两种疏水改性乙二醇壳聚糖自聚集纳米粒在药物传递系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙二醇壳聚糖是一种壳聚糖衍生物,它能够在任何pH值的水溶液中溶解,具有壳聚糖的生物相容性、生物降解性、低免疫原性、生物活性等特点。本文选择乙二醇壳聚糖作为母体聚合物,通过引入不同的疏水基团,合成了一系列具有不同物理化学性质的两亲性乙二醇壳聚糖聚合物。这种两亲性聚合物能在水溶液中通过分子内及分子间的疏水作用力形成自聚集纳米粒。这种纳米粒具有核-壳结构,疏水性的内核和亲水性的外壳,疏水性的内核可以作为药物的储库,因此可以用作疏水性药物的载体。
     本文采用二步反应将胆固醇接枝到乙二醇壳聚糖,首先将胆固醇进行羧基化,将胆固醇与琥珀酸酐反应生成胆固醇半琥珀酸酯(CHS),然后用1-乙基-3-(3-二甲基氨丙基)碳二亚胺盐酸盐(EDC)与N-羟基琥珀酰亚胺(NHS)作为偶联剂,将胆固醇半琥珀酸酯的羧基与乙二醇壳聚糖主链的氨基进行反应,得到胆固醇疏水改性乙二醇壳聚糖共聚物(CHGC)。利用红外光谱、核磁共振、元素分析法对其结构进行表征。通过控制胆固醇半琥珀酸酯与乙二醇壳聚糖的反应投料比例,合成三种不同取代度的聚合物。两亲性的乙二醇壳聚糖在水溶液中通过探头超声作用下自聚集形成单分散性的纳米粒,共聚物在水溶液中的最低临界聚集浓度(CAC)通过芘荧光探针法测定,随着共聚物中疏水取代基团含量的增多,CAC值降低。纳米粒的形态采用透射电子显微镜(TEM)来观察,粒径大小采用动态光散射法(DLS)测定。CHGC自聚集纳米粒的形态呈球形,粒径在228~353 nm。以吲哚美辛(indomethacin,IND)为模型药物,体外评价载药IND-CHGC纳米粒的性质。采用透析法制备载药IND-CHGC纳米粒,纳米粒的形态呈球形,且粒径比空白纳米粒更大。载药纳米粒体外释放行为表明,药物释放符合Weibull释放模型,呈两相释药。稳定性研究表明,冻干或低温有利于载药纳米粒的保存。
     基于两亲性的CHGC自聚集纳米粒性质,选用阿霉素(doxorubicin,DOX)作为模型药物,制备载阿霉素CHGC纳米粒,使其成为一种“隐形”的长循环纳米粒,并可通过增强滞留和渗透(enhanced permeability and retention,EPR)效应提高靶向治疗肿瘤的目的。以CHGC1(取代度为6.7%)为载体材料,采用透析法制备载药纳米粒(DCN),随着阿霉素投药量的增加,纳米粒的载药量也增加,但包封率随之降低。载药纳米粒的形态呈球形,随着载药量的增大,纳米粒的粒径增大。应用差示扫描量热法(DSC)和荧光淬灭方法测定阿霉素在纳米粒中的分布状态,结果表明阿霉素包裹在纳米粒里面,并且以无定型或分子状态存在。载药纳米粒DCN的zeta电位大小与分散介质的pH值有一定关系,分散介质的pH值越低,zeta电位越大。研究载药纳米粒DCN在pH 5.5、6.5、7.4的PBS释放介质中的体外释放行为,结果表明,载药纳米粒随着载药量的增大药物释放速度减慢,在pH值越低的条件下,药物释放越快。在体外37℃的PBS(pH 7.4)条件下,阿霉素包裹在纳米粒中比较稳定,然而游离阿霉素不稳定容易发生降解。稳定性研究表明,载药纳米粒DCN应冻干保存。
     建立了高效液相色谱(HPLC)测定阿霉素在血浆样品和组织样品中含量的方法。大鼠体内药动学研究结果显示,DCN-16(载药量为9.36%)可以显著延长阿霉素的体内循环时间。与阿霉素组比较,DCN-167以延长平均滞留时间(MRT)(P<0.01)和降低体内消除率(CL)(P<0.01),其药.时曲线下面积(AUC_(0-∞))为阿霉素组的5.61倍(P<0.01)。DCN-16能够延长在荷S180瘤小鼠血浆中的时间,增加阿霉素在肿瘤内的分布,DCN-16在肿瘤组织中的AUC_(0-∞)是阿霉素组的2.56倍(P<0.05),表明载药纳米粒具有长循环的特性和肿瘤靶向作用。DCN-16组在肝脏、脾脏中的AUC_(0-∞)均大于阿霉素组(P<0.05),DCN-16组在心脏、肺脏、肾脏的AUC_(0-∞)均比阿霉素组小(P<0.05),说明载药纳米粒能够降低心脏和肾脏的毒性,同时也说明纳米粒能够在体内长时间滞留。载药纳米粒DCN-16在肿瘤组织中的相对摄取率(R_e)和峰浓度比(C_e)分别为2.56±0.30和1.49±0.24,表明载药纳米粒DCN-16对S180肿瘤的趋向性大于阿霉素。
     采用四甲基氮唑蓝比色(MTT)法考察了空白CHGC1纳米粒与载药纳米粒DCN-16对MCF-7细胞和HepG2细胞生长的影响。空白CHGC1纳米粒对MCF-7细胞和HepG2细胞的IC_(50)值分别为0.226 mg/mL和0.351 mg/mL,说明CHGC1纳米粒具有较低的细胞毒性。阿霉素和DCN-16对细胞的毒性均具有浓度依赖性。载药纳米粒DCN-16对MCF-7细胞和HepG2细胞的体外毒性均弱于游离阿霉素。激光共聚焦显微镜结果表明,DCN-16的细胞摄取是通过内吞途径,而游离阿霉素的细胞摄取是通过被动扩散的方式。流式细胞仪测定阿霉素与HepG2细胞孵育05h或4h时的荧光强度强于DCN-16的荧光强度,与CLSM观察结果一致,这也与载药纳米粒DCN-16的体外缓慢释放的有关。体内抗S180肉瘤小鼠实验表明,DCN-16组的抑瘤瘤大于阿霉素组的抑瘤率,并且毒副作用更低。
     应用酶降解和超滤膜分离技术制备低分子量的乙二醇壳聚糖。以EDC作为偶联剂,将亚油酸(LA)接枝到低分子量的乙二醇壳聚糖,合成亚油酸疏水改性乙二醇壳聚糖(LALGC)共聚物,利用红外光谱、核磁共振、胶体滴定法对其结构进行表征。通过控制亚油酸的投料比例,合成三种不同取代度(4.5%~13.4%)的聚合物。LALGC共聚物在水溶液中通过探头超声作用下自聚集形成单分散性的纳米粒,纳米粒的形态呈球状,平均粒径在204~289 nm范围内,CAC与纳米粒的粒径大小随着共聚物的疏水基团取代度的增加而降低。应用透析法将紫杉醇包裹LALGC自聚集纳米粒中,载药纳米粒(PTX-LALGC)的载药量与包封率随着聚合物取代度的增加而增加。载药纳米粒的粒子形态呈球形,粒径在238~307 nm范围内。载药纳米粒的体外释放的结果表明,随着纳米粒载药量的增加,药物释放速度减慢,药物从纳米粒中释放呈两相模式,即初始的药物快速释放和后期的药物缓慢释放。应用MTT法研究载药纳米粒PTX-LALGCl对MCF-7细胞生长的影响,结果表明,PTX-LALGC1具有游离紫杉醇相当的细胞毒性。因此,LALGC聚合物纳米粒可以作为潜在的药物传递系统的载体。
Glycol chitosan is a novel chitosan derivative,and can be soluble in water at all pH values.It has chitosan-based structure and physicochemical properties,leading to excellent biocompatibility,biodegradability,low immunogenicity and biological activities.In the present study,a series of novel amphiphilic graft glycol chitosan were synthesized by introducing different hydrophobical groups.These polymeric amphiphiles can form self-aggregated nanoparticles via the intra- and/or intermolecular interactions of hydrophobic segments in aqueous media.These nanoparticles exhibit unique core-shell architecture composed of hydrophobic segments as internal core and hydrophilic segments as surrounding corona in aqueous media.The hydrophobic core serves as a reservoir for water-insoluble drugs.Hence,these nanoparticles can be used as carriers for hydrophobic drugs.
