热泵干燥热力学分析及典型物料干燥性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展、技术的进步和世界人口出的增长,人类对能源的需求将不断增加。干燥是一个高耗能的工艺过程,在许多工业生产中干燥耗能高达12%,占全部生产费用的60~70%。因此,干燥所面临的问题就是既要保证产品质量又减少能量的消耗。热泵技术应用于农产品物料干燥具有节约能源、产品质量高、干燥条件可调节范围宽和环境友好等显著优点。本文主要研究热泵干燥系统的工作原理及热力学性质,以胡萝卜为原料进行热泵干燥实验、热泵热风组合干燥实验及干燥产品质量的对比研究。
     通过对热泵不同干燥循环特性的分析,表明不同的干燥条件应采用不同的干燥循环。在系统中增加空气回热器可提高系统的效能,但同时也增加了空气流动的阻力,增加了系统的功耗。热泵除湿干燥在温度小于60℃和相对湿度大于30%时能达到最理想的效果。
     根据热力学第一定律和热力学第二定律,应用能量平衡及“(火用)”(exergy)方法分析了热泵干燥系统的各部件的(火用)损失和减少(火用)损失的途径。压缩式制冷循环热泵装置(火用)损失的途径大致可归为传热(火用)损失、节流(火用)损失和压缩机(火用)损失三个方面。为了提高压缩式制冷循环热泵装置的(火用)效率,就必须设法减少这三个方面的(火用)损失。
     研制了一套综合的热泵干燥试验装置,采用变频技术对压缩机和循环风机的转速进行无级变速,大大地提高了试验装置的适应能力。试验装置既能进行单独热泵干燥或单独的热风干燥实验,也能进行热泵和热风组合干燥实验。通过调节空气流过蒸发器的流速和状态,改善湿热空气通过蒸发器的传热效率,增强了蒸发器的除湿效果。
     由不同热泵干燥循环的性能试验可知,开路式热泵干燥循环运行稳定,但蒸发器析水的速率比半开路式循环低。在闭路式热泵干燥循环过程中,随着空气旁通率BAR的增加,流过蒸发器表面空气流速的降低,冷凝效果不断提高。开路式、半路开式热泵干燥循环系统的单位能耗除湿量(SMER)比闭路式高。在闭路式热泵干燥循环过程中,BAR的值在0.4到0.6的范围内,系统的单位能耗除湿量(SMER)较高,当BAR的值超过0.6时,系统的单位能耗除湿量(SMER)反而下降,说明空气旁通率(BAR)有一个合理的范围。
     以胡萝卜为研究对象进行了热泵干燥试验研究。胡萝卜片的热泵干燥实验结果表明,热泵适合于高含水物料的前期干燥,由0.4至6小时为快速干燥区,物料的水分呈现明显下降,6小时以后水分下降减慢。特别是在干燥的后期,物料水分从20%降到10%,大约需要3到4个小时。热泵流化床干燥实验表明,热泵流化床干燥在9小时内,能将胡萝卜的水分从90%左右烘干到10%以下,但主循环风机的动力消耗较大,约占系统总能耗的50%左右。
     采用热泵与热风组合干燥技术解决了单一热泵干燥时间长的问题,组合干燥既能节约能源又能提高产品质量。实验结果表明,当被干物料达到一定数量时,其耗能只有隧道式干燥的74.1%,网带式干燥的84.7%和真空冷冻干燥的9.4%。组合干燥产品中胡萝卜素的保持率为92%,而单一热泵干燥为80%,热风干燥仅为59%。胡萝卜产品经24小时充分复水后,组合干燥产品复水性比热泵干燥高16.6%,比热风干燥高24.5%。
Energy consumption depends on several factors such as economy, technology and population growth. It is apparent that drying itself is an energy-intensive process because of the latent heat to be supplied to the material to evaporate the moisture. It is reported that industrial dryers consume on average about 12% of the total energy used in manufacturing processes. In manufacturing processes where drying is required, the cost of drying can approach to 60%—70% of the total cost. Thus, one of the most important challenges of the drying industry is to reduce the cost of energy source for good quality dried products. Heat pump-assisted drying is an energy efficient process because the heat is recoverable. Heat pump assisted-drying provides a controllable drying environment (temperature and humidity) for better products' quality at low energy consumption (cost).This dissertation has conducted a systematic study on the performance of the heat pump drying system, on the energy and exergy analyses of the heat pump unit and the drying cabinet, and on drying mechanism and experiments of heat pump drying of the carrots.The performances of different from heat pump dryer configurations were studied. By comparing the performances of those cycles of the heat pump dryers, it was concluded that the different operating mode of the heat pump dryer depends on the drying conditions. If the air to air heat exchanger is applied to the united cycle system, the efficiency of the heat