基于有机工质跨临界热泵性能的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,能源危机与环境污染成为世界各国在发展过程中面临的重大社会问题,各国都采取了各种必要的措施和手段,我国政府也高度重视支持节能环保、新能源和低碳技术的研发。在全社会总能耗中,建筑能耗所占比重很大,其中约有80%的建筑能耗用于采暖、通风及空调的应用,而在采暖中应用热泵技术将大大降低建筑耗能,对节约利用能源具有重大的意义。跨临界热泵系统经济性能好,在制取较高温度热水时比常规热泵的制热系数高,具有较好的应用前景,发展潜力较大。
     本文通过对PT状态方程及其混合规则的研究,确定了PT状态方程的求解方法和导出参数热力学关系式。在气液相平衡理论的基础上,结合PT状态方程,建立了工质气液相平衡计算的数学模型,通过对候选工质的热力学计算表明,其饱和蒸发压力和气相密度计算平均偏差均小于5%,完全可以满足工程和研究上计算的要求。
     应用对比态原理,建立了工质的迁移性质预测模型,分析了工质迁移物性,即动力粘度、导热系数和表面张力的计算方法。在对工质热力学参数和迁移物性计算的基础上,优选出适合跨临界热泵系统的环保工质。
     运用热力学、传热学、流体力学等分析方法建立了跨临界热泵的模拟模型。通过所建立的模型对跨临界热泵系统进行了模拟,对比了以R125和R143a为工质的跨临界热泵系统和常规热泵系统在给定模拟工况下的制热系数、压缩机排气压力、压缩机耗功和压缩比,结果表明跨临界热泵系统在制取较高温度热水时拥有较高的性能系数,其原因为在高温换热器(冷凝器)换热过程中,跨临界工质的温度变化很好的匹配了水被加热过程中温度的变化,减少了由于温差传热而带来的热损失。
     模拟了以R125、R41、R143a及CO2为工质的跨临界热泵系统,分析了跨临界系统中蒸发压力、压缩机排气压力、回热器效能等变化对跨临界热泵系统性能的影响。
As social and economic development, the world is facing a major social development issues of energy crisis and environmental pollution. Many countries have adopted the necessary measures and means. Our government also attaches great importance to support energy-saving environmental protection, new energy and low carbon technology research and development. Energy consumption of building account for a large proportion of social energy consumption, of which about 80 percent of building energy consumption for heating, ventilation and air conditioning application. Application of heat pump in heating technology will significantly reduce building energy consumption. There is great significance of economical use of energy. There is good economic performance of trans-critical heat pump and the higher coefficient of performance than conventional heat pump when get higher temperature hot water, ther are good prospects and the development potential.
     The method of determined PT equation of state and derived parameters of thermodynamic through Patel-Teja equation of state and mixing rule. Based on the Vapor-Liquid phase equilibrium and PT equation, Vapor-Liquid phase equilibrium mathematical models of fluids were set up. Thermodynamic property calculations of the selected working fluids show that average error was in the range of 5%, which could completely meet the requirement of precision in practical engineering calculation research computing.
     Based on the corresponding state principle, migratory property prediction model was built, migratory properties including viscosity and conductivity of working fluids were calculated. On this basis, optimized for the environmental trans-critical heat pump working fluid.
     Cycle simulation model has been developed to analyze and caculate the trans-critical heat pump system, based on the thermodynamics. heat transfer, fluid mechanics analysis. The cycle performance parameters of trans-critical heat pump compared with the conventional heat pump, the results reveal that trans-critical heat pump have a higher coefficient of performance while output the hot water. Because of the working fluit in high-temperature heat exchanger (condenser) match changes of water temperature.
     In this thesis, which simulated trans-critical heat pump cycle of R125, R41, R143a and CO2. Analysis of factors that influencing the cycle performance parameters of trans-critical heat pump such as evaporation pressure, compressor discharge pressure, regenerator performance and so on.