     For the synthesis of cholesterol-modified glycol chitosan(CHGC) conjugates,a carboxyl group was initially introduced to cholesterol molecule using succinic anhydride,and then covalently coupled with the primary amino group of glycol chitosan in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxyl succinimide(NHS).These conjuages were characterized by FTIR,1~H NMR and elemental analysis.Three kinds of CHGC conjugates were prepared by controlling the feed ratio of cholesteryl hemisuccinate to glycol chitosan.The degree of substitution(DS),defined as the number of cholesterol groups per 100 sugar residues of glycol chitosan The physicochemical properties of the self-aggregated nanoparticles were studied using dynamic light scattering(DLS),transmission electron microscopy (TEM) and fluorescence spectroscopy.CHGC conjugates were well-dispersed in aqueous media,and formed self-aggregated nanoparticles by probe sonication. Fluorescence measurement using pyrene as fluorescent probe was adopted to determine the critical aggregation concentration(CAC) of amphiphilic copolymers.As the DS of the conjugates increased,the CAC decreased.The CHGC self-aggregated nanoparticles were almost spherical in shape,and the mean diameters of these nanoparticles were in the range of 228-353 nm.Indomethacin(IND) was chosen as a model drug to assess the potential of CHGC self-aggregated nanoparticles as a drug carrier.IND was physically entrapped into the CHGC nanoparticles by a dialysis method.IND-loaded CHGC nanoparticles were almost spherical in shape,and their sizes were larger than blank CHGC nanoparticles.The in vitro release behavior of IND-CHGC nanoparticles was well fitted by Weibull equation and presented a biphasic drug release pattern.Stability experiments revealed that IND-loaded CHGC nanoparticles should be stored at low temperature or in freeze-dried state.
     Because the hydrophobic core of CHGC nanoparticles can provide a loading space for water-insoluble drugs,doxorubicin(DOX)-loaded CHGC nanoparticles were prepared.The drug-loaded nanoparticles were hoped to be stealthy nanoparticles, prolong circulation time in plasma and improve antitumor efficacy by enhanced permeability and retention(EPR) effect.The DOX-loaded CHGC1(the DS of CHGC1 was 6.7%) nanoparticles were prepared by a dialysis method.As the weight ratio of feed DOX to CHGC1 nanoparticles increased,the DOX-loading content increased and the DOX entrapment efficiency decreased.The DOX-loaded CHGC1 nanoparticles(DCN) were roughly spherical in shape determined by TEM observation.As the drug-loading content increased,the size of these nanoparticles increased.DOX in the polymer matrix was dispersed in an amorphous or molecular state,which was investigated by differential scanning calorimetry(DSC) and fluorescent quenching studies.The zeta potential of DCN series increased as the pH values of PBS solution decreased.DOX release from DCN in vitro was much faster in PBS at pH 5.5 than in PBS at pH 6.5 and 7.4.As the drug loading content of these nanoparticles increased,the release rate of DOX was much slower under the same condition.A notably slower degradation rate was observed for the encapsulated DOX,while free DOX was subject to rapid decomposition in PBS(pH 7.4) at 37℃.Stability tests indicated that DCN should be freeze-dried in store.
     Reversed-phase high performance liquid chromatography(HPLC) was developed to quantify the content of DOX in rate plasma and mice tissues.Intraveneous pharmacokinetic behaviors in rats of DCN-16(drug loading content:9.36%) and free DOX were investigared.DCN-16 could prolong circulation time in rat plasma.In comparison with free DOX,DCN-16 has an increased MRT(P<0.01) and decreased CL(P<0.01).The AUC_(0-∞) of DCN-16 was 6.61 times higher than that of free DOX(P<0.01).Moreover,DCN-16 displayed a much greater systemic circulation time in S180 mice than free DOX.In addition,compared with free DOX,DCN-16 also produced significantly increased AUC in liver(P<0.05),spleen(P<0.05),and tumors(P<0.05).DCN-16 can passively accumulate into the tumor tissues by the long systemic retention in blood circulation and the EPR effect.The AUC_(0-∞) of DCN-16 was lower in heart(P<0.05),lung(P<0.05) and kidney(P<0.05) than that of free DOX,which indicated DCN-16 could show longer circulation time and less toxic effect in S180-bearing mice.The relative tumor tissue exposure(R_e) and the ratio of peak concentration(C_e) were 2.56±0.30 and 1.49±0.24,respectively.It demonstrated that the tumor affinity of DCN-16 was higher than free DOX.
     Cytotoxicity of blank CHGC1 nanoparticles and DCN-16 nanoparticles against MCF-7 and HepG2 cells was evaluated by MTT assay.The IC_(50) value of blank CHGC1 nanoparticles on MCF-7 and HepG2 cells was 0.226μg/mL and 0.351μg/mL, respectively.These results indicated that CHGC1 nanoparticles have relatively low cytotoxicity against both MCF-7 and HepG2 cells.Concentration-dependent cytotoxicity on MCF-7 and HepG2 cells was observed for both free DOX and DCN-16. DCN-16 showed a lower cytotoxicity against MCF-7 and HepG2 cells than free DOX. Confocal laser scanning microscopy(CLSM) demonstrated that cellular uptake of DCN-16 was in an endocytosis manner but that of free DOX was in a passive diffusion way.HepG2 ceils incubated with DCN-16 emitted lower fluorescent intensity than the cells incubated with free DOX after 0.5 or 4 h.This result was consistent with confocal microscopic observation and in vitro DOX release behavior.Compared with free DOX, DCN-16 exhibited more efficient tumor growth suppression,and simultaneously showed less toxicity effect in S 180-bearing mice.
     Low-molecular-weight glycol chitosan was obtained by enzymatic degradation of glycol chitosan and membrane separation.A series of linoleic acid-modified low-molecular-weight glycol chitosan(LALGC) conjugates were synthesized in the presence of EDC.The chemical structure of LALGC copolymers was characterized by FTIR,1~H NMR and colloidal titration method.The degree of substitution(DS) defined as the number of LA groups per 100 glucosamine units of low-molecular-weight glycol glycol chitosan was 4.5-13.4%.The LALGC conjugates can form mono-dispersed nanoparticles by probe sonication.These nanoaggregates were almost spherical in shape, and the mean diameters of these nanoparticles determined by dynamic light scattering (DLS) were in the range of 204-289 nm.The CAC decreased as the DS of LALGC conjugates increased.Paclitaxel(PTX),as a model drug,was physically entrapped into the LALGC nanoparticles by a dialysis method.The drug loading content and encapsulation efficiency of PTX-loaded LALGC(PTX-LALGC) nanoparticles increased with an increasing ratio of the hydrophobic LA to hydrophilic glycol chitosan in the conjugates.The PTX-LALGC nanoparticles were almost spherical in shape and their size was ranged from 238 to 307 nm.In vitro release revealed that release rate of PTX from the nanoparticles was slower as the drug-loading content increased.PTX appeared to be released in a biphasic way,which characterized by an initial rapid release period followed by a step of slower release.The results of cytotoxicity in vitro showed that PTX-LALGC1 nanoparticles exhibited comparable activity in inhibiting MCF-7 cell proliferation as free PTX.Therefore,these results indicated that LALGC self-aggregated nanoparticles had a potential as a drug carrier.
引文
[1]Hubbell,J.A.,Enhancing drug function.[J]Science,2003,300(5619):595-596.
    [2]Na,K.,Sethuraman,V.T.,Bae,Y.H.,Stimuli-sensitive polymeric micelles as anticancer drug carriers.[J]Anti-Cancer Agents in Medicinal Chemistry,2006,6(6):525-535.
    [3]Lee,E.S.,Na,K.,Bae,Y.H.,Polymeric micelle for tumor pH and folate-mediated targeting.[J]Journal of Controlled Release,2003,91(1-2):103-113.
    [4]Lee,E.S.,Na,K.,Bae,Y.H.,Super pH-sensitive multifunctional polymeric micelle.[J]Nano Letters,2005,5(2):325-329.
    [5]Kim,S.Y.,Ha,J.C.,Lee,Y.M.,Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(ε-caprolactone)(PCL) amphiphilic block copolymeric nanospheres-Ⅱ.Thermo-responsive drug release behaviors.[J]Journal of Controlled Release,2000,65(3):345-358.
    [6]Sahoo,S.K.,Labhasetwar,V.,Enhanced anti proliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention.[J]Molecular Pharmaceutics,2005,2(5):373-383.
    [7]Liu,J.Q.,Zhang,Q.,Remsen,E.E.,Wooley,K.L.,Nanostructured materials designed for cell binding and transduction.[J]Biomacromolecules,2001,2(2):362-368.
    [8]Jensen,K.D.,Nori,A.,Tijerina,M.,Kopeckova,P.,Kopecek,J.,Cytoplasmic delivery and nuclear targeting of synthetic macromolecules.[J]Journal of Controlled Release,2003,87(1-3):89-105.
    [9]Schwarze,S.R.,Hruska,K.A.,Dowdy,S.E,Protein transduction:unrestricted delivery into all cells?[J]Trends in Cell Biology,2000,10(7):290-295.
    [10]Moghimi,S.M.,Hunter,A.C.,Murray,J.C.,Long-circulating and target-specific nanoparticles:Theory to practice.[J]Pharmacological Reviews,2001,53(2):283-318.
    [11]Seow,W.Y.,Xue,J.M.,Yang,Y.Y.,Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles.[J]Biomaterials,2007,28(9):1730-1740.
    [12]Torchilin,V.P.,Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate.[J]Advanced Drug Delivery Reviews,2005,57(1):95-109.
    [13]Bae,Y.,Jang,W.D.,Nishiyama,N.,Fukushima,S.,Kataoka,K.,Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery.[J]Molecular Biosystems,2005,1(3):242-250.
