聚合物/无机物纳米复合降滤失剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:日益增加的能源压力,石油勘探钻井工作不断深入,遇到深井和超深井越来越多,复杂的地质环境层出不穷,因此高温和高盐一直是钻井工作必须面对的问题,也是钻井液研究的重点和难点。目前常用钻井液降滤失剂多是相对分子量大的天然或合成聚合物,它们在降低钻井液滤失量的同时,也不同程度的提高了钻井液黏度,引起高温增黏和遇到污染增黏的问题。一些相对分子量小的降滤失剂在使用过程中,虽然满足了现场需要,代价是降滤失剂的量越用越多,因此投入的成本也逐渐升高。
     抗温抗盐、成本低廉和来源广以及易于工业化的钻井液降滤失剂成了当前急需的钻井液处理剂之一。本文针对纳米材料的独有的特性,用无机纳米结构材料对聚合物进行纳米化改性,制备系列聚合物/无机化合物纳米复合降滤失剂,对其结构和性能进行表征,对其作用机理进行了研究。本文有以下创新点:
     (1)成功的制备了P (AM/AMPS)/有机膨润土、P (AM/AA)/有机膨润土和P (AMPS/AM/AA)/有机膨润土三种纳米复合材料。FT-IR分析表明,单体和膨润土发生了接枝反应;XRD分析结果显示,膨润土的层间结构被单体和膨润土的聚合反应所产生的能量不同程度的剥离或完全“撑开”,SEM分析结果进一步验证了XRD的结论。降滤失性能测试结果表明,三种纳米复合降滤失剂在高温(200℃)、高盐浓度(36%饱和盐水)下,都有良好的降滤失和不增黏的效果。
     (2)成功的制备了SiO2/SSMA纳米复合高温降黏降滤失剂,并对其进行了FT-IR、XRD、SEM结构表征和TGA热稳定性分析以及性能测试。结果表明,得到的纳米复合材料的粒径在200nm左右,热稳定性比SSMA好;该复合降滤失剂具有高温降黏降滤失的双重功能,当老化温度为200℃,复合材料的加量为0.5%时,复合材料的降黏率达到81%;在老化温度为180℃,复合材料的加量为0.2%时,淡水泥浆的滤失量就从23mL降低到8mL
     (3)·成功的制备了腐植酸改性聚合物/Fe3+纳米复合高温降黏降滤失剂。该降滤失剂在加量为1.5%时,老化温度为200℃时,降黏率为89%,降滤失量为8.5mL。由腐植酸改性聚合物/Fe3+纳米复合材料与工业废料腈纶废丝接枝反应后得到了一种新的抗温抗盐降滤失剂。该新产品在加量为5%,老化温度为180℃时,饱和盐水基浆的滤失量仅为3.0mL,泥饼厚度为0.60mm。
ABSTRACT:With the increasing pressure on energy, oil exploration drilling work encounter more and more deep and ultra deep wells in-depth, and complex geological environment also emerge in endlessly. Therefore, high temperature and high salt are the problems that drilling work have been facing always, also are the emphasis and difficult of drilling fluid research. At present, the commonly used drilling fluid filtrate-loss reducers are natural or synthetic polymers with relatively high molecular weight. They can reduce the filtration of drilling fluid, but also can increase drilling fluid viscosity in varying degrees at the same time, so the problems are caused that viscosity increased in high temperature and encountered pollution. Some filtrate-loss reducers with relatively small molecular weight can meet the needs in the use, although the cost of reducing the amount of filtrate more you use more, so gradually increased the cost of inputs.
