己内酰胺共聚物与己内酯共聚物反应挤出制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕不同环化单体的开环聚合制备了两种共聚物,探求了结构与性能的关系。
     其一研究了在较高温度进行的不同结构助催化剂引发的己内酰胺阴离子开环聚合反应,并以端羟基聚硅氧烷对助催化剂进行改性,成功制备了相容性较好的聚酰胺-聚硅氧烷的嵌段共聚物。研究表明,聚硅氧烷中的醚链段可改善体系的相容性,疏水的柔性聚硅氧烷链段的引入可提高产物的耐水性、表面润滑性和冲击韧性等性能。对聚酰胺-聚硅氧烷共聚物反应挤出制备进行了初步探索,获知由于助催化剂反应活性受聚硅氧烷分子的影响,致使反应的诱导期过长,直接进行反应挤出制备聚酰胺-聚硅氧烷的嵌段共聚物的条件苛刻。
     其二研究了开环聚合反应挤出制备聚己内酯型聚氨酯。首先用不同的聚醚二元醇对四异丙氧基钛进行改性,制得改性烷氧基钛混合物,以其作为ε-己内酯(CL)开环聚合的引发剂,首次探讨了由这种双端具有反应活性的较大分子量的引发剂引发的CL的开环聚合反应,分别采用DSC和1H-NMR表征方法跟踪非等温和等温聚合反应动力学。研究获得,改性烷氧基钛混合物可有效地引发CL遵循配位-插入机理进行聚合,其中聚醚的自由羟基与隐含羟基具有相同的引发活性。等温开环聚合反应的表观活化能Ea为108-109 KJ/mol,拟合得到的等温聚合反应动力参数可较好地用于预测实验过程。由Flynn-Wall、Kissiger和Ozawa等三种经验方程拟合非等温聚合反应动力学数据,得到的表观聚合反应活化能Ea基本一致,Ti(OPEG400)4和PEG-400混合物引发聚合的Ea为55-61 KJ/mol, Ti(OPEG1000)4和PEG-1000混合物引发的为69-73 KJ/mol。聚合反应的反应级数在0.98与1.30之间,近似为1级反应。
     在上述配位-插入开环聚合动力学研究的基础上,以CL单体和4,4’-二苯基甲烷二异氰酸酯(MDI)为原料,改性烷氧基钛混合物为引发剂和催化剂,通过反应挤出原位制备了一系列以PCL和PTMG或PEG多嵌段共聚物为软段的聚氨酯(PCLU)。与已报导的PCLU的分步制备方法相比,反应挤出法制备不仅是实现PCLU快速制备的方法,而且还是一种简单、可控、易实现PCLU连续化大规模生产的技术。保持反应挤出体系中MDI和烷氧基钛摩尔比恒定,通过调整体系中CL单体的相对含量,即可制得不同PCL嵌段平均聚合度(DPn)的PTMG-PCLU和PEG-PCLU。1H-NMR、GPC和DSC测试结果显示,所有投料的CL单体都已完成聚合,制备所得PCLU数均分子量约8×104 g/mol和多分散系数约为2.4。随着PCL嵌段DPn增大,PCLU的拉伸性能逐渐增大,然后稍有降低,而结晶熔融温度则逐渐升高。当PTMG-PCLU, PCL嵌段DPn从25增大至40时,拉伸强度由16.5 MPa提高至22.7 MPa,而结晶熔融温度由46.1℃增大至49.5℃。在制备过程中,反应体系中有机钛含量的降低对PCLU的力学性能造成较大影响,随着有机钛含量的降低拉伸性能逐渐减小。
     为了研究结晶性的PCL嵌段DPn和聚醚嵌段类型对反应挤出制备的PCLU结晶行为和结晶动力学及其对材料的性能的影响,采用DSC研究了不同类型的PCLU的非等温结晶结晶行为和动力学,并使用Jeziomy改进的Avrami模型、Ozawa模型和莫志深混合模型等对非等温结晶过程的数据进行了分析。结果给出,PCLU中PCL嵌段和聚醚嵌段的结晶相互受限,PCL嵌段具有较强的结晶能力,总体结晶速率随PCL嵌段的DPn增大而增大。Jeziomy改进的Avrami模型和莫志深混合模型都能对PCLU非等温结晶过程进行较好的描述,而Ozawa模型则只能对部分PCLU样品非等温结晶过程进行较好的描述。动力学特征表明,PCLU非等温结晶的成核和结晶生长机理均较为复杂,但主要以热成核和球晶生长为主,PCL嵌段DPn和聚醚嵌段类型对此影响不大;非等温结晶的表观活化能数值随PCLU的PCL嵌段的DPn增大而减小。
     进一步地,联合使用DSC、DMA和POM等多种方法,考察了形变幅度、形变’温度和形变速率等因素对反应挤出所得PCLU的形状记忆性能的影响。DSC测试表明,PCLU的结晶熔融温度和结晶度均随PCL嵌段DPn的增大而单调升高。PCLU的回复力随着回复温度升高而增大,并在45-55℃达到最大值,最大回复力为6-7 MPa,与聚乳酸型聚氨酯的最大回复力相近。首次提出了具有两个回复阶段的改进的形状记忆原理模型,并用POM分析进行证实,该模型可以较好地对PCLU形变的回复力发展和回复过程进行解释。PCLU拉伸形变回复过程可以回复的拐点温度为界分成两个阶段,拐点温度为43-48℃;压缩形变回复过程亦然,拐点温度为64-66℃。PCLU的临时形状固定率为60-70%,并可以通过选用合适的形变温度提高至100%。由于PCLU中聚醚嵌段的吸水性,PCLU的拉伸形变回复率在80-98%之间;而压缩形变回复率几乎均可达100%。另外,形变回复的最低回复温度受形变温度、形变速率、PCL嵌段DPn和聚醚嵌段分子量等因素的影响,可以在24-47℃之间进行调整。根据不同的回复要求,PCLU形变记忆性能可进行设计和调整。
In the first part of this paper, the anionic polymerizationε-caprolactam initiated by activators with different structure at relatively high temperature was investigated. And the polyamide-polysiloxane copolymer was synthesized by the anionic polymerization ofε-caprolactam initiated by the activator modified by polysiloxane. Results show that the ether block of the polysiloxane can improve the compatibility between the polyamide block and polysiloxane block. The introducing of hydrophobic flexible polysiloxane block can improve the water resistance, surface properties and impact toughness of the polyamide-polysiloxane copolymer. However, the experiments on the Haake extruder indicate that it is difficult to realize the preparation of polyamide-polysiloxane copolymer via reactive extrusion for the increased reaction induce time resulted from the effect of polysiloxane chain on the reactivity of the activator.
     The second part of the paper is focused on the polycaprolactone based polyurethanes. First, the modified titanium alkoxide mixture used for the ring-opening polymerization (ROP) ofε-caprolactone (CL) was synthesized through the ester-exchange reaction of titanium n-propoxide and poly ether diol. The mechanism and kinetics of the bulk polymerization of CL initiated by the modified titanium alkoxide mixture were investigated by DSC and 1H-NMR. The results demonstrate that the polymerization of CL initiated by the modified titanium alkoxide mixture proceeds through the coordination-insertion mechanism and all hydroxyl groups of the polyether share a similar activity in initiating ROP of CL, including the free and potential hydroxyl groups of the polyether. The isothermal polymerization process can be well predicted by the obtained kinetic parameters, and the activation energy is 108-109 KJ/mol. The activation energies of the non-isothermal CL ROP determined by Flynn-Wall, Kissiger and Ozawa methods agree quite well, for Ti(OPEG400)4 and PEG-400 mixture is 55-61 KJ/mol and Ti(OPEG1000)4 and PEG-100069-73 KJ/mol. The ROP of CL initiated by the modified titanium alkoxide mixture can approximately to be 1 order reaction.