    [14]Matsumura,Y.,Maeda,H.,A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.[J]Cancer Research,1986,46(12):6387-6392.
    [15]Maeda,H.,The enhanced permeability and retention(EPR) effect in tumor vasculature:The key role of tumor-selective macromolecular drug targeting.[J]Advances in Enzyme Regulation,Vol 41,2001,41:189-207.
    [16]Reddy,K.R.,Modi,M.W.,Pedder,S.,Use of peginterferon alfa-2a(40 KD)(Pegasys~(?)) for the treatment of hepatitis C.[J]Advanced Drug Delivery Reviews,2002,54(4):571-586.
    [17]Maeda,H.,Matsumura,Y.,Tumoritropic and lymphotropic principles of macromolecular drugs.[J]Critical Reviews in Therapeutic Drug Carrier Systems,1989,6(3):193-210.
    [18]Maeda,H.,Matsumoto,T.,Konno,T.,Iwai,K.,Ueda,M.,Tailor-making of protein drugs by polymer conjugation for tumor targeting - a brief review on SMANCS.[J]Journal of Protein Chemistry,1984,3(2):181-193.
    [19]Storm,G.,Belliot,S.O.,Daemen,T.,Lasic,D.D.,Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system.[J]Advanced Drug Delivery Reviews,1995,17(1):31-48.
    [20]Lee,S.C.,Chang,Y.K.,Yoon,J.S.,Kim,C.H.,Kwon,I.C.,Kim,Y.H.,Jeong,S.Y.,Synthesis and micellar characterization of amphiphilic diblock copolymers based on poly(2-ethyl-2-oxazoline) and aliphatic polyesters.[J]Macromolecules,1999,32(6):1847-1852.
    [21]Stolnik,S.,Daudali,B.,Arien,A.,Whetstone,J.,Heald,C.R.,Garuett,M.C.,Davis,S.S.,Illum,L.,The effect of surface coverage and conformation of poly(ethylene oxide)(PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers.[J]Biochimica Et Biophysica Acta-Biomembranes,2001,1514(2):261-279.
    [22]Otsuka,H.,Nagasaki,Y.,Kataoka,K.,PEGylated nanoparticles for biological and pharmaceutical applications.[J]Advanced Drug Delivery Reviews,2003,55(3):403-419.
    [23]Brigger,I.,Dubernet,C.,Couvreur,P.,Nanoparticles in cancer therapy and diagnosis.[J]Advanced Drug Delivery Reviews,2002,54(5):631-651.
    [24]Noguchi,Y.,Wu,J.,Duncan,R.,Strohalm,J.,Ulbrich,K.,Akaike,T.,Maeda,H.,Early phase tumor accumulation of macromolecules:a great difference in clearance rate between tumor and normal tissues.[J]Japanese Journal of Cancer Research,1998,89(3):307-314.
    [25]Maeda,H.,SMANCS and polymer-conjugated macromolecular drags:advantages in cancer chemotherapy.[J]Advanced Drug Delivery Reviews,2001,46(1-3):169-185.
    [26]Akiyoshi,K.,Deguchi,S.,Moriguchi,N.,Yamaguchi,S.,Sunamoto,J.,Self-aggregates of hydrophobized polysaccharides in water - Formation and characteristics of nanoparticles.[J]Macromolecules,1993,26(12):3062-3068.
    [27]Akiyoshi,K.,Deguchi,S.,Tajima,H.,Nishikawa,T.,Sunamoto,J.,Microscopic structure and thermoresponsiveness of a hydrogel nanoparticle by self-assembly of a hydrophobized polysaccharide.[J]Macromolecules,1997,30(4):857-861.
    [28]Sato,M.,Onishi,H.,Takahara,J.,Machida,Y.,Nagai,T.,In vivo drug release and antitumor characteristics of water-soluble conjugates of mitomycin C with glycol-chitosan and N-succinyl-chitosan.[J]Biological & Pharmaceutical Bulletin,1996,19(9):1170-1177.
    [29]Sato,M.,Onishi,H.,Kitano,M.,Machida,Y.,Nagai,T.,Preparation and drug release characteristics of the conjugates of mitomycin C with glycol-chitosan and N-succinyl-chitosan.[J]Biological & Pharmaceutical Bulletin,1996,19(2):241-245.
    [30]Uchegbu,I.F.,Sadiq,L.,Pardakhty,A.,El-Hammadi,M.,Gray,A.I.,Tetley,L.,Wang,W.,Zinselmeyer,B.H.,Schatzlein,A.G.,Gene transfer with three amphiphilic glycol chitosans - the degree of polymerisation is the main controller of transfection efficiency.[J]Journal of Drug Targeting,2004,12(8):527-539.
    [31]Uchegbu,I.F.,Schatzlein,A.G.,Tetley,L.,Gray,A.I.,Sludden,J.,Siddique,S.,Mosha,E.,Polymeric chitosan-based vesicles for drug delivery.[J]Journal of Pharmacy and Pharmacology,1998,50(5):453-458.
    [32]Kim,K.,Kwon,S.,Park,J.H.,Chung,H.,Jeong,S.Y.,Kwon,I.C.,Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates.[J]Biomacromolecules,2005,6(2):1154-1158.
    [33]Kwon,S.,Park,J.H.,Chung,H.,Kwon,I.C.,Jeong,S.Y,Kim,I.S.,Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5 P-cholanic acid.[J]Langmuir,2003,19(24):10188-10193.
    [34]Yoo,H.S.,Lee,J.E.,Chung,H.,Kwon,I.C.,Jeong,S.Y,Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery.[J]Journal of Controlled Release,2005,103(1):235-243.
    [35]Kim,J.H.,Kim,Y.S.,Kim,S.,Park,J.H.,Kim,K.,Choi,K.,Chung,H.,Jeong,S.Y,Park,R.W.,Kim,I.S.,Kwon,I.C.,Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel.[J]Journal of Controlled Release,2006,111(1-2):228-234.
    [36]Kim,J.H.,Kim,Y.S.,Park,K.,Kang,E.,Lee,S.,Nam,H.Y.,Kim,K.,Park,J.H.,Chi,D.Y,Park,R.W.,Kim,I.S.,Choi,K.,Kwon,I.C.,Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy.[J]Biomaterials,2008,29(12):1920-1930.
    [37]Lee,S.J.,Park,K.,Oh,Y.K.,Kwon,S.H.,Her,S.,Kim,I.S.,Choi,K.,Lee,S.J.,Kim,H.,Lee,S.G.,Kim,K.,Kwon,I.C.,Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice.[J]Biomaterials,2009,30(15):2929-2939.
    [38]Park,Y,Hong,H.Y.,Moon,H.J.,Lee,B.H.,Kim,I.S.,Kwon,I.C.,Rhee,I.,A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides.[J]Journal of Controlled Release,2008,128(3):217-223.
    [39]Son,Y.J.,Jang,J.S.,Cho,Y.W.,Chung,H.,Park,R.W.,Kwon,I.C.,Kim,I.S.,Park,J.Y.,Seo,S.B.,Park,C.R.,Jeong,S.Y,Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect.[J]Journal of Controlled Release,2003,91(1-2):135-145.
    [40]Park,J.H.,Cho,Y.W.,Son,Y.J.,Kim,K.,Chung,H.,Jeong,S.Y,Choi,K.,Park,C.R.,Park,R.W.,Kim,I.S.,Kwon,I.C.,Preparation and characterization of self-assembled nanoparticles based on glycol chitosan bearing adriamycin.[J]Colloid and Polymer Science,2006,284(7):763-770.
    [41]Park,J.H.,Kwon,S.,Lee,M.,Chung,H.,Kim,J.H.,Kim,Y.S.,Park,R.W.,Kim,I.S.,Seo,S.B.,Kwon,I.C.,Jeong,S.Y.,Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin:In vivo biodistribution and anti-tumor activity.[J]Biomaterials,2006,27:119-126.
    [42]Shaikh,V.A.E.,Maldar,N.N.,Lonikar,S.V.,Rajah,C.R.,Ponrathnam,S.,Thermotropic behavior of cholesterol-linked polysaccharides.[J]Journal of Applied Polymer Science,1998,70(1):195-201.
    [43]Zhang,J.X.,Li,X.J.,Qiu,L.Y.,Li,X.H.,Yan,M.Q.,Jin,Y.,Zhu,K.J.,Indomethacin-loaded polymeric nanocarriers based on amphiphilic polyphosphazenes with poly (N-isopropylacrylamide) and ethyl tryptophan as side groups:Preparation,in vitro and in vivo evaluation.[J]Journal of Controlled Release,2006,116(3):322-329.
    [44]Stepnova,E.A.,Tikhonov,V.E.,Babushkina,T.A.,Klimova,T.P.,Vorontsov,E.V.,Babak,V.G.,Lopatin,S.A.,Yamskov,I.A.,New approach to the quatemization of chitosan and its amphiphilic derivatives.[J]European Polymer Journal,2007,43(6):2414-2421.
    [45]Huang,M.F.,Shen,W.Q.,Fang,Y.E.,Synthesis of a novel chitosan derivative having poly (ethylene oxide) side chains in aqueous reaction media.[J]Reactive & Functional Polymers,2005,65(3):301-308.