     Drilling fluid filtrate-loss reducer of anti-temperature, anti-salt, low cost, extensive source and easy to industrialize becomes one of the much-needed drilling fluid treat agents. This article aims at the particular characteristic of nanomaterials, polymers are nanomodified by using inorganic nano-structured materials, therefore prepared series of polymer/inorganic nanocomposite filtrate-loss reducers. Their structure and properties were characterized, and studied the mechanism of their actions. This article has the following innovation:
     (1) Three kinds of nanocomposites of the P (AM/AMPS)/organic bentonite, P (AM /AA)/organic bentonite and P (AMPS/AM/AA)/organic bentonite were successfully prepared. FT-IR analysis showed that the monomers and bentonite occurred the grafting reaction; XRD analysis showed that the layer structure of bentonite was stripped with varying degrees or completely spread by the energy that generated in the polymerization of monomers and bentonite. SEM analysis further confirmed the results of XRD analysis. filtrate-loss performance test results show that the three kinds of nano composite materials have good effects on filtrate-loss and no increased viscosity at high temperature (200℃) and high salt concentration (36% saturated salt water).
     (2) The high temperature viscosity-loss filtrate-loss reducer, SiO2/SSMA nanocomposite, was Successfully prepared. its structure was characterized by FT-IR, XRD, SEM, its thermal stability was analyzed by TGA, and its performance was tested. The results showed that the diameter of the nano composite material was about 200 nm, and the thermal stability was better than SSMA's; the composite filtrate-loss reducer had a dual function of viscosity-loss and filtrate-loss at high temperature. The viscosity reduction rate was 81% at 200℃aging temperature when the usage of SiO2/SSMA nanocomposite was 0.5%. The filtration amounts of freshwater mud were reduced from 23mL to 8mL at 180℃aging temperature when the usage of SiO2/SSMA nanocomposite was 0.2%.
     (3)The humic acid modified polymer/Fe3+nanocomposite, high temperature viscosity-loss filtrate-loss reducer was successfully prepared. When the usage of this filtrate-loss reducer was 1.5%, and the the aging temperature was 200℃, the viscosity reduction rate was 89%, filtrate reduction was 8.5mL. A new filtrate-loss reducer with anti-temperature and salt was obtained by grafting reaction between humic acid modified polymer/Fe3+nano composite and acrylic silk waste, acrylic silk waste is one of industrial waste. The filtration reduction of saturated salt solution-based slurry was only 3.0mL at 180℃aging temperature When the usage of this novel product was 5%. The thickness of the mud cake was 0.60mm under the same conditions of temperature and usage.
引文
[1]张启根,陈馥,刘彝,熊颖.国外高性能水基钻井液技术发展现状[J].钻井液与完井液,2007,24(3):74-77,95.
    [2]张克勤,王欣,何纶,等.2006年国内外钻井液体系和处理剂分类[J].钻井液与完井液,2007,24(增刊):44-51,127.
    [3]World Oil'Fluids Guide 2006. World Oil,2006,6:61.
    [4]黄汉仁.泥浆工艺原理[M].1981:1.
    [5]王群.我国油井水泥降失水剂研究与应用概况[J].石油与天然气化工,1992,21(21):105~109.
    [6]罗跃,郑晶.国内外油井水泥浆降失水剂的研究进展[J].精细石油化工,1990,5:6~10.
    [7]Olaussen Stein,Bjordal. Audun.Well cement compositions having improved properties and methods[P].US:5149370,1992.
    [8]Olaussen, et al. Well cement compositions having improved properties and methods [P]. US 5 149370,1992.
    [9]黄宁.油田化学,1996,13(3):256-258.
    [10]Gabriel T. Forrest. Completion and workover fluid for oil and gas wells comprising ground peanut hulls [P].US 5 229 018,1993.
    [11]Gabriel T. Forrest. Method and composition fracturing subterranean formations[J]. US 5 246 602,1993.
    [12]Forrest Gabriel T. Low fluid leakoff cementing compositions and filtration control additive for cement[P]. US:5229019,1993.
    [13]Crinkelmeyer Oliver W, Root Roland L.Shappe James R. Method of controlling fluid loss from thixotrpic cement [P]. US:4102400,1978.
