquet V,Jerome R.Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering[J].J Mater Sci Mater Med,2002,13(12):1207-1214.
    107 Hench LL,Polak JM.Third-generation biomedical materials[J].Science,2002,295(5557):1014-1017.
    108 Kirkpatrick CJ.New aspects of biocompatibility testing:where should it be going [J]? Med Device Technol,1998,9(7):22-29.
    109 GB/T16886.1-2001.中华人民共和国国家标准/医疗器械生物学评价.2001
    110 ISO10993-1:1992 Biological evaluation of medical device Part 1:Guidance on selection of tests.
    111 Liao SS,Cui FZ.In vitro and in vivo degradation of mineralized collagen-based composite scaffold:nanohydoxyapatite/collagen/poly(L-lactide)[J].Tissue Eng,2004,10(1-2):73-80.
    112 Moretti NRT,Mello I,Moretti AB,Robazza CR,Pereira AA.In vivo qualitative analysis of the biocompatibility of different cyanoacrylate-based adhesives[J].Braz Oral Res,2008;22(1):43-47.
    113 周建红,徐刚.烧伤创面外用生物敷料的研究现状[J].中国组织工程研究与临床康复,2007,11(22):4405-4408.
    114 Kazuteru M,Tooru O,Nobuhiko Y.Hyaluronic acid grafted with poly(ethlene glycol) as a novel peptide formulation[J].J Control Release,1999,59:77-86.
    115 Gan LSL,Dbiren RT.Applications of the Caco-2 model in the design and physical barriers posed by the intestinal epithelium[J].Advanced Drug Delivery Reviews,1997,23:77-98.
    116 杨海涛,王广基.Caco-2单层细胞模型及其在药学中的应用[J].药学学报,2000,35(10):797-800.
    117 蒋学华,贾运涛,袁嫒,陈钧,周静.Caco-2细胞模型在口服药物吸收过程研究中的应用[J].中国药学杂志,2002,37(5):325-327.
    118 Ming H,Borchardt R T.Transport of a large neutral amino acid in a human intestinal epithelial cell line(Caco-2):uptake and ettlux of phenylalanine[J].Bba-Mol.Cell.Res.1992,29:233-244
    119 Tanaka Y,Taki Y,Sakane T,Nadai T,Sezaki H,Yamashita S.Characterization of drug transport through tight junction pathway in Caco-2 monolayer:Compadsion with isolated rat jejunum and colon[J].Pharm.Res.1995,12:523-528
    120 Gan LSL,Dhiren RT.Applications of the Caco-2 model in the design and development of orally active drugs:elucidation of biochemical and physical barriers posed by the intestinal epithelium[J].Adv.Drug.Deliver.Rev.1997,23:77-79
    121 Lim SL and Lim LY.Effects of citrus fruit juices on cytotoxicity and drug transport pathways of Caco-2 cell monolayers[J].International Journal of Pharmaceutics,2006,307(1,3):42-50.
    122 Lee K,Chee NG,Kim LRB,Dhiren RT.Secretory Transport of Ranitidine and Famotidine across Caco-2 Cell Monolayers[J].J.Pharmcol.Exp.Ther,2002,303:574-580.
    123 Markowska M,Oberle R,Juzwing S,Hsu CP,Gryszkiewicz M,Streeter AJ.Optimizing Caco-2 cell monolayers to increase through put in drug intestinal absorption analysis[J].J.Pharmacol and Toxicol Metho,2001,46:51-55.
    124 关溯,赵立子,陈杰.Caco-2细胞模型的建立及意义[J].山东医药,2005,45(26):1-3.
    125 Artursson P,Palm K,Luthman K,Caco-2 monolayers in experimental and theoretical predictions of drug transport[J].Adv Drug Deliv Rev,2001,46(1):27-43.
    126 Liu LS,Spiro R.Collagen-polysaccharide matrix for bone and cartilage repair[P].US 5972385.
    127 Kanti J,Albert LR,Smith B.Preparation of agarose coated,solid agarose-collagen beads containing secretory cells[P].US RE38027.
    128 Kenneth WN,Justin DS,Evan YL,Lauren YS,Lindsay EK,Sean BL,Gerard AA,Clark TH.Culture Duration Modulates Collagen Hydrolysate-Induced Tissue Remodeling in Chondrocyte-Seeded Agarose Hydrogels[J].Annals of Biomedical Engineering,2007,35(11):1914-1923.