    [46]Wilhelm,M.,Zhao,C.,Wang,Y.,Xu,R.,MA,W.,Mura,J.,Riess,G.,Croucher,M.,Poly(styrene-ethylene oxide) block copolymer micelle formation in water:A fluorescence probe study.[J]Macromolecules,1991,24(5):1033-1040.
    [47]Kalyanasundaram,K.,Thomas,J.K.,Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems.[J]Journal of the American Chemical Society,1977,99(7):2039-2044.
    [48]Yuan,X.B.,Li,H.,Yuan,Y.B.,Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface.[J]Carbohydrate Polymers,2006,65(3):337-345.
    [49]Prabha,S.,Zhou,W.Z.,Panyam,J.,Labhasetwar,V.,Size-dependency of nanoparticle-mediated gene transfection:studies with fractionated nanoparticles.[J]International Journal of Pharmaceutics,2002,244(1-2):105-115.
    [50]Liu,C.G.,Desai,K.G.H.,Chen,X.G.,Park,H.J.,Linolenic acid-modified chitosan for formation of self-assembled nanoparticles.[J]Journal of Agricultural and Food Chemistry,2005,53(2):437-441.
    [51]Bibby,D.C.,Talmadge,J.E.,Dalai,M.K.,Kurz,S.G.,Chytil,K.M.,Barry,S.E.,Shand,D.G.,Steiert,M.,Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice.[J]International Journal of Pharmaceutics,2005,293(1-2):281-290.
    [52]Yan,C.Y.,Chen,D.W.,Gu,J.W.,Qin,J.,Nanoparticles of 5-fluorouracil(5-FU) loaded N-succinyl-chitosan(Suc-Chi) for cancer chemotherapy:preparation,characterization - in-vitro drug release and anti-tumour activity.[J]Journal of Pharmacy and Pharmacology,2006,58(9):1177-1181.
    [53]Tang,E.S.K.,Huang,M.,Lim,L.Y.,Ultrasonication of chitosan and chitosan nanoparticles.[J]International Journal of Pharmaceutics,2003,265(1-2):103-114.
    [54]李樱红,胡富强,袁弘,壳寡糖硬脂酸接枝物纳米粒的制备及其体外释放.[J]中国药学杂志,2005,40(14):1083-1086.
    [55]Ye,Y.Q.,Yang,F.L.,Hu,F.Q.,Du,Y.Z.,Yuan,H.,Yu,H.Y.,Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin.[J]International Journal of Pharmaceutics,2008,352(1-2):294-301.
    [56]Na,K.,Bae,Y.H.,Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate:Characterization,aggregation,and adriamycin release in vitro.[J]Pharmaceutical Research,2002,19(5):681-688.
    [57]Missirlis,D.,Kawamura,R.,Tirelli,N.,Hubbell,J.A.,Doxorubicin encapsulation and diffusional release from stable,polymeric,hydrogel nanoparticles.[J]European Journal of Pharmaceutical Sciences,2006,29(2):120-129.
    [58]Yin,H.Q.,Bae,Y.H.,Physicochemical aspects of doxorubicin-loaded pH-sensitive polymeric micelle formulations from a mixture of poly(L-histidine)-b-poly(L-lactide)-b-poly(ethylene glycol).[J]European Journal of Pharmaceutics and Biopharmaceutics,2009,71(2):223-230.
    [59]Kwon,G.,Naito,M.,Yokoyama,M.,Okano,T.,Sakurai,Y.,Kataoka,K.,Block copolymer micelles for drug delivery:loading and release of doxorubicin.[J]Journal of Controlled Release,1997,48(2-3):195-201.
    [60]Tannock,I.F.,Rotin,D.,Acid pH in tumors and its potential for therapeutic exploitation.[J]Cancer Research,1989,49(16):4373-4384.
    [61]Ojugo,A.S.E.,McSheehy,P.M.J.,Mclntyre,D.J.O.,McCoy,C.,Stubbs,M.,Leach,M.O.,Judson,I.R.,Griffiths,J.R.,Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy:a comparison of exogenous ~(19)F and ~(31)P probes.[J]NMR in Biomedicine,1999,12(8):495-504.
    [62]Shuai,X.T.,Ai,H.,Nasongkla,N.,Kim,S.,Gao,J.M.,Micellar carriers based on block copolymers of poly(e-caprolactone)and poly(ethylene glycol)for doxorubicin delivery.[J]Journal of Controlled Release,2004,98(3):415-426.
    [63]Qiu,L.Y,Wu,X.L.,Jin,Y,Doxorubicin-loaded polymeric micelles based on amphiphilic polyphosphazenes with poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)and ethyl glycinate as side groups:Synthesis,preparation and in vitro evaluation.[J]Pharmaceutical Research,2009,26(4):946-957.
    [64]Kataoka,K.,Matsumoto,T.,Yokoyama,M.,Okano,T.,Sakurai,Y,Fukushima,S.,Okamoto,K.,Kwon,G.S.,Doxorubicin-loaded poly(ethylene glycol)-poly(P-benzyl-L-aspartate)copolymer micelles:their pharmaceutical characteristics and biological significance.[J]Journal of Controlled Release,2000,64(1-3):143-153.
    [65]Yokoyama,M.,Miyauchi,M.,Yamada,N.,Okano,T.,Sakurai,Y,Kataoka,K.,Inoue,S.,Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid)block copolymer.[J]Cancer Research,1990,50(6):1693-1700.
    [66]Colombo,RE.,Boustta,M.,Poujol,S.,Pinguet,F.,Rouanet,P.,Bressolle,R,Vend,M.,Biodistribution of doxorubicin-alkylated poly(L-lysine citramide imide)conjugates in an experimental model of peritoneal carcinomatosis after intraperitoneal administration.[J]European Journal of Pharmaceutical Sciences,2007,31(1):43-52.
    [67]Qi,X.R.,Maitani,Y,Nagai,T.,Wei,S.L.,Comparative pharmacokinetics and antitumor efficacy of doxorubicin encapsulated in soybean-derived sterols and poly(ethylene glycol)liposomes in mice.[J]International Journal of Pharmaceutics,1997,146(1):31-39.
    [68]范健,文旭,缪玉山,翁帼英,脂质体阿霉素与游离阿霉素在大鼠体内药代动力学.[J]中国药科大学学报,2001,32(5):354-358.
    [69]Kataoka,K.,Kwon,G.S.,Yokoyama,M.,Okano,T.,Sakurai,Y.,Block copolymer micelles as vehicles for drug delivery.[J]Journal of Controlled Release,1993,24(1-3):119-132.
    [70]Park,K.,Kim,J.H.,Nam,Y.S.,Lee,S.,Nam,H.Y.,Kim,K.,Park,J.H.,Kim,I.S.,Choi,K.,Kim,S.Y.,Kwon,I.C.,Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles.[J]Journal of Controlled Release,2007,122:305-314.
    [71]Gallo,J.M.,Gupta,P.K.,Hung,C.T.,Perrier,D.G.,Evaluation of drug delivery following the administration of magnetic albumin microspheres containing adriamycin to the rat.[J]Journal of Pharmaceutical Sciences,1989,78(3):190-194.
    [72]Gupta,P.K.,Hung,C.T.,Quantitative evaluation of targeted drug delivery systems.[J]International Journal of Pharmaceutics,1989,56(3):217-226.
    [73]Yi,Y.W.,Kim,J.H.,Kang,H.W.,Oh,H.S.,Kim,S.W.,Seo,M.H.,A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier:Improvements in cellular uptake and biodistribution.[J]Pharmaceutical Research,2005,22(2):200-208.
    [74]Yoo,H.S.,Park,T.G.,Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer.[J]Journal of Controlled Release,2001,70(1-2):63-70.
    [75]Na,K.,Lee,E.S.,Bae,Y.H.,Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH:pH-dependent cell interaction,internalization and cytotoxicity in vitro.[J]Journal of Controlled Release,2003,87(1-3):3-13.
    [76]Yoo,H.S.,Park,T.G.,Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate.[J]Journal of Controlled Release,2004,100(2):247-256.
    [77]Park,J.S.,Han,T.H.,Lee,K.Y.,Han,S.S.,Hwang,J.J.,Moon,D.H.,Kim,S.Y.,Cho,Y.W.,N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs:Endoeytosis,exoeytosis and drug release.[J]Journal of Controlled Release,2006,115(1):37-45.
    [78]Panyam,J.,Labhasetwar,V.,Biodegradable nanoparticles for drug and gene delivery to cells and tissue.[J]Advanced Drug Delivery Reviews,2003,55(3):329-347.
    [79]Dufes,C.,Muller,J.M.,Couet,W.,Olivier,J.C.,Uchegbu,I.F.,Schatzlein,A.G.,Anticancer drug delivery with transferrin targeted polymeric chitosan vesicles.[J]Pharmaceutical Research,2004,21(1):101-107.
    [80]Xiong,X.B.,Huang,Y.,Lu,W.L.,Zhang,X.,Zhang,H.,Nagai,T.,Zhang,Q.,Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic.[J]Journal of Controlled Release,2005,107(2):262-275.