    [14]Burkhalter John F, Weigand Willis A. Liquid fluid loss control additive for oil field cements[P]. US:4687516,1987.
    [15]Burkhalter John, Suson Jolinda K. Cement fluid loss control additives and methods[P]. US: 5151131.
    [16]Juppe Herbert L, Marchant Robert P. Environmentally acceptable fluid polymer suspension for oil field services[P]. US:6620769,2003.
    [17]Philippe A. Parcevaux, Bernard M. Piot, at al. Cement compositions for cementing wells, allowing pressure gas-channeling in the cemented annulus to be controlled [P]. US 4 537 918,1985.
    [18]Philippe Parcevaux, Patrick Sault. Composition for a lightweight cement slurry for cementing oil and gas wells [P]. US 4 721 160,1985
    [19]Gopalkrishnan, Sridhar. Additive composition for oil well cementing formulations [P]. US 5 252128,1993
    [20]Gopalkirshnan, et al. Additive composition for oil well cementing formulations[P]. US 5 258 072,1993
    [21]Gopalkrishnan, Sridhar. Additive composition for oil well cementing formulations [P]. US 5 258428,1993
    [22]Gopalkrishnan, Sridhar. Oil well cementing formulations [P]. US 5 262 452,1993
    [23]朱刚卉.高性能聚阴离子纤维素处理剂的研制[J].石油钻探技术,2005,33(3):36-38.
    [24]蒋太华,刘传禄.LS—2新型聚合物降滤失剂[J].钻井液与完井液,1992,(3):40-43.
    [25]胡俊明,徐僖.接枝改性纤维素及其对水泥浆降失水性能的研究[J].油田化学,1989,6(2):100~104.
    [26]邹建龙,谭文礼,林恩平,等.国内外油井水泥浆滤失剂研究进展[J].2000,17(1):85-89.
    [27]赵凤华,孙国杰.高温油井水泥降滤失剂—MTV的研制[J].内蒙古石油化工,2002,28(2):243-244.
    [28]Vijn Jan Pieter, Dao Bach. Environmentally acceptable well cement fluid loss control additives compositions and methods[P]. US:6405801,2002.
    [29]Vijn Jan Pieter, Dao Bach. Environmentally acceptable well cement fluid loss control additives compositions and methods[P]. US:6626992,2002.
    [30]Cowan Kenneth M. Cement fluid loss reduction[P]. US:5298070,1994.
    [31]Cowan Kenneth M. Cement fluid loss reduction[P]. US:5207831,1993.
    [32]蒋挺大.木质素[M].北京:化学工业出版社,2001.
    [33]胡慧萍,黄可龙,潘春跃.碱法造纸液制备钻井泥浆降滤失剂[J].现代化工,2000,20(8):40—43.
    [34]Fry Slaton E, Childs Jerry D. Method of reducing fluid loss in cement compositions which may contain substantial salt concentrations[P]. US:4676317,1987.
    [35]Fry Slaton E, Childs Jerry D. Method of reducing fluid loss in cement compostions which may contain substantial salt concentrations[P]. US:4703801,1987.
    [36]Schiling Peter, Brown Pattie. Cationic and anionic lignin amines[P]. US:4775744,1988.
    [37]Schiling Peter. Aminated sulfonated or sulfomethylated lingnins as cement fluid loss control additive[P]. US:4990191,1991.
    [38]Schiling Peter. Aminated sulfonated or sulfomethylated lingnins as cementfluid loss control additive[P]. US:5012870,1991.
    [39]王中华.AMPS/AA/DMDAAC-木质素磺酸盐接枝共聚物钻井液降黏剂的合成与性能[J].精 细石油化工进展,2001,1-3.
    [40]王中华.AM/AMPS/木质素磺酸接枝共聚物降滤失剂的合成与性能[J].精细石油化工进展,2005,6(11):1-3.