     On the basis of the kinetics for CL ROP, PCLU with multi-block copolymer of polycaprolactone (PCL) and poly(tetramethylene oxide) glycol (PTMG) or polyethylene glycol (PEG) as soft segment was in-situ synthesized via reactive extrusion from CL and 4,4'-diphenylmethane diisocyanate (MDI). The modified titanium alkoxide mixture was utilized as initiator and catalyst. Compared to the reported fabrication of PCLU, the in-situ reactive extrusion preparation not only explored a new rapid route for fabrication of PCLU but also offered a simplified controllable approach for the production of PCLU in a successive mass scale. A series of PTMG-PCLU and PEG-PCLU of different PCL block average degree of polymerization (DPn) were prepared by only adjusting the relative concentration of the CL in the reaction system, with the mole ratio of MDI to titanium alkoxide kept at a certain constant.1H-NMR, GPC and DSC results indicate that all the CL monomers have been converted in the polymerization and the molecular weight of the copolymers is about 8×104 g/mol with a polydispersity index of approximate 2.4. With increasing the PCL block DPn in PTMG-PCLU from 25 to 40, the tensile strength increases from 16.5 MPa to 22.7 MPa, and the melting point increases from 46.1℃to 49.5℃. It was also verified by PEG-PCLU prepared with organic Ti of lowered content in the initiator mixture that the mechanical properties can be greatly affected and dropped with the decrease of the content of organic Ti in the initiator mixture.
     Since the properties of the PCLU will be affected by the crystallization behavior of the PCL block, to study the effects of the PCL block DPn and the type of polyether block on the PCLU obtained via reactive extrusion, the non-isothermal crystallization kinetics were investigated by DSC. The DSC experiment data was analyzed by a Jeziorny modified Avrami model, Ozawa model, and Mo mixed Avrami-Ozawa model, respectively. The results demonstrate that the non-isothermal crystallization can be well described by the Jeziorny modified Avami model, and Mo mixed model, but Ozawa model can only do for some of the products. The kinetic results indicate that the nucleation and crystal growth for the non-isothermal crystallization of PCLU is complicated, but mainly in a way of a thermal nucleation followed by three-dimensional spherical growth. In the non-isothermal crystallization, the PCL block DPn and the type polyether block does not affect the crystallization mechanism. The activated energy of non-isothermal crystallization decreases with increasing the PCL block DPn.
     The shape memory properties were investigated in terms of the deformation amplitude, temperature and rate by DSC, DMA and POM. DSC analysis shows that the crystalline melting temperature and crystallinity of PCLU increased monotonically with increasing the PCL block DPn. The retract force increased with increasing the temperature and reached the maximum within 45-55℃. The maximum retract force of PCLU is 6-7 MPa which is as high as that of polylactic acid based polyurethanes. Furthermore, a modified model with two recovery stages was postulated to elucidate the shape memory process, which is visually presented by POM analysis. The two stages of tensile and compressive recovery are distinguished by the inflexion temperature, within 43-48℃and 64-66℃respectively. The temporary shape fixity of the products is about 60-70% and can be improved to 100% by choosing proper deformation temperature. The tensile deformation recovery ratio was 80-98% due to the water absorption, while the compressive deformation recovery ratio was almost 100%. Besides, recovery tests show that the lowest recovery temperature which ranged from 24-47℃was influenced by the deformation temperature, deformation rate, the PCL block DPn and the molecular weight of the polyether diol. Thus, the shape memory properties can be adjusted according to different purposes.
引文
[1]Eastmond G. C. Advances in Polymer Science[M], Berlin and Heidelberg:Springer. Verlag,2000,149:59-223.
    [2]Kwak S.-Y. Determination of microphase structure and scale and scale of mixing in poly-ε-caprolactone (PCL)/poly(vinyl chloride) (PVC) blend by high-resolution solid-state 13C-NMR spectroscopy with magic angle spinning and cross polarization[J]. Journal of Applied Polymer Science,1994,53:1823-1832.
    [3]Wang J., Cheung M. K., Mi Y. L. Miscibility and morphology in crystalline/amorphous blends of poly(caprolactone)/poly(4-vinylphenol) as studied by DSC, FTIR, and 13C solid state NMR[J]. Polymer,2002,43:1357-1364.
    [4]De Kesel C., Lefevre C., Nagy J. B., David C. Blends of polycaprolactone with polyvinylalcohol:a DSC, optical microscopy and solid state NMR study [J]. Polymer,1999, 40:1969-1978.
    [5]Bisso G, Casarino P., Pedemonte E. Thermodynamics of polymer blends based on poly(s-caprolactone)/poly(vinyl methyl ether)[J]. Macromolecular Chemistry and Physics, 1999,200:376-383.
    [6]Guo Q. P., Zheng H. F. Miscibility and crystallization of thermosetting polymer blends of unsaturated polyester resin and poly(s-caprolactone)[J]. Polymer,1999,40:637-646.
    [7]Sivalingam G, Karthik R., Madras G. Blends of poly(ε-caprolactone) and poly(vinyl acetate):mechanical properties and thermal degradation[J]. Polymer Degradation and Stability,2004,84:345-351.
    [8]Ciardelli G., Chiono V., Vozzi G, Pracella M., Ahluwalia A., Barbani N., Cristallini C., Giusti P. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications[J]. Biomacromolecules,2005,6(4):1961-1976.
    [9]Yang A. L., Wu R. J., Zhu P. F. Thermal analysis and miscibility of chitin/poly-caprolactone blends[J]. Journal of Applied Polymer Science,2001,81:3117-3123.
    [10]应圣康.聚合物反应加工-村料科学发展的前沿技术[J].合成橡胶工业.1994,17(5):257-259.
    [11]瞿金平,胡汉杰.聚合物成型原理及成型技术[M].北京:化学工业出版社,2001
    [12]Sakai T. Report on the state of the art:reactive processing using twin screw extruders [J]. Advances in Polymer Technology,1992,11(2):99-108.
    [13]Tzoganakis C. Reactive extrusion of polymers:a review[J]. Advances in Polymer Technology,1989,9(4):321-330.
    [14]Lambla M. Reactive extrusion:A new tool for the diversification of polymeric materials[J]. Macromolecular Symposia,1994,83:37-58.
    [15]Xanthos M. Reactive extrusion[M]. New York:Hanser Publishers, Oxford Univ. Press,
    [16]Menges G, Bartilla T. Polymerization of ε-caprolactam in an extruder:process analysis and aspects of industrial application[J]. Polymer Engineering Science,1987,27 (15):1216-1220.
    [17]邵佳敏,夏浙安.双螺杆反应挤出尼龙6的开发生产[J].现代塑料加工应用,1998,10(2):33-35.