    [81]Park,K.,Lee,G.Y.,Kim,Y.S.,Yu,M.,Park,R.W.,Kim,I.S.,Kim,S.Y.,Byun,Y.,Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity.[J]Journal of Controlled Release,2006,114(3):300-306.
    [82]Cho,Y.W.,Park,S.A.,Han,T.H.,Son,D.H.,Park,J.S.,Oh,S.J.,Moon,D.H.,Cho,K.J.,Ahn,C.H.,Byun,Y.,Kim,I.S.,Kwon,I.C.,Kim,S.Y.,In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles:Mechanisms,key factors,and their implications.[J]Biomaterials,2007,28(6):1236-1247.
    [83]Maeda,H.,Wu,J.,Sawa,T.,Matsumura,Y.,Hori,K.,Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review.[J]Journal of Controlled Release,2000,65(1-2):271-284.
    [84]Yasugi,K.,Nagasaki,Y.,Kato,M.,Kataoka,K.,Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(D,L-lactide) block copolymers as potential drug carrier.[J]Journal of Controlled Release,1999,62(1-2):89-100.
    [85]Charrois,G.J.R.,Allen,T.M.,Rate of biodistribution of STEALTH~(?) liposomes to tumor and skin:influence of liposome diameter and implications for toxicity and therapeutic activity.[J]Biochimica Et Biophysica Aeta-Biomembranes,2003,1609(1):102-108.
    [86]Hwang,H.Y.,Kim,I.S.,Kwon,I.C.,Kim,Y.H.,Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles.[J]Journal of Controlled Release,2008,128(1):23-31.
    [87]冯小强,杨声,苏中兴,李会学,赵海红,低聚壳聚糖降解制备、分离、纯化、鉴别的研究进展.[J]高分子通报,2006(10):82-89.
    [88]Jahreis,G.,Kraft,J.,Tischendorf,F.,Schone,F.,von Loeffelholz,C.,Conjugated linoleic acids:Physiological effects in animal and man with special regard to body composition.[J]European Journal of Lipid Science and Technology,2000,102(11):695-703.
    [89]Wani,M.C.,Taylor,H.L.,Wall,M.E.,Coggon,P.,McPhail,A.T.,Plant antitumor agents.Ⅵ.Isolation and structure of Taxol,a novel antileukemic and antitumor agent from taxus-brevifolia.[J]Journal of the American Chemical Society,1971,93(9):2325-2327.
    [90]Kubota,T.,Matsuzaki,S.W.,Hoshiya,Y.,Watanabe,M.,Kitajima,M.,Asanuma,F.,Yamada,Y.,Koh,J.I.,Antitumor activity of paclitaxel against human breast carcinoma xenografts serially transplanted into nude mice.[J]Journal of Surgical Oncology,1997,64(2):115-121.
    [91]Panchagnula,R.,Pharmaceutical aspects of paclitaxel.[J]International Journal of Pharmaceutics,1998,172(1-2):1-15.
    [92]Weiss,R.B.,Donehower,R.C.,Wiernik,P.H.,Ohnuma,T.,Gralla,R.J.,Trump,D.L.,Baker,J.R.,Vanecho,D.A.,Vonhoff,D.D.,Leylandjones,B.,Hypersensitivity Reactions from Taxol.[J]Journal of Clinical Oncology,1990,8(7):1263-1268.
    [93]Gelderblom,H.,Verweij,J.,Nooter,K.,Sparreboom,A.,Cremophor EL:the drawbacks and advantages of vehicle selection for drug formulation.[J]European Journal of Cancer,2001,37(13):1590-1598.
    [94]Crosasso,P.,Ceruti,M.,Brusa,P.,Arpicco,S.,Dosio,F.,Cattel,L.,Preparation,characterization and properties of sterically stabilized paclitaxel-containing liposomes.[J]Journal of Controlled Release,2000,63(1-2):19-30.
    [95]Wang,Y.S.,Jiang,Q.,Li,R.S.,Liu,L.L.,Zhang,Q.Q.,Wang,Y.M.,Zhao,J.,Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel.[J]Nanotechnology,2008,19(14):8.
    [96]Soga,O.,van Nostrum,C.F.,Fens,M.,Rijcken,C.J.F.,Schiffelers,R.M.,Storm,G.,Hennink,W.E.,Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery.[J]Journal of Controlled Release,2005,103(2):341-353.
    [97]Zhang,H.,Du,Y.G.,Yu,X.J.,Mitsutomi,M.,Aiba,S.,Preparation of chitooligosaccharides from chitosan by a complex enzyme.[J]Carbohydrate Research,1999,320(3-4):257-260.
    [98]Hu,F.Q.,Ren,G.F.,Yuan,H.,Du,Y.Z.,Zeng,S.,Shell cross-linked stearic acid grafted chitosan oligosaccharide self-aggregated micelles for controlled release of paclitaxel.[J]Colloids and Surfaces B-Biointerfaces,2006,50(2):97-103.
    [99]Xia,W.S.,Liu,P.,Liu,J.,Advance in chitosan hydrolysis by non-specific cellulases.[J]Bioresource Technology,2008,99(15):6751-6762.
    [100]Chen,X.G.,Lee,C.M.,Park,H.J.,O/M emulsification for the self-aggregation and nanoparticle formation of linoleic acid-modified chitosan in the aqueous system.[J]Journal of Agricultural and Food Chemistry,2003,51(10):3135-3139.
    [101]Lin,A.H.,Liu,Y.M.,Huang,Y,Sun,J.B.,Wu,Z.F.,Zhang,M.,Ping,Q.N.,Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery.[J]International Journal of Pharmaceutics,2008,359(1-2):247-253.
    [102]Musyanovych,A.,Rossmanith,R.,Tontsch,C.,Landfester,K.,Effect of hydrophilic comonomer and surfactant type on the colloidal stability and size distribution of carboxyl-and amino-functionalized polystyrene particles prepared by miniemulsion polymerization.[J]Langmuir,2007,23(10):5367-5376.
    [103]Pan,J.,Feng,S.S.,Targeted delivery of paclitaxel using folate-decorated poly(lactide)-vitamin E TPGS nanoparticles.[J]Biomaterials,2008,29(17):2663-2672.
    [104]Xie,J.W.,Wang,C.H.,Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel.[J]Pharmaceutical Research,2005,22(12):2079-2090.
    [105]Hu,F.Q.,Li,Y.H.,Yuan,H.,Novel self-aggregates of chitosan oligosaccharide grafted stearic acid:preparation,characterization and protein association.[J]Pharmazie,2006,61(3):194-198.
    [106]Ueno,K.,Kina,K.,Colloid titration-A rapid method for the determination of charged colloid.[J]Journal of Chemical Education,1985,62(7):627-629.
    [107]Terayama,H.,Method of colloid titration(a new titration between polymer ions).[J]Journal of Polymer Science,1952,8(2):243-253.
    [108]Sahoo,S.K.,Ma,W.,Labhasetwar,V.,Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer.[J]International Journal of Cancer,2004,112(2):335-340.
    [1]Nicol,S.,Life after death for empty shells.[J]New Scientist,1991,129(1755):46-48.
    [2]Liu,Z.H.,Jiao,Y.P.,Wang,Y.F.,Zhou,C.R.,Zhang,Z.Y.,Polysaccharides-based nanoparticles as drug delivery systems.[J]Advanced Drug Delivery Reviews,2008,60(15):1650-1662.
    [3]Agnihotri,S.A.,Mallikarjuna,N.N.,Aminabhavi,T.M.,Recent advances on chitosan-based micro- and nanoparticles in drug delivery.[J]Journal of Controlled Release,2004,100(1):5-28.
    [4]Ilium,L.,Farraj,N.F.,Davis,S.S.,Chitosan as a novel nasal delivery system for peptide drugs.[J]Pharmaceutical Research,1994,11(8):1186-1189.
    [5]Sawayanagi,Y.,Nambu,N.,Nagai,T.,Pharmaceutical interactions in dosage forms and processing.39.Enhancement of dissolution properties of prednisolone from ground mixtures with chitin or chitosan.[J]Chemical & Pharmaceutical Bulletin,1983,31(7):2507-2509.
    [6]Gallo,J.M.,Hassan,E.E.,Receptor-mediated magnetic carriers - Basis for targeting.[J]Pharmaceutical Research,1988,5(5):300-304.
    [7]Artursson,P.,Lindmark,T.,Davis,S.S.,Ilium,L.,Effect of chitosan on the permeability of monolayers of intestinal epithelial-cells(Caco-2).[J]Pharmaceutical Research,1994,11(9): 1358-1361.
    [8]Li,D.H.,Liu,L.M.,Tian,K.L.,Liu,J.C.,Fan,X.Q.,Synthesis,biodegradability and cytotoxicity of water-soluble isobutylchitosan.[J]Carbohydrate Polymers,2007,67(1):40-45.
    [9]Avadi,M.R.,Sadeghi,A.M.M.,Tahzibi,A.,Bayati,K.,Pouladzadeh,M.,Zohuriaan-Mehr,M.J.,Rafiee-Tehrani,M.,Diethylmethyl chitosan as an antimicrobial agent:Synthesis,characterization and antibacterial effects.[J]European Polymer Journal,2004,40(7):1355-1361.