    [41]尉小明,刘喜林,王卫东.木质素磺酸盐接枝共聚物的合成及应用[J].钻采工艺,2002,25(3):81~87.
    [42]周玲革,赵红静.CSJ复合离子型改型淀粉降滤失剂的研制[J]、江汉石油学院学报,2004,26(3): 81-82.
    [43]郭东荣,高锦屏,吕开河,等.可生物降解的钻井液降滤失剂SPS的合成与性能研究[J].油田化学,1995,12(2):165-166,170.
    [44]郭金爱.淀粉衍生物PHPS的合成与性能[J].钻采工艺,1998,21(1):67-69.
    [45]王中华.CSC-2具阳离子型接枝改性淀粉泥浆降滤失剂的合成[J].石油与天然气工业,1995,24(3):193-196.
    [46]王中华.AM/AA/MPTMA/淀粉接枝共聚物钻井液降滤失剂的合成[J].精细石油化工,1998, (6):19-23.
    [47]王中华.AM/AMPS/DEDAAC/淀粉接枝共聚物钻井液降滤失剂的合成[J].科技进展,1998,12(6):21-23.
    [48]王中华.AM/AA/淀粉接枝共聚物降滤失剂的合成及性能[J].精细石油化工进展,2003,4(2):23~25.
    [49]郭金爱.抗温抗盐降滤失剂MFC的合成与使用条件[J].油田化学,1996,13(2):196-171,188
    [50]CN 1045 587,1990.
    [51]马素德,郭炎等.马铃薯变性淀粉用作钻井液降失水剂的研究[J].西安石油大学学报(自然科学版),2004,19(6):44—49.
    [52]张乔良,张贵才,葛季江.腐殖酸在油田中的应用[J].钻井液与完井液,2004,21(3):53-55.
    [53]王波,李来文.抗高温降滤失剂HUC研究与应用[J].钻井液与完井液,1994,11(4):47-49,58.
    [54]于培志,张和平,张炎山.无荧光防塌降失水剂KH 931的合成与性能[J].油田化学,1994,11(2):236-237.
    [55]安瑞慎,李善祥,崔保全.高温高压降滤失剂SCUR的生产与应用[J].腐殖酸,1994,(2):26~30.
    [56]李善祥,安瑞慎,崔保全,等.高温降滤失剂SCUR的研制及应用[J].油田化学,1995,12(4):298-303.
    [57]张林森,陈晓玺,胡彩珍.多元共聚褐煤腐殖酸(FIl1)室内评价[J].钻井液与完井液,1997, 14(6): 16-17.
    [58]王小石,唐仕忠,刘传禄.新型高温抗盐降滤失剂RSTF的研究[J].钻井液与完井液,1997,14(2): 26-28
    [59]王中华.AM/AMPS/腐殖酸接枝共聚物的合成[J].化工时刊,1998,12(10):24-25.
    [60]王平全.一种改进型SPNH降滤失剂.钻井液与完井液[J],1998,15(1):27~29.
    [61]高海洋,黄进军等.新型抗高温油基钻井液降滤失剂的研制[J].西南石油学院学报,2000,22(4):61-66.
    [62]刘盈,刘雨晴.新型阳离子抗高温降滤失剂CAP的研制与室内评价[J].油田化学,1996,13(4):294-298
    [63]刘雨晴,孙金声,王书琪,等.抗高温抗盐阳离子降滤失剂CHSP-1的合成及其应用[J].油田化学,1996,13(1):21-24.
    [64]卿鹏程,刘福霞,彭云涛,等.高温抗盐防塌降滤失刑KCS-53的研究[J].石油钻探技术,2004,32(1):38-39.
    [65]乔英杰,王慎敏,甄捷,等.抗高温抗盐降滤失剂SHK-AN的合成及性能研究[J].哈尔滨师范大学自然科学学报,2001,17(5):86-89.