pump unit will increase, otherwise, will increase the resistance of the process air and the energy consumption of the heat pump drying system. Ideally, the heat pump drying should be carried out at temperatures <60°C and average relative humidity >30%. These are ideal conditions for the drying of many agricultural materials.Based on the first and second laws of thermodynamics and the concepts of energy (enthalpy) and exergy (stream availability), the energy and exergy analyses of the heat pump dryer are investigated. The exergy losses of the heat pump's four main components (the evaporator, the compressor, the condenser and the expansion) and the dryer were studied. The exergy losses due to heat transfer, expansion and compress have been considered. In the design of a system, the exergy method provides the useful information to choose the appropriate component design and operation procedure.The heat pump dryer used in the experiments was assembled from air conditioner parts. Frequency control is a suitable method for an AC electrical motor working at variable speeds. This method changes the discharge rate of the compressor and the fan by varying their rotation speeds to meet the requirement of variable load. The experimental system is suited to the heat pump assisted-drying, the heat pump fluidized bed drying and the combination drying. The heat pump and the dryer were connected by an adjustable air duct system which enables the HPD to be operated as a partially closed cycled or open cycled.The performances of opening air cycle, semi-opening air cycle and closed air cycle configurations were studied. When the heat pump works with the opening air cycle, the heat pump unit works at the steady state and extraction water from the process air is lower than the semi-opening air cycle. When the heat pump works with the semi-opening air cycle, the extraction water from the process air will increase by exhausted air loss. In the closed system, the bypass air rate (BAR) play a significant role in
    the system performance. As BAR increases, the amount of air passing the evaporator is reduced and the BAR directly alter the HPD performance. The extraction water from the process was not sensitive to BAR values within the range from 0.4 to 0.7. To obtain the peak SMER, the system should be operated with BAR between 0.4 and 0.6. At BAR greater than 0.6, the peak values seem to be reduced. it was, therefore, concluded that the bypassing air rate (BAR) is effective at the maximum SMER.With the heat pump drying experimental sets, the carrots slices were chosen as the drying materials.
引文
[1] 高广春,王剑峰等.热泵干燥机组性能研究进展.食品科学,1999(5):59-63
    [2] 潘永康.现代干燥技术.北京:化学工业出版社,1998
    [3] 江辉民,王洋,赵丽莹等.国内外热泵发展与新技术.建筑热能通风空调,2003(4):7-9
    [4] Chau. K. J. ; Chou, S. K. ; Ho, J. C. ; Hawlader, M. N. A. Heat pump drying: recent developments and future trends. Drying Technology 2002, 20, 1579-1610