    [18]邵佳敏,夏浙安,刘小华.双螺杆反应挤出尼龙6[J].塑料科技,1997,12(6):40-42.
    [19]夏浙安,陈建定,Chalamet Y, Zerroukhi A.反应挤出合成带不饱和官能团端基的聚己内酯[J].功能高分子学报,2005,18(3):393-398.
    [20]Machado A. V., Bounor-Legare V., Goncalves N. D., Melis F., Cassagnau P., Michel A. Continuous polymerization of ε-caprolactone initiated by titanium phenoxide in a twin-screw extruder[J]. Journal of Applied Polymer Science,2008,110:3480-3487.
    [21]Wollny A., Nitz H., Faulhammer H., Hoogen N., Mulhaupt R. In situ formation and compounding of poly amide 12 by reactive extrusion[J]. Journal of Applied Polymer Science, 2003,90:344-351.
    [22]Chen J. D., Chalamet Y., Taha M. Telomerization of butyl methacrylate and 1-octadecanethiol by reactive extrusion[J]. Macromolecular Materials and Engineering, 2003,288:357-364.
    [23]Jongbloed H. A., Kieniet J. A., Van Dijk J. H., Janssen L. P. B. M. The self wiping corotating twin screw extruder as a polymeri-zation reactor for methacrylates[J]. Polymer Engineering and Science,1995,35(19):1569-1579.
    [24]Jacobsen S., Fritz H. G., Degee Ph., Dubois Ph., Jerome R. Single-step extrusion of PLLA in a corotating twin screw extruder by 2-ethylhexanoic acid tin(Ⅱ) salt an triphenylphosphine[J]. Polymer,2000,41:3395-3403.
    [25]Semsarzadeh M. A., Navarchian A. Morshedian H. Reactive extrusion of poly(ure-thane-isocyanurate)[J]. Advances in Polymer Technology,2004,23(3),239-255.
    [26]Gao S. S., Zhang Y, Zheng, A. N., Xiao H. N. Polystyrene prepared by reactive extrusion:kinetics and effect of processing parameters [J]. Polymers for Advanced Technologies,2004,15(4),185-191.
    [27]Michaeli W., Hocker H., Berghaus U., Frings W. Reactive extrusion of styene polymers[J]. Journal of Applied Polymer Science,1993,48:871-886.
    [28]Si L. X, Zheng A. N., Yang H. B., Guo R. Y, Zhu Z. N., Zhang Y. M.. A study on new polymerization technology of styrene[J]. Journal of Applied Polymer Science,2002,85: 2130-2135.
    [29]Gao S. S., Zhang Y, Zheng A. N., Xiao H. N. Study on Nanometer-Size Styrene-Butadiene Multiblock Copolymer Synthesized by Reactive Extrusion[J]. Journal of Applied Polymer Science,2004,91:2265-2270.
    [30]Kim T. H., Kim H. K, OH D. R., Lee M. S., Chae K. H., Kaang S. Y Melt free-radical grafting of hindered phenol antioxidant onto polyethylene [J]. Journal of Applied Polymer Science,2000,77:2968-2973.
    [31]Moad G., Groth A., O'Shea M. S., Rosalie J. Controlled synthesis of block polyesters by reactive extrusion[J]. Macromolecular Symposia,2003,202:37-45.
    [32]Berzin F., Vergnes B., Dufosse P., Delamare L. Modeling of peroxide initiated controlled degradation of polypropylene in a twin screw extruder[J]. Polymer Engineering and Science,2000,40(2):344-356.
    [33]Bettini S. H. P., Agnellli J. A. M. Grafting of maleic anhydride onto polypropylene by reactive extrusion[J]. Journal of Applied Polymer Science,2002,85:2706-2717.
    [34]Pesetskii S. S., Jurkowski B., Krivoguz Y. M., Kelar K. Free-radical grafting of itaconic acid onto LDPE by reactive extrusion:I. Effect of initiator solubility [J], Polymer,2001,42: 469-475.
    [35]Moad G. The synthesis of polyolefin graft copolymers by reactive extrusion[J]. Progress in Polymer Science,1999,24:81-142.
    [36]Carlson D., Nie L., Narayan R., Dubois Ph. Maleation of polylactide (PLA) by reactive extrusion[J]. Journal of Applied Polymer Science,1999,72:477-485.
    [37]Kim C. H., Cho K. Y., Park J. K., Grafting of glycidyl methacrylate onto poly-caprolactone:preparation and characterization[J]. Polymer,2001,42:5135-5142.
    [38]王益龙,蹇锡高,张鸿金,王德宇,黄葆同.反应性挤出粉料PE接枝MA的研究[J].高分子材料科学与工程,1993,(1):105-108.
    [39]Li Y., Xie X. M., Guo B. H. Study on styrene-assisted melt free-radical grafting of maleic anhydride onto polypropylene [J]. Polymer,2001,42:3419-3425.
    [40]De Loor A., Cassagnau P., Michel A., Vergnes B. Mechanical properties of a polymer blend obtained through in situ crosslinking of the dispersed phase[J]. Journal of Applied Polymer Science,1997,63:1385-1390.
    [41]Guo B. H., Chan C. M., Chain extension of poly(butylene terephthalate) by reactive extrusion[J]. Journal of Applied Polymer Science,1999,71:1827-1834.
    [42]Vocke C., Anttila U., Seppala J. Compatibilization of polyethylene/polyamide6 Blends with oxazoline-functionalized polyethylene and styrene ethylene/butylene styrene copolymer (SEBS)[J]. Journal of Applied Polymer Science,1999,72:1443-1450.
    [43]Anttila U., Vocke C., Seppala J. Functionalization of polyolefins and elastomers with an oxazoline compound[J]. Journal of Applied Polymer Science,1999,72:877-885.
    [44]Vocke C., Anttila U., Heino M., Hietaoja P., Seppala J. Use of oxazoline functionalized polyolefins and elastomers as compatibilizers for thermoplastic Blends[J]. Journal of Applied Polymer Science,1998,70:1923-1930.
    [45]谢续明,邰向阳,刘娅芸,冯军.一步法反应共混就地生成PP/AS合金的研究[J].塑料加工应用,2001,23:1-5.
    [46]王晓光,徐东东,余莹波,张洪生,张万里,吴驰飞,郭卫红.回收PET的反应挤出增黏[J].塑料工业,2008,36(4):23-36.
    [47]Curry J., Jackson, S., Stokhrer B., van der Veen A. Free radical degradation of polypropylene[J]. Chemical Engineering Progress,1988,48:43-46.
    [48]Fritz H. G, Stokhrer, B. Polymer compounding process for controlled peroxide-degradation of polypropylene [J]. International Polymer Processing,1986,1(1):31-41.
    [49]Hamed A., Ismaiel G. Reactive extrusion of polypropylene:production of control-led-rheology polypropylene (CRPP) by per-oxide-promoted degradation[J]. Polymer Testing,2004,23(2):137-143.
    [50]Berzin F., Vergnes B., Dufosse P., Delamare L. Modeling of peroxide initiated controlled degradation of polypropylene in a twin screw extruder[J]. Polymer Engineering and Science,2000,40(2):344-356.