    [66]张杰,罗平亚,李中正.树皮酚类制备油田钻井液添加剂的研究[J].精细化工,2001,18(8):479-481.
    [67]王中华.AM/AMPS/栲胶接枝共聚物的合成[J].河南化工,1999, (2):14-15.
    [68]Huddleston David A,Gabel Robert K. Method for reducing fluid loss from oilfield cement slurries using vinyl grafted wattle tannin[P]. US:5134215,1992.
    [69]Huddleston David A,Gabel Robert K. Method for reducing fluid loss from oilfield cement slurries using vinyl grafted wattle tannin[P]. US:5147964,1992.
    [70]Eoff Larry S,Loughridge Bill W. Method for control of gas migration in well cementing[P]. US:5339903,1994.
    [71]钱殿存.Q9302钻井液降滤失剂的研制及评价[J].钻井液与完井液,1994,11(2):7-73.
    [72]郭淑清,经淑惠,何兴贵,等.JCFJ降滤失剂的研制及应用[J].油田化学,1995,12(3):206-208.
    [73]左凤江,杨升贵.JS-90防塌降滤失剂的合成与应用[J].油田化学,1996,13(2):97-99,115.
    [74]王中华.钻井液降滤失剂A961的合成[J].精细石油化工,1997, (5):1-4.
    [75]王平全.一种改进型SPNH降滤失剂[J].钻井液与完井液,1998,15(1):27-29.
    [76]范振中,万家瑰,张书艳.阳离子降黏降滤失剂PX—1的研制[J].油田化学,1999,16(2):99-101.
    [77]尉小明,刘喜林,柴成秋.造纸废液接枝改性处理及应用[J].精细石油化工进展,2001, 2(9): 7-11
    [78]王松,杨艳霞,胡三清.新型阳离子降滤失剂PKC-3的研制与应用[J].精细化工中间体,2003,33(4):43-45.
    [79]樊泽霞,王兰兰,孙明波,等.具有抑制性的抗温耐盐改性腈纶钻井液降滤失剂KWY的研制[J].油田化学,2005,22(1):10-12.
    [80]于培志,王学英,耿同谋,等.阳离子化改性腈纶废丝在正电钻井液中的应用研究[J].现代化工,2004,24(10):31-36.
    [81]杨小华.胺改性磺化酚醛树脂降滤失剂SCP[J].油田化学,1996,13(3):259-260.
    [82]黄宁.改性磺化酚醛树脂降滤失剂MSP[J].油田化学,1996,13(3):256-258.
    [83]王永,刘凡,牛中念,等.新型高温滤失剂SMPU的合成及其使用性能[J].河南科学,1996,14(2):160-164.
    [84]江卫东,何国军,吴锰.高温抗盐降滤失剂SPX树脂的合成与评价[J].江汉石油学院学报,2001,239(1):56-58.
    [85]刘凡,曹钊,牛中念,等.LFP多羟基共聚树脂的研制及评价[J].河南科学,2002,20(4):370-374.(4)
    [86]杨柳,李健,李春霞,等.新型泥浆降滤失剂APR的研究[J].西南石油学院学报,1998,20(4):69-71.
    [87]张健,李健,李春霞,等.两性磺化酚醛树脂降滤失剂APR的研制[J].油田化学,1999,16(4):295-298.
    [88]张高波,张希红,郭民乐.两性磺化酚醛树脂ASP—1的研制及性能评价[J].精细石油化工进展,2004,5(8):23-25.
    [89]何耀春,黄步耕,王江,等.膦甲基酚醛树脂的合成与降滤失性能[J].承德石油高等专科学校学报,2005,7(3):18-22.
    [90]陈小明.SAM/AM/AA三元共聚物的合成与性能[J].石油与天然气化工,1996,25(1):31-33.
    [91]张宝庆,武玉民,单光云,等.耐高温降滤失剂AMPS/AM/IA共聚物的合成及表征[J].油田化学,2001,18(2):105-107.