    [5] 陈红,谢继红等.热泵式流化床干燥装置及其应用优势.食品与机械,2003(3):34-37
    [6] 王剑峰,欧阳应秀等.相变材料应用于热泵干燥的实验研究.太阳能学报,2002,23(1):22-26
    [7] 王景刚.自然工质热泵循环和地热源热泵运行特性研究:[博士学位论文].天津:天津大学,2003
    [8] 陈坤杰,李娟玲等.热泵干燥技术的应用现状与展望.农业机械学报,2000,31(3):109-111
    [9] 张嘉辉.热泵干燥理论与种子干燥性能的研究:[博士学位论文].天津:天津大学,1999
    [10] Prasertsan, S.; Sean-saby. P. Heat pump drying of agricultural materials. Drying Technology 1998(a), 16, 235-250
    [11] Ho, J. C.; Chou, S. K.; Mujumdar, A. S.; Hawlader, M. N. A.; Chua, K. J. An optimization framework for drying of heat-sensitive products. Applied Thermal Engineering 2001, 21, 1779-1798
    [12] Chua. K. J.; Hawlader, M. N. A.; Chou, S. K.; Ho, J. C. On the study of time-varying temperature drying kinetics and product quality. Drying Technology 2002, 20(8), 1559-1577
    [13] 马国远,郁永章.热泵微波联合干燥及其在农副产品干燥中的应用.农牧与食品机械,1998(5):7-10
    [14] 王如竹,丁国良,吴静怡等.制冷原理与技术.北京:科学技术出版社,2003
    [15] 贺岩峰,燕淑春.化学热泵的开发与利用.中国能源(Energy of China),1995(5):42-49
    [16] E. Bilgen, H. Takahashi. Exergy analysis and experimental study of heat pump systems. Exergy, an International Journal 2 (2002) 259-265
    [17] J. G. Cervantes, E. Torres-Reyes. Experiments on a solar-assisted heat pump and an exergy analysis of the system. Applied Thermal Engineering 2002, 22, 1289-1297
    [18] Zhang Bi-Guang, Chang Jian-Min, Zhou Yong-Dong. The exergy analysis on heat pump dryer of semi-opening, air cycle. Drying'2002:1133-1137, 2002
    [19] 胡长春,余克明,周斌等.热泵粮食种子干燥装置研制.96干燥学术研讨会议论文集,北京,1996
    [20] 张璧光,赵忠信,高建民等.木材干燥的节能研究——除湿干燥与太阳能干燥.南京林业大学学报,1997(21):189-193
    [21] 高广春,王剑锋.相变贮热在热泵干燥机组中的应用研究.太阳能学报,2001,22(7):262-265
    [22] 高广春.热泵干燥的理论与实验研究:[硕士学位论文].杭州:浙江大学,2000
    [23] 李志远,胡晓静等.胡萝卜热泵干燥特性及数学模型的研究.食品与发酵工业,1999,25(6):1-4
    [24] 郑春明.热泵在农副产品干燥中的应用.农村实用技术,1997(1):16-18
    [25] 田晓亮,孙晖.热泵节能系统在软胶丸干燥工艺中的应用.青岛大学学报,1999(14):71-73
    [26] 尉迟斌,卢士勋,周祖毅.实用制冷与空调工程手册.北京:机械工业出版社,2001.9
    [27] 马一太,王侃宏.带膨胀机的CO_2跨(超)临界逆循环的热力学分析.中国工程热物理学会工程力学与能源利用学术会议论文集,杭州,1998
    [28] 王侃宏,马一太等.CO_2跨超临界循环与常规制冷循环的比较.中国工程热物理学会工程力学与能源利用学术会议论文集,杭州,1998
    [29] Dr. Odilio Alves-Filho, Arun S. Mujumdar. An examination of emerging drying technologies from the energy standpoint. Drying'2004:36-52, 2004
    [30] Mujumdar A S. Handbook of Industrial Drying. Second Edition Revised and Expanded, 1995.
    [31] 王喜忠.化工进展,1991(2):21-25
    [32] 化工百科全书编辑委员会.化工百科全书:第五卷.北京:化学工业出版社,1993.
    [33] Mauri Fortes. Second-law modeling of deep bed drying processes with a simulation study of wheat air-recirculated fluidized-bed drying. Drying 2004: 18-32, 2004
    [34] 郑宏飞.(火用)一种新的方法论.北京:北京理工大学出版社,2004.6
    [35] 傅献彩,沈文霞,姚天扬.物理化学.北京:高等教育出版社,1989.4
    [36] 杜垲,徐锡斌.空气回热式热泵干燥系统实验研究.太阳能学报,1998,19(4):429-432
    [37] 金苏敏,制冷技术及其应用.北京:机械工业出版社,1999.5
    [38] 马一太,张嘉辉,马远.热泵干燥系统优化的理论分析.太阳能学报,2000,21(2):208-213
    [39] Mujumdar A S. Handbook of Industrial Drying. Second Edition Revised and Expanded, 1995, 1241~1275.