    [10]Pang,H.T.,Chen,X.G.,Park,H.J.,Cha,D.S.,Kennedy,J.F.,Preparation and rheological properties of deoxycholate-chitosan and carboxymethyl-chitosan in aqueous systems.[J]Carbohydrate Polymers,2007,69(3):419-425.
    [11]Oh,I.,Lee,K.,Kwon,H.Y.,Lee,Y.B.,Shin,S.C.,Cho,C.S.,Kim,C.K.,Release of adriamycin from poly(γ-benzyl-L-glutamate)/poly(ethylene oxide) nanoparticles.[J]International Journal of Pharmaceutics,1999,181(1):107-115.
    [12]Huh,K.M.,Lee,S.C.,Cho,Y.W.,Lee,J.W.,Jeong,J.H.,Park,K.,Hydrotropic polymer micelle system for delivery of paclitaxel.[J]Journal of Controlled Release,2005,101(1-3):59-68.
    [13]Akiyoshi,K.,Deguchi,S.,Moriguchi,N.,Yamaguchi,S.,Sunamoto,J.,Self-aggregates of hydrophobized polysaccharides in water - Formation and characteristics of nanoparticles.[J]Macromolecules,1993,26(12):3062-3068.
    [14]Lee,K.Y.,Chitosan and its derivatives for gene delivery.[J]Macromolecular Research,2007,15(3):195-201.
    [15]Liu,W.G.,Sun,S.J.,Zhang,X.,De Yao,K.,Self-aggregation behavior of alkylated chitosan and its effect on the release of a hydrophobic drug.[J]Journal of Biomaterials Science-Polymer Edition,2003,14(8):851-859.
    [16]Liu,W.G.,Zhang,X.,Sun,S.J.,Sun,G.J.,De Yao,K.,Liang,D.C.,Guo,G.,Zhang,J.Y.,N-alkylated chitosan as a potential nonviral vector for gene transfection.[J]Bioconjugate Chemistry,2003,14(4):782-789.
    [17]代昭,孙多先,十六烷基壳聚糖纳米微球负载紫杉醇的研究.[J]中草药,2003,34(2):120-122.
    [18]金旭,朱敦皖,张超,唐丽娜,王海,柏金根,姚康德,宋存先,十二烷基化壳聚糖基因支架血管内基因转运的实验研究.[J]生物医学工程与临床,2006,10(6):342-345.
    [19]代昭,孙多先,黄文强,烷基壳聚糖纳米微球的制备及其紫杉醇负载研究.[J]高分子通报,2006(6):64-68.
    [20]霍美蓉,周建平,魏彦,吕霖,紫杉醇阳离子壳聚糖胶束的制备及其在小鼠体内的组织分布.[J]中国药科大学学报,2006,37(2):132-136.
    [21]刘蕾,平其能,张灿,刘敏霞,环孢素A壳聚糖衍生物胶束的制备及其大鼠口服生物利用度.[J]中国药科大学学报,2007,38(3):208-212.
    [22]Yao,Z.,Zhang,C.,Ping,Q.N.,Yu,L.L.,A series of novel chitosan derivatives:Synthesis,characterization and micellar solubilization of paclitaxel.[J]Carbohydrate Polymers,2007,68(4):781-792.
    [23]Qu,G.,Yao,Z.,Zhang,C.,Wu,X.L.,Ping,Q.N.,PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel:In vitro characterization and in vivo evaluation[J]European Journal of Pharmaceutical Sciences,2009:doi:10.1016/j.ejps.2009.1001.1004.
    [24]霍美蓉,张勇,周建平,吕霖,刘欢,刘芳洁,N-辛基-O,N-羧甲基壳聚糖聚合物胶束对紫杉醇的增溶、缓释及其安全性初步评价.[J]药学学报,2008,43(8):855-861.
    [25]陆建男,钱红艳,周建平,陈权,石月,戴银娣,胡桂霞,马建芳,牛血清蛋白壳聚糖自组装纳米胶束的制备及理化性质研究.[J]中国药科大学学报,2008,39(6):500-504.
    [26]Li,H.X.,Liu,J.,Ding,S.,Zhang,C.,Shen,W.,You,Q.,Synthesis of novel pH-sensitive chitosan graft copolymers and micellar solubilization of paclitaxel.[J]International Journal of Biological Macromolecules,2009,44(3):249-256.
    [27]Lee,K.Y.,Jo,W.H.,Kwon,I.C.,Kim,Y.H.,Jeong,S.Y.,Physicochemical characteristics of self-aggregates of hydrophobically modified chitosans.[J]Langmuir,1998,14(9):2329-2332.
    [28]Lee,K.Y.,Jo,W.H.,Kwon,I.C.,Kim,Y.H.,Jeong,S.Y.,Structural determination and interior polarity of self-aggregates prepared from deoxycholic acid-modified chitosan in water.[J]Macromolecules,1998,31(2):378-383.
    [29]Lee,K.Y.,Kim,J.H.,Kwon,I.C.,Jeong,S.Y.,Self-aggregates of deoxycholic acid modified chitosan as a novel carrier of adriamycin.[J]Colloid and Polymer Science,2000,278(12): 1216-1219.
    [30]Chae,S.Y.,Son,S.,Lee,M.,Jang,M.K.,Nah,J.W.,Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier.[J]Journal of Controlled Release,2005,109(1-3):330-344.
    [31]Son,S.H.,Chae,S.Y.,Choi,C.Y.,Kim,M.Y,Ngugen,V.G.,Jang,M.K.,Nah,J.W.,Preparation of a hydrophobized chitosan oligosaccharide for application as an efficient gene carrier.[J]Macromolecular Research,2004,12(6):573-580.
    [32]Yuan,X.B.,Li,H.,Yuan,Y.B.,Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface.[J]Carbohydrate Polymers,2006,65(3):337-345.
    [33]Wang,Y.S.,Liu,L.R.,Jiang,Q.,Zhang,Q.Q.,Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin.[J]European Polymer Journal,2007,43(1):43-51.
    [34]Chen,X.G.,Lee,CM.,Park,H.J.,O/M emulsification for the self-aggregation and nanoparticle formation of linoleic acid-modified chitosan in the aqueous system.[J]Journal of Agricultural and Food Chemistry,2003,51(10):3135-3139.
    [35]Du,Y.Z.,Wang,L.,Yuan,H.,H.,W.X.,Hu,F.Q.,Preparation and characteristics of linoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin.[J]Colloids and Surfaces B-Biointerfaces,2009,69(2):257-263.
    [36]Kato,Y,Onishi,H.,Machida,Y,Evaluation of JV-succinyl-chitosan as a systemic long-circulating polymer.[J]Biomaterials,2000,21(15):1579-1585.
    [37]Kato,Y,Onishi,H.,Machida,Y,Biological fate of highly-succinylated JV-succinyl-chitosan and antitumor characteristics of its water-soluble conjugate with mitomycin C at i.v.and i.p.administration into tumor-bearing mice.[J]Biological & Pharmaceutical Bulletin,2000,23(12):1497-1503.
    [38]Kato,Y,Onishi,H.,Machida,Y,Lactosaminated N-succinyl-chitosan:Preparation and biodistribution into the intestine,bone,lymph nodes and male genital organs after i.v.administration.[J]Macromolecular Research,2003,11(5):382-386.
    [39]Song,Y.,Onishi,H.,Nagai,T.,Synthesis and drug-release characteristics of the conjugates of mitomycin-C with N-succinyl-chitosan and carboxymethyl-chitin.[J]Chemical &Pharmaceutical Bulletin,1992,40(10):2822-2825.
    [40]Song,Y.H.,Onishi,H.,Nagai,T.,Pharmacokinetic characteristics and antitumor-activity of the N-succinyl-chitosan mitomycin-C conjugate and the carboxymethyl-chitin mitomycin-C conjugate.[J]Biological & Pharmaceutical Bulletin,1993,16(1):48-54.
    [41]Song,Y.H.,Onishi,H.,Nagai,T.,Conjugate of mitomycin C with N-succinyl-chitosan:In-vitro drug release properties,toxicity and antitumor activity.[J]International Journal of Pharmaceutics,1993,98(1-3):121-130.
    [42]Sato,M.,Onishi,H.,Takahara,J.,Machida,Y.,Nagai,T.,In vivo drug release and antitumor characteristics of water-soluble conjugates of mitomycin C with glycol-chitosan and N-succinyl-chitosan.[J]Biological & Pharmaceutical Bulletin,1996,19(9):1170-1177.
    [43]Sato,M.,Onishi,H.,Kitano,M.,Machida,Y.,Nagai,T.,Preparation and drug release characteristics of the conjugates of mitomycin C with glycol-chitosan and N-succinyl-chitosan.[J]Biological & Pharmaceutical Bulletin,1996,19(2):241-245.
    [44]Kamiyama,K.,Onishi,H.,Machida,Y.,Biodisposition characteristics of N-succinyl-chitosan and glycol-chitosan in normal and tumor-bearing mice.[J]Biological & Pharmaceutical Bulletin,1999,22(2):179-186.