    [92]武玉民,孙德军,吴涛,等.耐温抗盐降滤失剂AMPS/AM/IA共聚物泥浆性能的研究[J].油田化学,2001,18(2):101-104.
    [93]王中华.AMPS/AM/DMAM共聚物钻井液降滤失剂的合成[J].天津化工,1998, (4):28-30.
    [94]李玉光,李淑廉,王正良.新型抗高温钻井液降滤失剂FLA的研究[J].钻井液与完井液,1996,13(3):33-35.
    [95]陈娟,严波,孙庆林,等.新型降滤失剂NJ—1的研究与应用[J].钻井液与完井液,2005, 22(2):36-38.
    [96]赵俊峰,等.有机硅抗高温钻井液休系的内研究[J].钻井液与完井液,2005,22:5-7.
    [97]刘明华..AMPS/DMDAAC/AM/MA共聚物降滤失剂的合成及性能[J].精细石油化工进展,2002,3(10):41-44.
    [98]王松.抗盐抗温降滤失剂AMPS/AM/MAM三元共聚物的合成与性能评价[J].精细石油化工进展,2003,4(4):18-20.
    [99]刘明华.抗高温抗盐降滤失剂ZYJ—1的合成及性能评价[J].精细石油化工进展,2002,3(6):9-11.
    [100]赵田红,蔺永萍, 何建军,等.阳离子型AM/DMDAAC共聚物的合成及其性能评价
    [101]岳钦艳 叶传耀,姚克俊,等.HP (DMDAAC/AM)对MMA—膨润土泥浆体系的稀释作用[J].油田化学,1995,(1):1-4.
    [102]何金龙.CT12—1黏土稳定剂的研究及应用[J].钻采工艺,1997,20(3):56-59.
    [103]刘雨晴,孙金声,王书琪, 朱金智.抗高温抗盐阳离子降滤失剂CHSP-Ⅰ的合成及其应用[J].油田化学,1996,13(1):21-24.
    [104]范振中,万家瑰,张书艳.阳离子降黏降滤失剂PX—1的研制[J].油田化学,1999,16(2):99-101.
    [105]刘明华.AMPS/DMDAAC/AM/MAA共聚物降滤失剂的合成及性能[J].精细石油化工进展,2002,3(10):41-44.
    [106]彭瑞平.抗盐抗钙降滤失剂AOD—1的研制及应用[J].石油钻探技术,2005,33(4):51-53.
    [107]杨小华,王厚燕.两性离子磺酸盐聚合物处理剂CPS-2000研究[J].钻井液与完井液,2002,19(6): 9-12.
    [108]周长虹,崔茂荣,蒋大林,等.国内水溶性钻井液降滤失剂的研究与应用[J].精细石油化工,2006,23(9):1-4.
    [109]陈大钧,李文建,张晓辉.AM/AA/MA三元共聚物降失水剂PL-1的室内研究[J].油田化学,1991,8(4):293-299.
    [110]Cheung, Ping-Sun R. Fluid loss additives for cementing compositions [P]. US 5 217 531, 1993.
    [111]BRAKE BOBBY G, CHATTERJI JITEN. Fluid loss reducing additive for cement compositions[P]. EP 0595 660,1993.
    [112]曹晓春.钻井液降滤失剂聚合醇PEA的研制与评价[J].钻井液与完井液,2003,20(3):24-26.
    [113]Audebert R, Maroy P. Chemically crosslinked polyvinyl alcohol(PVA) process for synthesizing same and its application as a fluid loss control agent in oil fluids[P]. EP 0 705 850, 1996.
    [114]Moulin E. Fluid loss control agents and compositions for cementing oil wells comprising said fluid loss control agent [P]. US 6 180 689,2001.
    [115]陈涓,彭朴,汪燮卿.化学交联聚乙烯醇的降滤失机理[J].油田化学,2002,19(2):101-104.