    [51]Chiu F. C., Min K. Miscibility, morphology and tensile properties of vinyl chloride polymer and poly(e-caprolactone) blends[J]. Polymer International,2000,49:223-234.
    [52]Hakkarainen M. New PVC materials for medical applications-the release profile of PVC/polycaprolactone-poly carbonate aged in aqueous environments [J]. Polymer Degradation and Stability,2003,80:451-458.
    [53]Yam W. Y., Ismail J., Kammer H. W., Schmidt H., Kummerlowe C. Polymer blends of poly(ε-caprolactone) and poly(vinyl methyl ether)-thermal properties and morphology[J]. Polymer,1999,40:5545-5552.
    [54]Dubemet C, Benoit J. P., Couarraze G, Duchene D. Microencapsulation of nitro-furantoin in poly(ε-caprolactone):tableting and in vitro release studies[J]. International Journal of Pharmaceutics,1987,35:145-56.
    [55]Yeganeh H., Lakouraj M. M., Jamshidi S. Synthesis and properties of biodegradable elastomeric epoxy modified polyurethanes based on poly(ε-caprolactone) and poly(ethylene glycol)[J]. European Polymer Journal,2005,41:2370-2379.
    [56]Yeganeh H., Jamshidi H., Jamshidi S. Synthesis and properties of novel biodegradable poly(ε-caprolactone)/poly(ethylene glycol)-based polyurethane elastomers [J]. Polymer International,2007,56:41-49.
    [57]Velanker S., Cooper S. L. Microphase separation and rheological properties of polyurethane melts (Ⅱ) Effect of block ineompatibility on the microstructure[J]. Macromoleules,2000,33(2):382-394.
    [58]Lendlein A., Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications [J]. Science,2002,296:1673-1676.
    [59]Tobushi H., Hara H., Yamada E., Hayashi S. Thermomechanical properties in a thin film of shape memory polymer of polyurethane series [J]. Smart Materials and Structures, 1996,5:483-491.
    [60]Ding X. M., Hu J. L., Tao X. M. Effect of Crystal Melting on Water Vapor Permeability of Shape-Memory Polyurethane Film[J]. Textile Research Journal,2004,74:39-43.
    [61]Wang W. S., Ping P., Chen, X. S., Jing X. B. Biodegradable polyurethane based on random copolymer of L-lactide and s-caprolactone and its shape-memory property [J]. Journal of Applied Polymer Science,2007,104:4182-4187.
    [62]Ping P., Wang W. S., Chen X. S., Jing X. B. The influence of hard-segments on
    tow-phase structure and shape memory properties of PCL-based segmented polyurethanes[J]. Journal of Polymer Science Part B:Polymer Physics,2007, 45:557-570.
    [63]Jiang X., Li J. H., Ding M. M., Tan H., Ling Q. Y., Zhong Y. P., Fu Q. Synthesis and degradation of nontoxtic biodegradable waterborne polyurethane elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment[J]. European Polymer Journal,2007,43:1838-1846.
    [64]Spassky N. Ring opening polymerization[M]. Rapra Technology Ltd., UK.1995.
    [65]Odian G. Principles of polymerization[M]. John Wiley & Sons, Inc., Hoboken, New Jersey.2004:544-545.
    [66]Lofgren A., Albertsson A. C., Dubois Ph., Jerome R. Recent advances in ring-opening polymerization of lactones and related compounds[J]. Journal of Macromolecular Science, Part C:Polymer Reviews.1995,35(3):379-418.
    [67]Yamashita Y. Anionic polymerization:kinetics, mechanisms and synthesis[J]. ACS Symposium Series, American Chemical Society.1981,166:199.
    [68]Penczek S. Cationic ring-opening polymerization (CROP) major mechanistic phenomena[J]. Journal of Polymer Science Part A:Polymer Chemistry,2000,38:1919-1933.
    [69]Cherdron V. H., Ohse H., Korte F. Die polymerization von lactonen, Teil 2:Homopolymerization 4-,6-, und 7-gliedriger lactone mit kationischen inititoren[J]. Die Makromlekulare Chemie,1962,56(1):187-194.
    [70]Wilson D. R., Beaman R. G. Cyclic amine initiation of polypivalolactone[J]. Journal of Polymer Science Part A-1:Polymer Chemistry.1970,8(8):2161-2170.
    [71]Mecerreyes D., Jerome R., Dubois Ph. Novel macromolecular architectures based on aliphatic polyesters:Relevance of the coordination-insertion ring-opening polymerization[J]. Advances in Polymer Science. Springer-Verlag Berlin Heidelberg, 1999,147:1-59.
    [72]Storey R. F., Sherman J. W. Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone [J]. Macromolecules,2002,35:1504-1512.
    [73]Ouhadi T., Stevens C., Teyssie Ph. Mechanism of s-caprolactone polymerization by aluminum alkoxides[J]. Die Makromoleculare Chemie, Supplement,1975,1:191-201.
    [74]Dubois Ph., Jacobs C., Jerome R., Teyssie Ph. Macromolecular engineering of poly lactones and polylactides.4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide[J]. Macromolecules,1991,24(9):2266-2270.
    [75]Vanhoorne P., Dubois Ph., Jerome R., TeyssiePh. Macromolecular engineering of polylactones and polylactides.7. Structural analysis of copolyesters of s-caprolactone and L-or D,L-lactide initiated by Al(O-i-Pr)3[J]. Macromolecules,1992,25(l):37-44.
    [76]Lofgren A., Albertsson A. C., Dubois Ph., Jerome R., Teyssie Ph. Synthesis and characterization of biodegradable homopolymers and block copolymers based on
    1,5-dioxepan-2-one[J]. Macromolecules,1994,27(20):5556-5562.
    [77]Hamitou A., Ouhadi T., Jerome R., Teyssie Ph.. Soluble bimetallic μ-oxoalkoxides. Ⅶ. Characterization and mechanism of ring-opening polymerization of lactones[J]. Journal of Polymer Science:Polymer Chemistry Edition,1977,15(4):865-873.
    [78]Heuschen J., Jerome R., TeyssiePh. Polycaprolactone-based block copolymers.1. Synthesis by anionic coordination type catalysts[J]. Macromolecules,1981,14(2): 242-246.
    [79]Barakat I., Dubois Ph, Jerome R., Teyssie Ph. Living polymerization and selective end functionalization of ε-caprolactone using zinc alkoxides as initiators[J]. Macromolecules, 1991,24(24):6542-6545.
    [80]Chisholm M. H., Gallucci J., Phomphrai K.. Coordination chemistry and reactivity of monomeric alkoxides and amides of magnesium and zinc supported by the diiminato ligand CH(CMeNC6H3-2,6-'Pr2)2. A comparative study [J]. Inorganic Chemistry,2002, 41(10):2785-2794.
    [81]Kricheldorf H. R., Berl M., Scharnagl N. Poly(lactones).9. polymerization mechanism of metal alkoxide initiated polymerization of lactide and various lactones[J]. Macromolecules,1988,21(2):286-293.
    [82]Stridsberg K., Albertsson A. C. Ring-opening polymerization of 1,5-dioxepan-2-one initiated by a cyclic tin-alkoxide initiator in different solvents [J]. Journal of Polymer Science Part A:Polymer Chemistry,1999,37(16):3407-3417.