    129 Huang CT,Limaeric G,Mauck RL,Taki E,Leroux MA,Lu HH,Stark RG,Guo XE,Ateshian Gerard A.Anatomically shaped osteochondral constructs for articular cartilage repair[J].Journal of biomechanics,2003,36(12):1853-1864.
    130 汤顺清,琼脂和胶原多孔防粘连膜及制备方法,专利申请号200610033792.8
    131 汤顺清,琼脂/胶原皮肤创伤修复敷料及其制备方法和应用,专利申请号00610036652.6
    132 Tang SQ,Vichers SM,Hsu HP,Spector M.Fabrication and characterization of hyaluronic acid-collagen for cartilage scaffolds[J].J Biomed Mater Res A,2007,82(2):323-325
    133 Lin Y,Mao X,Tang SQ,Bao L.Protein Recognition via Molecularly Imprinted Agarose Gel Membrane[J].J Biomed Mater Res A,2008,85(3):573-581.
    134 Tang SQ,Yang W and Mao X.Agarose/collagen composite scaffold as an anti-adhesive sheet[J].Biomedical Materials,2007,2(3):129-134.
    135 Giampaolo G,Paola B,Marco R,Roberta C,Giovanni F Z,Piero G,Giovanni Ao.In vitro reconstructed dermis implanted in human wounds:degradation studies of the HA_based supporting scaffold[J].Biomaterials,2002,21:2183-2189.
    136 Bakos D,Soldan M,Hernandez FI.Hydroxyapatite_collagen hyaluronic acid composite[J].Biomaterials,1999,20:191-195.
    137 Mitchell M,Vercruysse KP,Kirker KR,Frisch R,Marecak DM,Prestwich GD,Pitt WG.Attachment of hyaluronic acid to polypropylene,polystyrene,and polytetrafluroethelene[J].Biomaterials,2000,21:31-36.
    138 Park SN,Park JC,Kim HO,Song MJ,Suh H.Characterization of porous collagen/hyaluronic acid scaffold modified by 1_ethyl_3_(3_dimethylaminopropyl,carbodiimide cross_linking[J].Biomaterials,2002,23:1205-1212.
    139 Nimni ME,Cheung D,Strates B,Kodama M,Sheikh K,Chemically modified collagen:a natural biomaterial for tissue replacement[J].J Biomed Mater Res,1987,21:741-771.
    140 Lynn LH,Huang Lee,Wu Julia H,Nimni Marcel E.Effects of hyaluronan on collagen fibrillar matrix contraction by fibroblasts[J].J Biomed mater Res,1994,28(1):123-132.
    141 李斯明,邹海燕.多肽生长因子在软组织创作愈合中的作用[J].广州医药,1998,29(2):1.
    142 Mcgee GS,Davidson J,Buckley A,Sommer A,Woodward SC,Aquino AM,Barbour R,Demetriou AA.Recombinant basic fibroblast growth,factor accelerates wound healing[J].J Surg Res,1988,45(1):145-153.
    143 凌沛学.透明质酸[Q].中国轻工业出版社,北京,2000:12.
    144 赵琳,宋建星.创面敷料的研究现状与进展[J].中国组织工程研究与临床康复,2007,11(9):1724-1726.
    145 Chen W J,Jinpushi S,Aoyama I,Anzai J,Hirata G,Tamura M,Iwamoto Y.Effects of FGF-2 on metaphyseal fracture repair in rabbit tibiae[J].J Bone Miner Metab,2004,22(4):303-309.
    146 Wang N,Wux SH.A novel approach to stabilization of protein drugs in poly(lactic-co-glycolic acid) microsphere using agarose hydrogel[J].International Journal of Phamaceutics,1998,(116):1-4.
    147 董标,董方霆,梁月琴,吴胜明,杨征.毛细管电泳测定阿片肽方法的探索[R].军事医学科学院国家生物医学分析中心.中国人民解放军第307医院,2005.
    148 Li JK,Wang N,Wu XS.Gelatin nanoencapsulation ofprotein/peptide drugs using an emulsifier free emulsion methord[J].J microencapsulation,1998,15:1-10.