    [116]陈涓,彭朴,汪燮卿,等.化学交联聚乙烯醇的交联度和降失水性能的关系[J].钻井液与完井液,2002,19(5):22-24.
    [117]张春光,孙明波,候万国,等.降滤失剂作用机理研究—降滤失剂对滤饼电荷密度的影响[J].钻井液与完井液,1995,12(4):1-5.
    [118]张春光,孙明波,候万国,等.降滤失剂作用机理研究—对滤液黏度和滤饼渗透率的影响[J].钻井液与完井液,1996,13(2):5-9.
    [119]张春光,孙明波,侯万国,等.降滤失剂作用机理研究—不同类型的作用机制[J].钻井液与完井液,1996,13(3):1-16.
    [120]李键,等.聚合物分子结构对聚合物抑制性的影响[J].钻井液与完井液,1994, (6):41-44.
    [121]杨柳,等.聚合物分子结构对钻井液流变性能和滤失造壁性的影响[J].石油与天然气化工,1996, (3):159-161.
    [122]何振奎,等.两性离子聚合物钻井液的研究与应用[J].钻井液与完井液,1994, (11):62-68.
    [123]杨柳,张健,李健,等.无机盐对两性离子聚合物在黏土表面吸附的影响[J].西南石油学院学报,1997,19(1):49-52.
    [124]张健,张黎明,李健,等.无机盐对水溶液中两性离子聚合物分子线团尺寸的影响[J].1998,15(2):105-108.
    [125]罗平亚.抗高温水基水基泥浆作用原理[J].西南石油学院学报,1979,1(2): 29-48.
    [126]刘东明,黄进军,王瑞莲,等.钻井液pH值的影响因素研究[J].油田化学,2007,24(1):1-4,29.
    [127]柯扬船.蒙脱土—聚合物纳米复合材料及其在油田开发中应用性能探讨[J].油田化学,2003,20(2):99-102.
    [128]崔迎春,郭保雨,苏长明.NM钻井液体系现场应用研究[J].钻井液与完井液,2006,(3):40-43.
    [129]王佩平,应付晓,刘红玉.正电胶纳米乳液钻井液在胜利油田的应用[J].江汉石油职工大学学报,2006, (7):38-39,49.
    [130]廖久明,熊方利.新型膨润土接枝聚合物钻井液降滤失剂的合成研究[J].重庆科技学院学报(自然科学版),2008,10(2):24-28.
    [131]丁锐,杨富贵,隋少鹏.膨润土接枝聚合物降滤失剂研究[J].油田化学,2002,19(4):297-300.
    [132]屈沅治,孙金声,苏义脑,王奎才.聚(苯乙烯-b-丙烯酰胺)/蒙脱土纳米复合材料的合成
    及其降滤失性能研究[J].钻井液与完井液,2007,24(4):15-18.
    [133]Ju Binshan, Dai shugao. A study of wettability and permeability change caused by adsorption of nanometer structured polysilicon on the surface of porous media [C]. SPE 77938,2002.
    [134]袁丽.钻井液用纳米乳液RL-2的研究与应用[J].钻井液与完井液,2005,22(6):16-18.
    [135]王毅.疏水缔合苯乙烯共聚物/纳米复合材料制备与性能表征[D].北京:中国石油大学(北京),2007.
    [136]蒲万芬,郭旭跃,陈凯.PLS新型调剖剂的研制与应用[J].西南石油学院学报,2005,27(4):50-54.
    [137]张金柱,汪信.HIPS/TiO2/TAS纳米复合材料的制备及性能[J].中国塑料,2001,15(1):24-26.
    [138]周重光.SiO2/聚碳酸酯纳米相复合材料的制备与性能[J].高分子材料科学与工程,2000,16(2):109-111.
    [139]唐建国,胡克螯,吴人杰,等.聚合物/金属离子共混液的制备与梯度复合材料的合成[J].高分子材料科学与工程,1999,15(5):66-68.