    [83]Penczek S., Duda A., Kowalski A., Libiszowski J., Majerska K., Biela T. On themechanism of polymerization of cyclic esters induced by Tin(II) octoate[J]. Macromolecular Symposia,2000,157(1):61-70.
    [84]Lecomte Ph., Stassin F.,Jerome R. Recent developments in the ring-opening polymerization of ε-caprolactone and derivatives initiated by Tin(IV) alkoxides[J]. Macromolecular Symposia,2004,215(1):325-338.
    [85]Agarwal S., Mast C., Dehnicke K., Greiner A. Rare earth metal initiated ring-opening polymerization of lactones[J]. Macromolecular Rapid Communications,2000,21(5): 195-212.
    [86]Deng X. M., Yuan M. L., Xiong C. D., Li X. H. Polymerization of lactides and lactones. II. Ring-opening polymerization of ε-caprolactone and D,L-lactide by organoacid rare earth compounds[J]. Journal of Applied Polymer Science,1999,71(12):1941-1948.
    [87]Hall H. K., Schneider A. K. Polymerization of cyclic esters, urethanes, ureas and imides[J]. Journal of American Chemistry Society,1958,80(23):6409-6412.
    [88]Patent application:Critchfield, F. E., Lundberg, R. D.2026275,1970, Union Carbide Corp.
    [89]Okuda J., Konig P., Rushkin I. L., Kang H. C., Massa W. Indenyl effect in d0-transition metal complexes:Synthesis, molecular structure and lactone polymerization activity of [Ti(η5-C9H7)Ci2(OMe)][J]. Journal of Organometallic Chemistry,1995,501(1):37-39.
    [90]Okuda J., Rushkin I. L. Mono(cyclopentadienyl)titanium complexes as initiators for the living ring-opening polymerization of ε-caprolactone[J]. Macromolecules,1993,26(20): 5530-5532.
    [91]Cayuela J., Bounor-Legare V., Cassagnau P., Michel A. Ring-opening polymerization of ε-caprolactone initiated with titanium n-propoxide or titanium phenoxide[J]. Macromolecules,2006,39(4):1338-1346.
    [92]Duda A., Florjanczyk Z., Hofman A., Slomkowski S., Penczek S. Living pseudoanionic polymerization of ε-caprolactone. Poly(s-caprolactone) free of cyclics and with controlled end groups[J]. Macromolecules,1990,23(6):1640-1646.
    [93]Bero M., Czapla B., Dobrzynski P., Janeczek H., Kasperczyk J. Copolymerization of glycolide and s-caprolactone.2. Random copolymerization in the presence of tin octoate[J]. Macromolecular Chemistry and Physics,1999,200(4):911-916.
    [94]Kowalski A., Duda A., Penczek S. Polymerization of L,L-lactide initiated by aluminum isopropoxide trimer or tetramer[J]. Macromolecules,1998,31(7):2114-2122.
    [95]Pencz ek S., Duda A., Szymanski R. Intra-and intermolecular chain transfer to macromolecules with chain scission. The case of cyclic esters[J]. Macromolecular Symposia,1998,132:441-449.
    [96]Li P. C., Zerroukhi A., Chen J. D., Chalamet Y., Jeanmaire T., Xia Z. A. Synthesis, kinetic study, and application of-Ti[O(CH2)4OCH=CH2]4 in ring-opening polymerization of s-caprolactone and radical polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46:7773-7784.
    [97]Stridsberg K. M., Ryner M., Albertsson A. C. Controlled ring-opening polymerization: polymer with designed macromolecular architecture [J]. Advances in Polymer Science, Springer-Verlag Berlin Heidelberg,2002,157:41-65.
    [98]Kloss J., De Souza F.S. M., Da Silva E. R., Dionisio J. A., Akcelrud L., Zawadzki S. F. Polyurethane elastomers based on poly(s-caprolactone) diol:biodegradation evaluation[J]. Macromolecular Symposia,2006,245-246:651-656.
    [99]Heijkants R. G.J. C., van Calck R. V., van Tienen T. G, de Groot J. H., Buma P., Pennings A. J., Veth R. P. H., Schouten A. J. Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(s-caprolactone) and 1,4-butane diisocyanate with uniform hard segment[J]. Biomaterials,2005,26:4219-4228.
    [100]Kim B. K., Lee S. Y. Polyurethanes having shape memory effects [J]. Polymer,1996, (37):5781-5793.
    [101]Jeong H. M., Ahn B. K., Kim B. K. Temperature sensitive water vapour permeability and shape memory effect of polyurethane with crystalline reversible phase and hydrophilic segments [J]. Polymer International,2000,49:1714-1721.
    [102]李凤奎,张贤,候建安,祝巍,徐懋,罗筱烈,马德柱.具有热致形状记忆功能的热塑性多嵌段聚氨酯[J].高分子学报,1996,8(4):462-467.
    [103]Li F. K., Zhang X., Hou J. A., et al. Studies on thermally stimulated shape memory
    effect of segmented polyurethanes[J]. Journal of Applied Polymer Science,1997, (64):1511-1516.
    [104]Meng Q. H., Hu J. L., Zhu Y., Lu J., Liu Y. Polycaprolactone-based shape memory segmented polyurethane fiber [J]. Journal of applied polymer science,2007,106:2515-2523.
    [105]Meng Q. H, Hu J.L. Study on poly(ε-caprolactone)-based shape memory copolymer fiber prepared by bulk polymerization and melt spinning [J]. Polymers for advanced technologies,2008,19:131-136.
    [106]Meng Q. H., Hu J. L., Yeung L. Y, Hu Y. The influence of heat treatment on the properties of shape memory fibers Ⅱ. Tensile properties, dimensional stability, recovery force relaxation, and Thermomechanical cyclic properties[J]. Journal of applied polymer science,2009,111:1156-1164.
    [107]朱荟,董擎之.TiO2-SiO2纳米复合颗粒改性形状记忆聚氨酯[J].华东理工大学学报(自然科学版),2008,34(4):229-234.
    [108]喻春红,陈强,侯向辉,沈健.化学交联型形状记忆聚氨酯材料研究[J].机械科学与技术,2001,20(1):69-70.
    [109]Xue L., Dai S. Y, Li Z. Synthesis and characterization of three-arm poly(s-caprolac-tone)-based poly(ester-urethanes) with shape-memory effect at body temperature[J]. Macromolecules,2009,42:964-972.
    [110]Ji F. L., Hu J. L., Li T. C., Wong Y. W. Morphology and shape memory effect of segmented polyurethanes Part I:with crystalline reversible phase[J]. Polymer,2007, 48:5133-5145.
    [111]Hu J. L., Yang Z. H., Yeung L. Y, Ji F. L., Liu Y. Q. Crosslinked polyurethanes with shape memory properties [J]. Polymer International,2005,54(5):854-859.
    [112]Lendlein A., Kelch S. Shape-Memory Polymers[J]. Angewandte Chemie International Edition,2002,41:2034-2057.
    [113]Langer R., Tirrell D. A. Designing materials for biology and medicine[J]. Nature, 2004,428(6982):487-492.
    [114]Guan Y, Cao Y. P., Peng Y X., Xu J. Chen A. S. C. Complex of polyelectrolyte network with surfactant as novel shape memory networks[J]. Chemical Communication, 2001,1694-1695.