    [45]Yan,C.Y.,Chen,D.W.,Gu,J.W.,Qin,J.,Nanoparticles of 5-fluorouracil(5-FU) loaded N-succinyl-chitosan(Suc-Chi) for cancer chemotherapy:preparation,characterization - in-vitro drug release and anti-tumour activity.[J]Journal of Pharmacy and Pharmacology,2006,58(9):1177-1181.
    [46]Yan,C.Y.,Chen,D.W.,Gu,J.W.,Li,L.F.,Synthesis of N-succinyl-chitosan(Suc-Chi) and preparation of oxymiatrine(OM)/N-succinyl-chitosannanoparticles.[J]Chemical Research in Chinese Universities,2006,22(5):589-592.
    [47]Xu,X.Y.,Li,L.,Zhou,J.P.,Lu,S.Y.,Yang,J.,Yin,X.J.,Ren,J.S.,Preparation and characterization of N-succinyl-N'-octyl chitosan micelles as doxorubicin carriers for effective anti-tumor activity.[J]Colloids and Surfaces B:Biointerfaces,2007,55(2):222-228.
    [48]许向阳,周建平,李玲,张勇,霍美蓉,王星,吕霖,多柔比星壳聚糖聚合物胶束的制备及其在小鼠体内的组织分布.[J]药学学报,2008,43(7):743-748.
    [49]Hu,F.Q.,Zhao,M.D.,Yuan,H.,You,J.,Du,Y.Z.,Zeng,S.,A novel chitosan oligosaccharide-stearic acid micelles for gene delivery:Properties and in vitro transfection studies.[J]International Journal of Pharmaceutics,2006,315(1-2):158-166.
    [50]Hu,F.Q.,Li,Y.H.,Yuan,H.,Novel self-aggregates of chitosan oligosaccharide grafted stearic acid:preparation,characterization and protein association.[J]Pharmazie,2006,61(3):194-198.
    [51]You,J.,Hu,F.Q.,Du,Y.Z.,Yuan,H.,Ye,B.F.,High cytotoxicity and resistant-cell reversal of novel paclitaxel loaded micelles by enhancing the molecular-target delivery of the drug.[J]Nanotechnology,2007,18.
    [52]Hu,F.Q.,Wu,X.L.,Du,Y.Z.,You,J.,Yuan,H.,Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin.[J]European Journal of Pharmaceutics and Biopharmaceutics,2008,69(1):117-125.
    [53]Ye,Y.Q.,Yang,F.L.,Hu,F.Q.,Du,Y.Z.,Yuan,H.,Yu,H.Y.,Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin.[J]International Journal of Pharmaceutics,2008,352(1-2):294-301.
    [54]Hu,F.Q.,Meng,P.,Dai,Y.Q.,Du,Y.Z.,You,J.,Wei,X.H.,Yuan,H.,PEGylated chitosan-based polymer micelle as an intracellular delivery carrier for anti-tumor targeting therapy.[J]European Journal of Pharmaceutics and Biopharmaceutics,2008,70(3):749-757.
    [55]Huang,M.F.,Jin,X.,Jin,Y.,Fang,Y.,Syntheses and characterization of novel pH-sensitive graft copolymers of maleoylchitosan and poly(acrylic acid).[J]Reactive & Functional Polymers,2006,66(10):1041-1046.
    [56]Kim,T.H.,Jin,H.,Kim,H.W.,Cho,M.H.,Cho,C.S.,Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice beating CT-26 carcinoma cells.[J]Molecular Cancer Therapeutics,2006,5(7):1723-1732.
    [57]You,J.,Hu,F.Q.,Du,Y.Z.,Yuan,H.,Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel.[J] Biomacromolecules,2007,8(8):2450-2456.
    [58]You,J.,Li,X.,de Cui,F.,Du,Y.Z.,Yuan,H.,Hu,F.Q.,Folate-conjugated polymer micelles for active targeting to cancer cells:preparation,in vitro evaluation of targeting ability and cytotoxicity.[J]Nanotechnology,2008,19:045102.
    [59]Chan,P.,Kurisawa,M.,Chung,J.E.,Yang,Y.Y.,Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral cartier for tumor-targeted gene delivery.[J]Biomaterials,2007,28(3):540-549.
    [60]Zhang,T.,Yu,Y.Y.,Li,D.,Peng,R.,Li,Y.,Jiang,Q.,Dai,P.,Gao,R.,Synthesis and properties of a novel methoxy poly(ethylene glycol)-modified galactosylated chitosan derivative.[J]Journal of Materials Science-Materials in Medicine,2009,20(3):673-680.
    [61]Zhang,J.,Chen,X.G.,Li,Y.Y.,Liu,C.S.,Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin.[J]Nanomedicine:Nanotechnology,Biology,and Medicine,2007,3(4):258-265.
    [62]Mao,H.Q.,Roy,K.,Troung-Le,V.L.,Janes,K.A.,Lin,K.Y.,Wang,Y.,August,J.T.,Leong,K.W.,Chitosan-DNA nanoparticles as gene carriers:synthesis,characterization and transfection efficiency.[J]Journal of Controlled Release,2001,70(3):399-421.
    [63]Hu,Y.,Jiang,X.Q.,Ding,Y.,Ge,H.X.,Yuan,Y.Y.,Yang,C.Z.,Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles.[J]Biomaterials,2002,23(15):3193-3201.
    [64]Liu,C.G.,Desai,K.G.H.,Chen,X.G.,Park,H.J.,Linolenic acid-modified chitosan for formation of self-assembled nanoparticles.[J]Journal of Agricultural and Food Chemistry,2005,53(2):437-441.
    [65]Chung,H.J.,Go,D.H.,Bae,J.W.,Jung,I.K.,Lee,J.W.,Park,K.D.,Synthesis and characterization of Pluronic~(?) grafted chitosan copolymer as a novel injectable biomaterial.[J]Current Applied Physics,2005,5(5):485-488.
    [66]Jiang,G.B.,Quan,D.O.,Liao,K.R.,Wang,H.H.,Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery.[J]Molecular Pharmaceutics,2006,3(2):152-160.
    [67]Opanasopit,P.,Ngawhirunpat,T.,Rojanarata,T.,Choochottiros,C.,Chirachanchai,S., Camptothecin-incorporating N-phthaloylchitosan-g-mPEG self-assembly micellar system:Effect of degree of deacetylation.[J]Colloids and Surfaces B-Biointerfaces,2007,60:117-124.
    [68]Yang,X.D.,Zhang,Q.Q.,Chen,H.,Zhang,H.Z.,Gao,F.P.,Liu,L.R.,Self-aggregated nanoparticles from methoxy poly(ethylene glycol)-modified chitosan:synthesis;characterization;aggregation and methotrexate release in vitro.[J]Colloids and Surfaces B:Biointerfaces,2008,61(2):125-131.
    [69]Park,J.K.,Kim,D.G.,Choi,C.,Jeong,Y.L.,Kim,M.Y.,Jang,M.K.,Nah,J.W.,Preparation and characterization of lithocholic acid conjugated chitosan oligosaccharide nanoparticles for hydrophobic anticancer agent carriers.[J]Polymer-Korea,2008,32(3):263-269.
    [70]Li,YY,Chen,X.G.,Zhang,J.,Liu,C.S.,Xue,Y.P.,Sun,G.Z.,Zhang,W.F.,In vitro release of rifampicin and biocompatibility of oleoylchitosan nanoparticles.[J]Journal of Applied Polymer Science,2009,111(5):2269-2274.
    [71]Yoksan,R.,Akashi,M.,Low molecular weight chitosan-g-L-phenylalanine:Preparation,characterization,and complex formation with DNA.[J]Carbohydrate Polymers,2009,75(1):95-103.
    [72]Gogev,S.,de Fays,K.,Versali,M.F.,Gautier,S.,Thiry,E.,Glycol chitosan improves the efficacy of intranasally administrated replication defective human adenovirus type 5 expressing glycoprotein D of bovine herpesvirus 1.[J]Vaccine,2004,22(15-16):1946-1953.
    [73]Sakai,S.,Ono,T.,Ijima,H.,Kawakami,K.,Control of molecular weight cut-off for immunoisolation by multilayering glycol chitosan-alginate polyion complex on alginate-based microcapsules.[J]Journal of Microencapsulation,2000,17(6):691-699.
    [74]Uchegbu,I.F.,Schatzlein,A.G.,Tetley,L.,Gray,A.L,Sludden,J.,Siddique,S.,Mosha,E.,Polymeric chitosan-based vesicles for drug delivery.[J]Journal of Pharmacy and Pharmacology,1998,50(5):453-458.
    [75]Sludden,J.,Uchegbu,I.F.,Schatzlein,A.G.,The encapsulation of bleomycin within chitosan based polymeric vesicles does not alter its biodistribution.[J]Journal of Pharmacy and Pharmacology,2000,52(4):377-382.
    [76]Noble,L.,Gray,A.L,Sadiq,L.,Uchegbu,I.F.,A non-covalently cross-linked chitosan based hydrogel.[J]InternationalJournal of Pharmaceutics,1999,192(2):173-182.