    149 Miyoshi M,Kawazoe T,Igawa HH,Tabata Yo,Ikada Y,Suxuki Shigehiko.Effects of bFGF incorporated into a gelatin sheet on wound healing[J].J.Biomater.Sci.Polymer Edn,2005,16(7):893-907.
    150 Shinde BG,Erhan S.Flexibilized gelatin film-based artificial skin model:.Release kinetics of incorporated bioactive molecules[J].Bio-Med.Mater.Eng,1992,2:127-131.
    151 Hijikata S,Tabata Y,Ikada Y.Distribution of basic fibroblast growth factor throughout ionic hydrogels[J].Polym.Preprint Jpn,1995,43:34-35.
    152 Tabata Y,Ikada Y.Protein release from gelatin matrices[J].Advanced Drug Delivery Review,1998,31:287-301.
    153 付小兵.王德文.创伤修复基础[M].北京:人民军医出版社.1997:137.
    154 Gospodarowizc N.Biological activities of fibroblast growth factor[J].Ann.NY Acad.Sci,1991:638:1-8.
    155 万伟东,汤松林,高春芳,章庆国,林子豪.碱性成纤维细胞生长因子拮抗转化生长因子-β1对人α1(Ⅰ)胶原基因的启动激活[J].中国修复重建外科杂志,2002,16(6):401-403.
    156 胡大海,陈璧,汤朝武.bFGF促进培养的人角朊细胞增殖迁移的生物效应[J].美中国际创伤杂志,2003,2(1):1-2.
    157 冯明利,雍宜民,沈惠良,胡怀健.bFGF对体外培养的兔软骨细胞的胶原合成和稳定细胞表型的作用[J].首都医科大学学报,2001,22(1):55-58.
    158 沈为民,果磊,张恒术.bFGF多肽敷料对愈合延迟伤口修复的促进作用[J].重庆医学,2003,32(5):526-527.
    159 李沁华,钟喻.胶原-壳聚糖/bFGF培养人成纤维细胞生物特性研究(英文)[J].中国医学物理学杂志,2003,20(4):301-303.
    160 Deitch EA,Wheelahan TM,Rose MP,Clothier J,Cotter J.Hypertrophic bum scars:analysis of variables[J].J Trauma,1983,23:895-901.
    161 孙同柱,付小兵,孙晓庆.重组人酸性成纤维细胞生长因子促进皮肤缺损创面愈合的量效关系[J].现代康复,2001,5(9):31-33.
    162 Hong HJ,Jin SE,Park JS,Ahn WSk,Kim CK.Accelerated wound healing by smad3 antisense oligonucleotides-impregnated chitosan/alginate polyelectrolyte complex[J].Biomaterials,2008,29:4831-4837.
    163 Mierisch CM,Cohen SB,Jordan LC,Robertson PG,Balian G,Diduch DR,Robertson PG.Transforming growth factor-beta in calcium alginate beads for the treatment of articular cartilage defects in the rabbits[J].Arthroscopy,2002,18:892-900.
    164 Pike DB,Cai Ssn,Pommning KR,Firpo MA,Fisher RJ,Shu XZ,Prestwich GD,Peattie RA.Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels constaining VEGF and bFGF[J].Biomaterials,2006,27:5242-5251.
    165 Ozeki M,Tabata Y.In vitvo promoted growth of mice hair follicles by the controlled release of growth factors[J].Biomaterials,2003,24:2387-2394.
    166 Niall M,Ryan GB,Brien B,Me C.The effect of epidermal growth factor on wound healing in mice[J].J Surg Res,1982,33:164-169.
    167 Ulubayram K,Cakar AN,Korkusuz P,Ertan C,Hasirci N.EGF containing gelatin-based wound dressings[J].Biomaterials,2001,22:1345-1356.
    168 Stocum DL.Frontiers in medicine:regeneration[J].Science,1997,276:59-87.
    169 Liu HF,Fan HB,Cui YL,Chen YP,Yao KD and James C.H.G.Effects of the controlled-released basic fibroblast growth factor from chitosan-Gelatin microspheres on human fibroblasts cultured on a chitosan-gelatin scaffold [J].Biomacromolecules,2007,8:1446-1455.