    [40] 汤学忠.热能转换与利用(第二版).北京:冶金工业出版社,2002.3
    [41] 毕明华.工程热力学.北京:化学工业出版社,2001.5
    [42] 李汝辉,刘德漳,李世武.能量有效利用.北京:北京航空航天大学出版社,1992.3
    [43] Braun, J. E.; Bansal, P. K.; Groll, E. A. Energy efficiency analysis of air cycle heat pump dryers. International Journal of Refrigeration. 2002(25):954-965
    [44] Hawlader, M. N. A.; Chou, S. K.; Jahangeer, S. K.; Rahman, S. M. A.; Eugene Lau, K. W. Solar-assisted heat-pump dryer and water heater. Applied Energy. 2003(74):185-193
    [45] E. Torres Reyes, M. Picon Nunez, J. Cervantes Deg. Exergy analysis and optimization of s olarassisted heat pump. Energy 1998, 23 (4), 337-344
    [46] 王朝辉.高初始含湿多孔介质干燥过程的传热和传质研究:[硕士学位论文]天津:天津大学,1993
    [47] A. Midilli, H. Kucuk. Energy and exergy analyses of solar drying process of pistachio. Energy 2003(28):539-556
    [48] S. Syahrul, F. Hamdullahpur, I. Dincer. Exergy analysis of fluidized bed drying of moist particles. Exergy 2002(2):87-98
    [49] Ebru Kayak Akpinar. Energy and exergy analyses of red pepper slices in a convective type dryer. Int. Comm. Heat Mass Transfer, 2004(31):1165-1176, 2004
    [50] I. Dincer, A. Z. Sahin. A new model for thermodynamic analysis of a drying process. International Journal of Heat and Mass Transfer 2004(47)645-652
    [51] Viorel Badescu. Model of a thermal energy storage device integrated into a solar assited heat pump system for space heating. Energy Conversion Management 2003(44): 1589-1604
    [52] 金国淼等.干燥设备.北京:化学工业出版社,2002.7
    [53] 付丰,孔祥谦.多孔介质干燥过程传热传质研究.工程热物理学报,1991,9(3):274-277
    [54] 扬俊红.植物性含湿多孔介质在干燥过程中优化传热传质机理的研究:[博士学位论文].天津:天津大学,1998
    [55] 刘江汉,傅丽芳.食品工艺学(上).北京:中国轻工业出版社,1991.10
    [56] 辛淑秀.食品工艺学(中).北京:中国轻工业出版社,1991.10
    [57] 张忠学.食品工艺学(下).北京:中国轻工业出版社,1991.10
    [58] 王璋.食品酶学.北京:中国轻工业出版社,1990.4
    [59] 陆蒸,林启训等.毛竹笋热泵干燥特性及制品复重率.福建农林大学学报(自然科学版),2002,31(1):117-120
    [60] 褚治德,杨俊红,孟宪玲等.蔬菜种子的干燥动力学及其活性.工程热物理学报,2000,21(2):220-223
    [61] 诸凯,褚治德,杨光等.种子干燥过程中水分迁移的传热传质机理.天津大学学报,2000,33(5):634-637
    [62] 杨俊红,褚治德,顾惠军等.蔬菜种子干燥中种皮的效应与优化传热传质机理.工程热物理学报,1997,18(6):721-724
    [63] 李志远,胡晓静,张文明等.胡萝卜薄片热风与热泵结合干燥工艺及特性研究.食品与发酵工业,1999,26(1):3-6.
    [64] 吴锦涛,胡卓炎,何松等.干制工艺对胡萝卜复水性的影响.食品科学,1998,19(12):23-26.
    [65] 吴平.食品分析.北京:中国轻工业出版社,1983.11
    [66] 李克永.化工机械手册.天津:天津大学出版社,1991.5
    [67] 金苏敏,李庆生.热泵干燥箱的干燥过程.南京化工大学学报,1996,18(增刊):102-105
    [68] 刘莲芳主编.食品添加剂分析检验手册.北京:中国轻工业出版社,1999
    [69] 方开泰.均匀设计及应用(一).数理统计与管理,1994,13(1):57-58
    [70] 方开泰.均匀设计与应用(二).数理统计与管理,1994,13(2):59-61
    [71] 方开泰.均匀设计与应用(三).数理统计与管理,1994,13(3):52-53
    [72] 方开泰.均匀设计与应用(四).数理统计与管理,1994,13(3):54-56
    [73] 陈绍军.均匀设计在食品加工研究中的应用.中国粮油学报,1995,10(1):22-33
    [74] 高广春,王剑峰等.食品热泵干燥实验装置的研制.化工机械,2000,27(3):152-154
    [75] 余克明,王崎.热泵干燥技术的发展及其应用的前景.能源技术,2000(1):36-37
    [76] 李旭东,马军.热泵干燥技术简介.化工设计,1997(6):40-41
    [77] 牛莹.种子热泵干燥的研究及其热力学分析:[硕士学位论文].天津:天津大学,2000
    [78] 蒋华.热泵干燥机的计算机性能模拟与实验研究:[硕士学位论文].南京:东南大学,1997
    [79] 康艳兵,热泵干燥装置性能的理论研究:[硕士学位论文].长春:吉林工业大学,1997
    [80] 王运东,骆广生等.传递过程原理.北京:清华大学出版社.2003,3
    [81] 赵强,张志,毕道军等.LYP—2000型热泵食品干燥机.包装与食品机械,1999(17):28-29