    [140]韩海军,梁淑君.聚合物/无机纳米复合材料的研究现状[J].科技情报开发与经济,2005,15(7): 148-150.
    [141]Kantam M Lakshmi, Ranganath K V S, Sateesh M, et al. [J] Journal of Molecular Catalysis A: Chemical,2006,244:213-216.
    [142]Beena Tyagi, Chintan D Chudasama, Raksh V Jasra. [J].Applied Clay Science,2006,31: 16-28.
    [143]陈亚红,周宁琳,马银陈,等.蒙脱土/聚合物纳米复合抗凝血膜的制备及其性能研究[J].功能材料,2007,38(9):1537-1539,1542.
    [144]穆元春,杨瑞成,郧栋.蒙脱土对聚丙烯酸基纳米复合材料性能的影响[J].功能材料,2007,38(A09):3396-3399.
    [145]彭其瑞等著,中国黏土矿物研究[M].北京,地质出版社,1963,P50.
    [146]李苏璋,周运臣.改型钠基膨润土的特征及其应用[J].建材地质,1990,2:33-40.
    [147]张玉柱,刘鹏君.膨润土综合利用[J].河北理工学院学报,2006, (8):1-4.
    [148]邳艳英,梁镐,高光第,等.AMPS/AA共聚物的合成及降黏性能[J].1996,13(2):172-174,177.
    [149]王中华,张献丰,郭明贤.钻井液用聚合物PAMS的评价与应用[J].油田化学,2000,17(1):1-5.
    [150]杨小华,王中华,张麒麟.AMPS聚合物及钻井液体系研究与应用[J].石油与天然气化工 2001:138-140.
    [151]徐生江,蒲晓林.AM PS聚合物在油田中的应用综述[J].内蒙古石油化工,2007, (4):113-115.
    [152]张举贤,许志献.磺化苯乙烯-马来酸酐共聚物[J].高分子通报,1989,54-56.
    [153]Ngomsik, A.F., Bee, A., Draye, M., Cotea, G., and Cabuil, V. Comptes Rendus Chimie, 2005,8:963-970.
    [154]郭洪范,朱红,林海燕.等.聚噻吩/碳纳米管复合材料的制备与性能研究[J].功能材料,2007,9(38):1496-1498,1506.
    [155]樊泽霞,王杰祥,孙明波,王兰兰.磺化苯乙烯-水解马来酸酐共聚物降黏剂SSHMA的研制[J].油田化学,2005,22(3):195-198.
    [156]宋昭峥,张贵才,葛际江.丙烯酸烷基酯-马来酸酐-苯乙烯共聚物降凝剂的研制[J].油田化学,2000,17(2):122-125.
    [157]石正金,王伟荣,陈智强等.高分子量苯乙烯-马来酸酐共聚物[J].上海化工,2001,15:18-22.
    [158]郑平.煤炭腐植酸资源的开发利用,百科知识,1989,(9):46~47.
    [159]Platonov V V. Study of the chemical composition of brown-coal humic acids by adsorption liquid chromatography, Fuel and energy abstracts.1973,38(6):581~584.
    [160]Butuzova L, krzton A, Bazarova O. Structure and properties of humic acid obtained from thermo-oxidised brown coal.Fuel,1998,77(6):581~584
    [161]Adam J, Franciszek C, Maria J et al. Electron paramagnetic resonance(EPR) studies on stable and transient radicals in humic acids from compost, soil, peat and brown coal. Spectrochimica Acta part A:molecular and bio molecular spectroscopy.2000,56(2):379~385.
    [162]Libuse M, Josef K, Jirina C et al. Humic acids from coal of the North-Bohemia coal field. Reactive and functional polymers.2001,47(2):119~123.
    [163]黄若展.腐植酸类有机无机复混肥的肥效试验.福建农业科技.1999.1:9~10