    [77]Uchegbu,I.F.,Sadiq,L.,Arastoo,M.,Gray,A.I.,Wang,W,Waigh,R.D.,Schatzleina,A.G.,Quaternary ammonium palmitoyl glycol chitosan-a new polysoap for drug delivery.[J]InternationalJournal of Pharmaceutics,2001,224(1-2):185-199.
    [78]Dufes,C.,Schatzlein,A.G.,Tetley,L.,Gray,A.I.,Watson,D.G.,Olivier,J.C.,Couet,W.,Uchegbu,I.F.,Niosomes and polymeric chitosan based vesicles bearing transferrin and glucose ligands for drug targeting.[J]Pharmaceutical Research,2000,17(10):1250-1258.
    [79]Wang,W.,McConaghy,A.M.,Tetley,L.,Uchegbu,I.F.,Controls on polymer molecular weight may be used to control the size of palmitoyl glycol chitosan polymeric vesicles.[J]Langmuir,2001,17(3):631-636.
    [80]Uchegbu,I.F.,Sadiq,L.,Pardakhty,A.,El-Hammadi,M.,Gray,A.I.,Tetley,L.,Wang,W,Zinselmeyer,B.H.,Schatzlein,A.G.,Gene transfer with three amphophilic glycol chitosans-the degree of polymerisation is the main controller of transfection efficiency.[J]Journal of Drug Targeting,2004,12(8):527-539.
    [81]Kwon,S.,Park,J.H.,Chung,H.,Kwon,I.C.,Jeong,S.Y.,Kim,I.S.,Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5P-cholanic acid.[J]Langmuir,2003,19(24):10188-10193.
    [82]Yoo,H.S.,Lee,J.E.,Chung,H.,Kwon,I.C.,Jeong,S.Y.,Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery.[J]Journal of Controlled Release,2005,103(1):235-243.
    [83]Kim,J.H.,Kim,Y.S.,Kim,S.,Park,J.H.,Kim,K.,Choi,K.,Chung,H.,Jeong,S.Y.,Park,R.W.,Kim,I.S.,Kwon,I.C.,Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel.[J]Journal of Controlled Release,2006,111(1-2):228-234.
    [84]Park,K.,Kim,J.H.,Nam,Y.S.,Lee,S.,Nam,H.Y.,Kim,K.,Park,J.H.,Kim,I.S.,Choi,K.,Kim,S.Y.,Kwon,I.C.,Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles.[J]Journal of Controlled Release,2007,122(3):305-314.
    [85]Kim,J.H.,Kim,Y.S.,Park,K,Kang,E.,Lee,S.,Nam,H.Y.,Kim,K.,Park,J.H.,Chi,D.Y., Park,R.W.,Kim,I.S.,Choi,K.,Kwon,I.C.,Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy.[J]Biomaterials,2008,29(12):1920-1930.
    [86]Hwang,H.Y,Kim,I.S.,Kwon,I.C.,Kim,Y.H.,Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles.[J]Journal of Controlled Release,2008,128(1):23-31.
    [87]Park,Y,Hong,H.Y,Moon,H.J.,Lee,B.H.,Kim,I.S.,Kwon,I.C.,Rhee,L,A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides.[J]Journal of Controlled Release,2008,128(3):217-223.
    [88]Lee,S.J.,Park,K.,Oh,Y.K.,Kwon,S.H.,Her,S.,Kim,I.S.,Choi,K.,Lee,S J.,Kim,H.,Lee,S.G.,Kim,K.,Kwon,I.C.,Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice.[J]Biomaterials,2009,30(15):2929-2939.
    [89]Nam,H.Y,Kwon,S.M.,Chung,H.,Lee,S.Y,Kwon,S.H.,Jeon,H.,Kim,Y,Park,J.H.,Kim,J.,Her,S.,Oh,Y.K.,Kwon,I.C.,Kim,K.,Jeong,S.Y,Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles.[J]Journal of Controlled Release,2009,135(3):259-267.
    [90]Son,Y.J.,Jang,J.S.,Cho,Y.W.,Chung,H.,Park,R.W.,Kwon,I.C.,Kim,I.S.,Park,J.Y,Seo,S.B.,Park,C.R.,Jeong,S.Y,Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect.[J]Journal of Controlled Release,2003,91(1-2):135-145.
    [91]Park,J.H.,Cho,Y.W.,Son,Y.J.,Kim,K.,Chung,H.,Jeong,S.Y,Choi,K.,Park,C.R.,Park,R.W.,Kim,I.S.,Kwon,I.C.,Preparation and characterization of self-assembled nanoparticles based on glycol chitosan bearing adriamycin.[J]Colloid and Polymer Science,2006,284(7):763-770.
    [92]Park,J.H.,Kwon,S.,Lee,M.,Chung,H.,Kim,J.H.,Kim,Y.S.,Park,R.W.,Kim,I.S.,Seo,S.B.,Kwon,I.C.,Jeong,S.Y,Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin:In vivo biodistribution and anti-tumor activity.[J]Biomaterials,2006,27:119-126.
    [93]Kim,K.,Kwon,S.,Park,J.H.,Chung,H.,Jeong,S.Y,Kwon,I.C.,Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates.[J]Biomacromolecules,2005,6(2):1154-1158.
    [94]Cha,J.,Lee,W.B.,Park,C.R.,Cho,Y.W.,Ahn,C.H.,Kwon,I.C.,Preparation and characterization of cisplatin-incorporated chitosan hydrogels,microparticles,and nanoparticles.[J]Macromolecular Research,2006,14(5):573-578.
    [95]Lee,M.,Cho,Y.W.,Park,J.H.,Chung,H.,Jeong,S.Y,Choi,K.,Moon,D.H.,Kim,S.Y,Kim,I.S.,Kwon,I.C.,Size control of self-assembled nanoparticles by an emulsion/solvent evaporation method.[J]Colloid & Polymer Science,2006,284(5):506-512.
    [96]Park,J.S.,Han,T.H.,Lee,K.Y.,Han,S.S.,Hwang,J.J.,Moon,D.H.,Kim,S.Y,Cho,Y.W.,JV-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs:Endocytosis,exocytosis and drug release.[J]Journal of Controlled Release,2006,115(1):37-45.
    [97]Park,J.S.,Cho,Y.W.,In vitro cellular uptake and cytotoxicity of paclitaxel-loaded glycol chitosan self-assembled nanoparticles.[J]Macromolecular Research,2007,15:513-519.
    [98]Cho,Y.W.,Park,S.A.,Han,T.H.,Son,D.H.,Park,J.S.,Oh,S.J.,Moon,D.H.,Cho,K.J.,Ahn,C.H.,Byun,Y,Kim,I.S.,Kwon,I.C.,Kim,S.Y,In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles:Mechanisms,key factors,and their implications.[J]Biomaterials,2007,28(6):1236-1247.
    [99]Yu,J.M.,Li,Y.J.,Qiu,L.Y,Jin,Y,Self-aggregated nanoparticles of cholesterol-modified glycol chitosan conjugate:Preparation,characterization,and preliminary assessment as a new drug delivery carrier.[J]European Polymer Journal,2008,44(3):555-565.
    [100]Wang,Y.S.,Jiang,Q.,Liu,L.R.,Zhang,Q.Q.,The interaction between bovine serum albumin and the self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan.[J]Polymer,2007,48(14):4135-4142.
    [101]Wang,Y.S.,Liu,L.R.,Weng,J.,Zhang,Q.Q.,Preparation and characterization of self-aggregated nanoparticles of cholesterol-modified 0-carboxymethyl chitosan conjugates.[J]Carbohydrate Polymers,2007,69(3):597-606.
    [102]Tan,Y.L.,G.,L.C.,Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan:Synthesis,characterization and application in vitro.[J]Colloids and Surfaces B-Biointerfaces,2009,69(2):178-182.
    [103]Sayin,B.,Somavarapu,S.,Li,X.W.,Thanou,M.,Sesardic,D.,Alpar,H.O.,Senel,S.,Mono-iV-carboxymethyl chitosan(MCC)and N-trimethyl chitosan(TMC)nanoparticles for non-invasive vaccine delivery.[J]International Journal of Pharmaceutics,2008,363(1-2):139-148.
    [104]Sandri,G.,Bonferoni,M.C.,Rossi,S.,Ferrari,F.,Gibin,S.,Zambito,Y,Di Colo,G.,Caramella,C.,Nanoparticles based on JV-trimethylchitosan:Evaluation of absorption properties using in vitro(Caco-2 cells)and ex vivo(excised rat jejunum)models.[J]European Journal of Pharmaceutics and Biopharmaceutics,2007,65(1):68-77.
    [105]Mao,S.R.,Shuai,X.T.,Unger,F.,Wittmar,M.,Xie,X.L.,Kissel,T.,Synthesis,characterization and cytotoxicity of poly(ethylene glycol)-graft-trimethyl chitosan block copolymers.[J]Biomaterials,2005,26(32):6343-6356.
    [106]Murata,J.,Ohya,Y,Ouchi,T.,Design of quaternary chitosan conjugate having antennary galactose residues as a gene delivery tool.[J]Carbohydrate Polymers,1997,32(2):105-109.