    [115]Kim B. K., Shin Y. J., Cho S. M., Jeong H. M. Shape-memory behavior of segmented polyurethanes with an amorphous reversible phase:The effect of block length and content[J]. Journal of Polymer Science Part B:Polymer Physics,2000,38:2652-2657.
    [116]Kim B. K., Lee S. Y, Xu M. Polyurethanes having shape memory effects[J]. Polymer, 1996,37:5781-5793.
    [117]Li F. K, Chen Y, Zhu W., Zhang X., Xu M. Shape memory effect of polyethylene/nylon 6 graft copolymers[J], Polymer,1998,39:6929-6934.
    [118]Li F. K, Zhang X., Hou J. A, Xu M., Luo X. L., Ma D. Z., Kim B. K. Studies on
    thermally stimulated shape memory effect of segmented polyurethanes[J]. Journal of Applied Polymer Science,1997,64:1511-1516.
    [119]Ma D. Z., Wang M. T., Wang, M. Z., Zhang X. Y., Luo X. L. Compositional heterogeneity, thermostable, and shape memory properties of ethylene oxide-ethylene terephthalate segmented copolymer with long soft segment[J]. Journal of Applied Polymer Science,1998,69:947-955.
    [120]Luo X. L., Zhang X. Y., Wang M. T., Ma D. Z., Xu M., Li F. K. Thermally stimulated shape-memory behavior of ethylene oxide-ethylene terephthalate segmented copolymer[J]. Journal of Applied Polymer Science,1997,64:2433-2440.
    [121]Wang M. T, Luo X. L, Zhang X. Y, Ma D. Z. Shape Memory Properties in Poly(ethylene oxide)-Poly(ethylene terephthalate) Copolymers[J]. Polymers for Advanced Technologies,1997,8:136-139.
    [122]Lee B. S., Chun B. C., Chung Y. C., Sul K. I. Cho J. W. Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect[J]. Macromolecules,2001,34:6431-6437.
    [123]Liu C. D., Chun S. B., Mather P. T., Zheng L., Haley E. H., Coughlin E.B. Chemically cross-Linked polycyclooctene:synthesis, characterization, and shape memory behavior[J]. Macromolecules,2002,35:9868-9874.
    [124]Rousseau I. A., Mather P. T. Shape Memory effect exhibited by smectic-C liquid crystalline elastomers [J]. Journal of the American Chemical Society,2003, 125:15300-15301.
    [125]Lin J. R., Chen L. W. Study on shape-memory behavior of polyether-based polyurethanes. I. Influence of the hard-segment content[J]. Journal of Applied Polymer Science,1998,69:1563-1574.
    [126]Lin J. R., Chen L. W. Study on shape-memory behavior of polyether-based polyurethanes. Ⅱ. Influence of soft-segment molecular weight[J]. Journal of Applied Polymer Science,1998,69:1575-1586.
    [127]Liu G. Q., Ding X. B., Cao Y P., Zheng Z. H., Peng Y X. Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes[J]. Macromolecules, 2004,37:2228-2232.
    [128]朱光明.形状记忆聚合物及其应用[M].北京:化学工业出版社,2002.,
    [129]John W. C., Bogart V., Gibson P. E., Cooper S. L. Structure-property relationships in polycaprolactone-polyurethanes[J]. Journal of Polymer Science Polymer Physics Edition, 1983,21:65-95.
    [130]Chu B., Gao T., Li Y. J., Wang J., Desper C. R., Byrne C. A. Microphase separation kinetics in segmented polyurethanes:effects of soft segment length and structure[J]. Macromolecules,1992,25:5724-5729.
    [131]Koberstein J. T., Galambos A.F.,Leung L. M. Compression-molded polyurethane block copolymers.1. Microdomain morphology and thermomechanical properties [J].
    Macromolecules,1992,25:6195-6204.
    [132]Velankar S., Cooper S. L. Microphase separation and rheological properties of polyurethane melts.2. effect of block incompatibility on the microstructure [J]. Macromolecules,2000,33:382-394.
    [133]Ryan A. J., Willkomm W. R., Bergstrom T. B., Macosko C. W., Koberstein J. T. Yu C. C., Russell T. P. Dynamics of (micro)phase separation during fast, bulk copolymerization: some synchrotron SAXS experiments [J]. Macromolecules,1991,24:2883-2889.
    [134]Sonnenschein M.F., Lysenko Z., Brune D. A., Wendt B. L., Schrock A. K. Enhancing polyurethane properties via soft segment crystallization[J]. Polymer,2005,46:10158-10166.
    [135]Heijkants R. G. J. C., Schwab L. W., Calck R. V., de Groot J. H., Pennings A. J., Schouten A. J. Extruder synthesis of a new class of polyurethanes:Polyacylurethanes based on poly(s-caprolactone) oligomers[J]. Polymer,2005,46:8981-8989.
    [136]Korley L. T. J., Pate B. D., Thomas E. L., Hammond P. T. Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes[J]. Polymer,2006,47:3073-3082.
    [137]Hu J. L., Ji F. L.,Wong Y. W. Dependency of the shape memory properties of a polyurethane upon thermomechanical cyclic conditions[J]. Polymer International,2005, 54:600-605.
    [138]Laity P. R., Taylor J. E., Wong. S. S., Khunkamchoo P., Norris K., Cable M., Andrews G. T., Johnson A. f., Cameron R. E. A review of small-angle scattering models for random segmented poly(ether-urethane) copolymers[J]. Polymer,2004,45:7273-91.
    [139]Blundell D. J., Eeckhaut G, Fuller W., Mahendrasingam A., Martin C. Real time SAXS/stress-strain studies of thermoplastic polyurethanes at large strains[J]. Polymer, 2002,43:5197-5207.
    [140]Yi J., Boyce M. C., Lee G. F., Balizer E. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes [J]. Polymer,2006,47:319-329.
    [141]Christenson E. M., Anderson J. M., Hiltner A., Baer E. Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers[J]. Polymer,2005,46:11744-11754.
    [142]胡金莲,杨卓鸿.形状记忆高分子材料的研究及应用[J].印染,2004,(3):44-46.
    [143]Sokolowski W., Metcalfe A., Hayashi S. Medical applications of shape memory polymers[C].3rd International symposium on advanced biomaterials and biomechanics, 2005, S23-S27.
    [144]左兰,陈大俊.形状记忆聚氨酯的研究进展[J].高分子材料科学与工程,2004,20(6):37-41.
    [145]Malkin A. Y, Ivanova S. L., Frolov V. G. Kinetics of Anionic Polymerization of Lacatams (Solution of Non-isothermal Kinetics Problems) by the Inverse Method[J]. Polymer,1982,23:1791-1800.
    [146]Bolgov S. A., Begishev V. P., Malkin A. Y., Frolov V. G. Role of the functionality of activators during isothermal crystallization accompanying the activated anionic polymerization of ε-caprolactam[J]. Polymer. Science USSR,1981,23:1485-1492.
    [147]Malkin A. Y., Frolov V. G, Ivanova A. N., Andrianova Z. S. The nonisothermal anionic polymerization of caprolactam[J]. Polymer Science USSR,1979,21:691-700.