    [82] Saensabai, R.; Prasertsan, S. Effects of component arrangement and ambient and drying conditions on the performance of heat pump dryers. Drying Technology 2003, 21(1), 103-127
    [83] Chua, K. J.; Hawlader, M. N. A.; Chou, S. K.; Ho, J. C. On the study of time-varying temperature drying kinetics and product quality. Drying Technology 2002, 20(8), 1559-1577
    [84] Chua, K. J.; Mujumdar, A. S.; Hawlader, M. N. A.; Chou, S. K.; Ho, J. C. Convective drying of agricultural products: effect of continuous and stepwise change in drying air temperature. Drying Technology 2001 (19):1949-1960
    [85] Prasertsan, S.; Saen-Saby, P. heat pump dryer: research and development needs and opportunities. Drying Technology 1998(b), 16, 251-270
    [86] Cardona, T. D.; Driscoll, R. H.; Paterson. J. L.; Srzednicki, G. S.; Kim, W. S. Optimizing conditions for heat pump dehydration of lactic acid bacteria. Drying Technology 2002(8), 20:1611-1632
    [87] Chen Guangnan; Bannister Paul; Gerald Carrinrton, C.; Ten Velde Paul; Burger Fred C. Design and application of a dehumidifier dryer for drying pine cones and pollen catkins. Drying Technology 2002(20):1633-1643
    [88] U. Tceboonma, S. Soponronnarit, J. Tiansuwan. Optimization of heat pump fruit dryer. Drying'2002:1332-1341, 2002
    [89] 吴业正,韩宝琦等.制冷原理及设备.西安:西安交通大学出版社,1987
    [90] 韩宝琦,李树林.制冷空调原理及应用.北京:机械工业出版社,1996
    [91] 高福成,许学勤.食品分离重组工程技术.北京:中国轻工业出版社,1998.7
    [92] 姚国雄,王璋,吴榴英等.食品生物化学.北京:中国轻工业出版社,1981.8
    [93] 扬同舟.食品工程原理.北京:中国农业出版社.2001,7
    [94] 孟宪玲,褚治德,李春英等.蔬菜种子干燥的临界安全温度及动力学分析.农业机械学报,2000,31(4):57-60
    [95] 连政国,朱文学.种子固定床干燥过程发芽率的模拟研究.农业机械学报,2000,31(4):112-114
    [96] R. Espinosa, J. Lagerstedt, T. Nyman, J. Martinez. Drying of ground neem seeds in a fluidized bed dryer. Drying'2002:1360-1367, 2002
    [97] Alves-Filho, O.: Strommen, I. The application of heat pump in drying of biomaterials. Drying Technology 1996, 14, 2061-2090
    [98] Achariyaviriya, S.; Soponronnarit, S. ; Terdyothin, A. Mathematical model development and simulation of heat pump fruit dryer. Drying Technology 2000(18), 479-491
    [99] Prasertsan, S.; Saen-Saby, P.; Ngamsritrakul, P.; Prateechaikul, G. Heat pump dryer part 3:experiment verification of the simulation. Int. J. Energy Research 1997(b), 21, 707-722
    [100] Rossi ,S.J.; Neues , I.C.; Kicokeusch , T.G. Thermodynamics and Energetic Evaluation of a Heat Pump Applied to Drying of Vegetables .In Drying 92; Mujumdar, A.S. ,Ed.; Elsevier Science , 1992, 1475-1483
    [101] Antonio Ficarella .Domenico Laforgia . Energy conservation in alcohol distillery with the application of pinch technology. Energy Conversion ang Management 40 (1999) 1495-1514
    [102]M. Izadifar, D. Mowla. Simulation of a cross-flow continuous fluidized bed dryer for paddy rice. Journal of Food Engineering .2003(58), 325-329
    [103]Bellagha S, Amami E, Farht A, et al. Drying kinetics and characteristic drying curve of lightly salted , Drying Technology , 2002, 20(7): 1527-1538
    [104] Oktay, Zuhal. Testing of a heat-pump-assisted mechanical opener dryer. Applied thermal Engineering 2003, 23, 153-162