    170 Michiyo,Takeshi,Hiroharu HI,Yasuhiko T,Yoshito I and Shigehiko S.Effects of bFGF incorporated into a gelatin sheet on wound healing [J].J.Biomater.Sci.Polymer Edn,2005,16(7):893-907.
    171 Fujihara Y,Koyama H,Ohba M,Tabata Ya,Fujihara H,Yonehara Y,Takato T.Controlled delivery of bFGF to recipient bed enhances the vascularization and viability of an ischemic shin flap [J].Wound Repair and Regeneration,2008,16:125-131.
    172 Gilbert DL,Kim SW.Macromolecular release from collagen monolithic device [J].J Biomed Mater Res,1990,24:1221-1239.
    173 Edelman ER,Mathiowitz E,Langer R,KlagsbrunM.Controlled and modulated release of basic fibroblast growth factor[J].Biomaterials,1991,12:619-626.
    174 Downs EC,Robertson NE,Riss TL,Plunkett ML.Calcium alginate beads as a slow-release system for delivering angiogenic molecules in vivo and in vitro[J].J Cell Physiol,1992,152:422-429.
    175 Edelman ER,Nugent MA,Karnovsky MJ.Perivascular and intravenous administration of basic fibroblast grpwth factor:vascular and solid organ deposition[J].Proc Natl Acad Sci USA,1993,90:1513-1517.
    176 Langer R,Folkman J.Polymers for the sustained release of proteins and other macromolecules[J].Nature,1976,263:797-800.
    177 Gospodarowicz D,Bialecki H,Thakral TK.The angiogenic activity of the fibroblast and epidermal growth factor[J].Exp Eye Res,1979,28:501-514.
    178 Miyaloshi N,Kobayashi M,Nozaka K,Okada K,Shimada Y and Itoi E.Effects of intraarticular administration of basic fibroblast growth factor with hyaluronic acid on osteochondral defects of the knee in rabbits [J].Arch Orthop Trauma Surg,2005,125:683-692.
    179 Tan HP,Gong YH,Lao LH,Mao ZW,Gao CY.Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering[J].J Mater Sci:Mater Med,2007,18:1961-1968.
    180 Choi YS,Hong SR,lee YM,Song KW,Park MH,Nam YS.Studies on gelatin-containing artificial skin:preparation and characterization of cross-linked gelatin-hyaluronate sponge[J].J Biomed Mater Res(Appl Biomater),1999,48:631-639.
    181 Benedetti L,Cortivo R,Berti T,Berti A,Pea F.Biocompatibility and biodegradation of different hyaluronan derivatives(Hyaff) implanted in rats[J].Biomaterials,1993,14:1154-1158.
    182 Larsen NE,Pollak CT,Reiner K,Leshchiner E,Balazs EA.Hylan gel biomaterial,dermal and immunologic compatibility[J].J Biomed Mater Res,1993,27:1129-1132.
    183 Cai SS,Liu YC,Shu XZ,Prestwich GD.Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor[J].Biomaterials,2005,26:6054-6067.
    184 Duan H,Shen B,He Q,Pei FX,Chen J.Preparation of bFGF-PLGA stained rlease microspheres and studies on their release characteristics and biologic activity in vitro[J].Chin Pharm J,2004,39(13):196-198.
    185 Horch RE,Kopp J,Kneser U,Beier J,Bach AD.Tissue engineering of cultured skin substitutes[J].J Cell Mol Med,2005,9(3):592-608
    186 Lindenbaum ES,Tendler M,Beach D.Serum-free cell culture medium induces acceleration of wound healing in guinea-pigs.Burns,1995,21(2):110-115.
    187 付小兵,沈祖尧,陈玉林,谢君鹤,郭振荣,张明良,盛志勇.碱性成纤维细胞生长因子与创面修复(1024例多中心对照临床试验结果)[J].中国修复重建外科杂志,1998,12(4):209-211.
    188 付小兵,王德文.创伤修复基础[M].北京:人民军医出版社,1997:27-140.
    189 刘晓红,姜凝,谭策,唐明睿.重组人碱性成纤维细胞生长因子对创面愈合的影响[J].江西医学院学报,2005,45(3):92-94.
    189 姚越苏,费存恩,李祖成.不同剂量重组牛碱性成纤维细胞生长因子治疗创面的比较[J].中华烧伤杂志,2001.17(1):10-13.