    [148]Malkin A. Y, Begishev V. P., Bolgov S. A. The Exothermal Effects of Superimposed Processes of Activated Anionic Polymerization of ε-Caprolactam and Crystallization of the Polymer Formed[J]. Polymer,1982,23:385-390.
    [149]Kim K. J., Hong D. S., Tripathy A. R. Kinetics of Adiabatic Anionic opolymerization of s-Caprolactam in the Presence of Various Activators[J]. Journal of Applied Polymer Science,1997,66:1195-1207.
    [150]Kim K. J., Kim Y. Y., Yoon B. S., Yoon K. J. Mechanism and Kinetics of Adiabatic Anionic Polymerization of ε-Caprolactam in the Presence of Various Activators[J]. Journal of Applied Polymer Science,1995,57:1347-1358.
    [151]Camargo R. E., Ganzalez V. M., Macosko C. W., Tirrell M. Bulk polymerization kinetics by the adiabatic reactor method[J]. Rubber Chemistry and Technology,1983, 56:774-783.
    [152]Zhang X. C., MacDonald D. A., Mattheus F. A. Goosen, Kim B. M. Mechanism of lactide polymerization in the presence of stannous octoate:The effect of hydroxy and carboxylic acid substances[J]. Journal of Polymer Science Part A:Polymer Chemistry, 1994,32:2965-2970.
    [153]Cayuela J., Bounor-Legare V, Cassagnau P., Michel A. Ring-opening polymerization of ε-caprolactone initiated with titanium n-propoxide or titanium phenoxide[J]. Macromolecules,2006,39:1338-1346.
    [154]Barakat I., Dubois Ph., Jerome R., Teyssie Ph. Living polymerization and selective end functionalization of ε-caprolactone using zinc alkoxides as initiators [J]. Macromolecules 1991,24:6542-6545.
    [155]Dubois Ph., Ropson N., Jerome R.,Teyssie Ph. Macromolecular engineering of polylactones and polylactides.19. kinetics of ring-opening polymerization of s-caprolactone initiated with functional aluminum alkoxides [J]. Macromolecules 1996, 29:1965-1975.
    [156]Miola-Delaite C., Hamaide T., Spitz R. Anionic coordinated polymerization of s-caprolac-tone with aluminiun, zirconium and some rare earths alkoxides as initiators in the presence of alcohols[J]. Macromolecular Chemistry and Physics 1999, 200:1771-1778.
    [157]Xia Z. A., Chen J. D., Chalamet Y, Zerroukhi A. Preparation of polycaprolactone with unsaturated group by reactive extrusion[J]. Journal of Functional Polymer,2005, 18:393-398.
    [158]Kricheldorf H.R., Berl M., Scharnagl N. Poly(lactones).9. Polymerization mechanism
    of metal alkoxide initiated polymerization of lactide and various lactones[J]. Macromolecules,1988,21(2):286-293.
    [159]Cayuela J., Bounor-Legare V., Cassagnau P., Michel A. Ring-opening polymerization of ε-caprolactone initiated with titanium n-propoxide or titanium phenoxide[J]. Macromolecules,2006,39(4):1338-1346.
    [160]Li P. C., Zerroukhi A., Chen J. D., Chalamet Y., Jeanmaire T., Xia Z. A. Synthesis, kinetic study, and application of Ti[O(CH2)4OCH=CH2]4 in ring-opening polymerization of ε-caprolactone and radical polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry,2008,46:7773-7784
    [161]Johnston J. C., Meador M. A. B., Alston W. B. A mechanistic study of polyimide formation from diester-diacids[J]. Journal of Polymer Science Part A:Polymer Chemisrty,1987,25:2175-2183.
    [162]Garcia D., Serafini T. T. FTIR studies of PMR-15 polyimides[J]. Journal of Polymer Science Part B:Polymer Physics,1987,25:2275-2282.
    [163]Galanti A. V. A kinetic study of the polymerization of aliphatic imides[J]. Journal of Applied Polymer Science,1984,29:1611-1616.
    [164]Nam J., Seferis J. C. A composite methodology for multistage degradation of polymers[J]. Journal of Polymer Science Part B:Polymer Physics,1991,29:601-608.
    [165]Nam J., Seferis J. C. General composite degradation kinetics for polymeric systems under isothermal and nonisothermal conditions [J]. Journal of Polymer Science Part B: Polymer Physics,1991,30:455-463.
    [166]Flynn J. H., Wall L. A. General treatment of the thermogravimetry of polymer[J]. Journal of Research of the National Bureau of Standards A:Physics and Chemistry, 1966,70A:487-523.
    [167]Kissinger H. E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957,29(11):1702-1706.
    [168]Louis E. Comment on rigorous determination of kinetic parameters from DTA measurements[J]. Journal of Materials Science,1984,19:689-691.
    [169]Ozawa T. Kinetic analysis of derivative cureves in thermal analysis [J]. Journal of Thermal Analysis,1970,2(3):301-307.
    [170]Ebata H., Toshima K., Matsumura S. A strategy for increasing molecular weight of polyester by lipase-catalyzed polymerization[J]. Chemistry Letters,2001,30:798-799.
    [171]Jeong B., Bae Y. H., Lee D. S., Kim S. W. Biodegradable block copolymers as injectable drug-delivery systems[J]. Nature,1997,388:860-862.
    [172]Aoyagi Y, Yamashita K., Doi Y. Thermal degradation of poly[(R)-3-hydroxybutyrate], poly [ε-caprolactone], and poly[(S)-lactide][J]. Polymer Degradation and Stability,2002, 76:53-59.
    [173]He C. L., Sun J. R., Deng C., Zhao T., Deng M. X., Chen X. S., Jing X. B. Study of the synthesis, crystallization, and morphology of poly(ethylene glycol)-poly(ε-caprolac-
    tone) diblock copolymers[J]. Biomacromolecules,2004,5:2042-2047.
    [174]Yeganeh H., Lakouraj M. M., Jamshidi S. Synthesis and properties of biodegradable elastomeric epoxy modified polyurethanes based on poly(ε-caprolactone) and poly(ethylene glycol)[J]. European Polymer Journal,2005,41:2370-2379.
    [175]Yeganeh H., Jamshidi H., Jamshidi S. Synthesis and properies of novel biodegradable poly(ε-caprolactone)/poly(ethylene glycol)-based polyurethane elastomers [J]. Polymer International,2007,56:41-49.
    [176]Ping P., Wang W. S., Chen X. S., Jing X. B. Poly(ε-caprolactone) Polyurethane and its Shape-Memory Property[J]. Biomacromolecules,2005,6:587-592.
    [177]Ping P., Wang W. S., Chen X. S., Jing X. B. The influence of hard-segments on two-phase structure and shape memory properties of PCL-based segmented polyurethanes[J]. Journal of Polymer Science Part B:Polymer Physics,2007,45:557-570.
    [178]Heijkants R. G. J. C., van Calck R. V., van Tienen T. G, de Groot J. H., Buma P., Pennings A. J., Veth R. P. H., Schouten A. J. Uncatalyzed synthesis, thermal and mechanical properties of polyurethanes based on poly(ε-caprolactone) and 1,4-butane diisocyanate with uniform hard segment[J]. Biomaterials,2005,26:4219-4228.
    [179]Minnesota mining and manufacturing company 3M Center. European patent application,893,107,219(2009)
    [180]Semasrzadh M. A., Navarchian A. H., Morshedian J. Reactive extrusion of poly(urethane-isocyanurate)[J]. Advances in Polymer Technology,2004,23:239-255.
    [181]Puaux J. P., Cassagnau P., Bozga G, Nagy I. Modeling of polyurethane synthesis by reactive extrusion[J]. Chemical Engineering and Processing,2006,45:481-487.
    [182]Bartilla T., Kirch D., Nordmeier J., Proemper E., Strauch T. The extrusion:chemical and physical change. Part 1. Continuous polymerization of nylon 6[J]. Plastverarbeiter, 1986,37:110-118.
    [183]Chen J. D., Xia Z. A. China Pat. ZL2,006,200,401,807 (2007).
    [184]Cayuela J., Bounor-Legare V., Cassagnau P., Michel A. Ring-opening polymerization of ε-caprolactone initiated with titanium n-propoxide or titanium phenoxide[J]. Macromolecules,2006,39:1338-1346.
    [185]Barakat I., Dubois Ph., Jerome R., Teyssie Ph. Living polymerization and selective end functionalization of ε-caprolactone using zinc alkoxides as initiators. Macromolecules,1991,24:6542-6545.
    [186]Dubois Ph., Ropson N., Jerome R.,Teyssie Ph. Macromolecular engineering of polylactones and polylactides.19. kinetics of ring-opening polymerization of s-caprolactone initiated with functional aluminum alkoxides. Macromolecules,1996, 29:1965-1975.
    [187]Verhoeven V. W. A., Padsalgikar A. D., Ganzeveld K. J., Janssen L. P. B. M. A kinetic investigation of polyurethane polymerization for reactive extrusion purposes[J]. Journal
    of Applied Polymer Science,2006,101:370-382.
    [188]Britain J. W. Behavior of isocyanate-terminated prepolymers in the presence of various catalysts[J]. I&EC product research and development,1962,1:261-264.
    [189]Houghton R. P., Mulvaney A. W. Mechanism of tin(IV)-catalysed urethane formation[J]. Journal of Organometallic Chemistry,1996,518:21-27.
    [190]Flory P. J. Theory of crystallization in copolymers[J]. Transactions of the Faraday Society,1955,51:848-857.
    [191]Gan Z. H., Jiang B. Z., Zhang J. Poly(ε-caprolactone)/poly(ethylene oxide) diblock copolymer. I. Isothermal crystallization and melting behavior[J]. Journal of Applied Polymer Science,1996,59:961-967.
    [192]Shiomi T., Imai K., Takenaka K., Takeshita H., Hayashi H., Tezuka Y. Appearance of double spherulites like concentric circles for poly(ε-caprolactone)-block-poly(ethylene glycol)-block-poly(ε-caprolactone)[J]. Polymer,2001,42:3233-3239.
    [193]Wang J. L., Dong C. M. Physical properties, crystallization kinetics, and spherulitic growth of well-defined poly(ε-caprolactone)s with different arms[J]. Polymer,2006, 47(9):3218-3228.
    [194]Guo Q. P., Groenincks G. Crystallization kinetics of poly(ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly(s-caprolactone)[J]. Polymer,2001, 42(21):8647-8655.
    [195]Madbouly S. A. Isothermal crystallization kinetics in binary miscible blend of poly(ε-caprolactone)/tetramethyl polycarbonate [J]. Journal of Applied Polymer Science, 2007,103:3307-3315.
    [196]Kuo S. W., Chan S. C., Chang F. C. Crystallization kinetics and morphology of binary phenolic/poly(ε-caprolactone) blends[J]. Journal of Polymer Science Part B:Polymer Physics,2004,42:117-128.
    [197]刘彦,傅树人,毛润生,薛巍.聚己内酯型聚氨酯本体结晶过程研究[J].高分子材料科学与工程,1991,(5):118-121.
    [198]Khanna Y. P. A barometer of crystallization rates of polymeric materials[J]. Polymer Engineering and Science,1990,30:1615-1619.
    [199]Silvestre C., Cimmino S., Di Lorenzo M. L. Crystallization of poly(1-butene)/ hydrogenated oligocyclopentadiene blends [J]. Journal of Applied Polymer Science, 1999,71:1677-1690.
    [200]Zhang R. Y, Zheng H. F., Lou X. L., Ma D. Z. Crystallization characteristics of polypropylene and low ethylene content polypropylene copolymer with and without nucleating agents[J]. Journal of Applied Polymer Science,1994,51:51-56.
    [201]党永战,赵凤起,高红旭,胡荣祖,康冰.聚乙二醇的非等温结晶动力学研究[J].含能材料,2008,16(3):305-308.
    [202]何曼君,董西侠,陈维孝.高分子物理[M].上海:复旦大学出版社,1990.
    [203]Avrami M. Kinetics of phase change. I General theory[J]. Journal of Chemical Physics,7:1103-1112.
    [204]Avrami M. Kinetics of phase change. Ⅱ Transformation-time relations for random distribution of nuclei[J]. Journal of Chemical Physics,1940,8(2):212-224.
    [205]Avrami M. Kinetics of phase change. Ⅲ Granulation, phase change, and microstructure[J]. Journal of Chemical Physics,1941,9(2):177-184.
    [206]Mandelkern L. Methods of Experimental Physics. Polymers, Part B:Crystal Strusture and Morphology[J], New York:Academic Press, Inc,1980,16B:821.
    [207]Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystal-lization of poly(ethylene terephthalate) determined by DSC[J]. Polymer,1978, 19:1142-1154.
    [208]Ozawa T. Kinetics of non-isothermal crystallization[J]. Polymer,1971,12:150-158.
    [209]Liu S. Y, Yu Y. N., Cui Y, Zhang H. F.,Mo Z. S. Isothermal and nonisothermal crystallization kinetics of nylon-11[J]. Journal of Applied Polymer Science,1998, 70:2371-2380.
    [210]Liu T. X., Mo Z. S., Zhang H. F. Isothermal and nonisothermal melt crystallization kinetic behavior of poly(aryl ether biphenyl ether ketome ketone):PEDEKK[J]. Journal of Polymer Engineering,1998,18(4):283-299.
    [211]Qiao X. Y, Sun Z. C., Zhao X. J., Wang X. H., Zhang H. F.,Mo Z. S. Non-isothermal crystallization kinetics of the poly(3-alkylthiophenes)[J]. Acta Polymerica Sinica,1999, 6:649-655.
    [212]Zhang Q. X., Mo Z. S. Isothermal and nonisothermal crystallization kinetics of nylon66[J]. Chinese Journal of Polymer Science,2001,19:237-246.
    [213]Kissiger H. E. Variation of peak temperature with heating rate in differential thermal analysis[j]. Journal of Research of the National Bureau of Standards,1956,57:217-221.
    [214]Liu M. Y, Zhao Q. X., Wang Y. D., Zhang C. G., Mo Z. S., Cao S. K. Melting behaviours, isothermal and non-isothermal crystallization kinetics of nylon 1212[J]. Polymer,2003,44:2537-2545.
    [215]Crescenzi V., Manzini G, Calzolari G, Borri C. Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. comparative analysis of the melting of aliphatic polylactone and polyester chains[J]. European Polymer Journal,1972, 8:449-463.