引文
[1]黄挺.空气源热泵除霜用相变蓄能换热器的模拟研究[D].哈尔滨工业大学,2007,7
    [2]赵家荣.中国节能与低碳发展论坛的报告[R].2010
    [3]韩志涛.空气源热泵常规除霜与蓄能除霜特性实验研究[D].哈尔滨工业大学2007,12
    [4]张旭等.热泵技术[M].北京:化学工业出版社,2007:1-4
    [5]陈东,谢继红等.热泵技术及应用[M].北京:化学工业出版社,2006:29-32
    [6]Neksa P,Rekstad H.,A.CO2 heat pump water heater:characteristics,system Design and experimental results.Int.J.Refrig.1994:172-197
    [7]Neksa P., CO2 heat pump system. Int.J.Refrig.2002:421-427
    [8]Kohler J,Sonnekalb M.Kaise H, etal.CO2 as refrigerant for busair conditioning and transport refrigeration[A], IEA Heat PumpCenter/IIR Workshop on CO2 technology in refrigeration,heat pumps and air conditioning systems[C]. Norway:Trondheim,1997
    [9]Schmidt E L, Klocker K, Flacke N, Steimle F. Applying thetranscritical C02 process to a drying heal pump [J]. International Journal of Refrigeration.1998 21(3):202-211
    [10]Schmidt E L. Klocker K, Flacke N. A heat pump dryer using carbon dioxide as working fluid[A].Proceedings of 20th IIR/IIF International Congress of Refrigeration[C],Australia:Sydney,1999:1-6
    [11]Saikawa M, Hashimoto K, Kobayakawa T, Development of prototype of CO2 heat pumpwater heater for residential use[A]. Proceedings of 4th IIR-Gustav Lorentzen Conference on Natural Working Fluidin Purdue, Joint Conference of the International Insti-tute of Refrigeration [C], Section B and E,2000: 51-57
    [12]Saikawa M. Hashimoto K. An experimental study on the behav-for of CO2 heat pump cycle[A]. Proceedings of 2nd IIR-GustavLorentzen Conference on Natural Working Fluid inNorway, Joint Conference of the International Instituteof Refrigeration[C]. Section B and E,1998
    [13]王侃宏,马一太,魏东等.二氧化碳跨临界水一水热泵循环系统的研究.北京热物理学会工程热力学与能源利用学术会议论文集[C].2000:431-436.
    [14]李敏霞,李丽新,苏维诚.二氧化碳跨临界循环带膨胀机热泵系统的实验研究.工程热物理学报[J].2004,25(6):929-932.
    [15]S.M.Liao,T.S.Zhao, A.Jakobsen, A correlation of optimal heat rejection pressure in transcritical carbon dioxide cycles. Applied Thermal Engineering[J].2000,20: 831-841.
    [16]黄珍珍,廖胜明,堪盈盈.二氧化碳气体冷却器嫡产分析和优化.制冷空调与电力机械[J].2007,117(28):23-25.
    [17]堪盈盈,廖胜明,黄珍珍.跨临界二氧化碳热泵热水系统气冷器的仿真分析.制冷与空调[J].2007,21(4):26-31.
    [18]刘玉涵.跨临界二氧化碳热泵热水系统动态特性研究[D].中南大学,2009,5
    [19]时红臣.跨临界二氧化碳热泵热水器系统仿真与水回路实验研究[D].南京理工大学.2006.6
    [20]蔡旺.CO2热泵系统的蒸发器性能仿真研究[D].华南理工大学,2010,6
    [21]刘爽.用于CO2热泵热水器的喷射器特性研究[D].浙江大学,2008,5
    [22]王洪利.Co2跨临界双级循环理论分析与试验研究[D].天津大学.2008.6
    [23]刘圣春.超临界CO2流体特性及跨临界循环系统的研究[D].天津大学.2006,1
    [24]周湘江.HFC125临界热泵特性研究[D].上海交通大学,2007.6
    [25]曹德胜,史琳.制冷剂使用手册[M].北京:冶金工业出版社,2004.
    [26]丁国良,张春路赵力.制冷空调新工质热物理性质的计算方式与实用图表[M].上海:上海交通大学出版社,2003
    [27]R.Tillner-Roth.H.D.Baehr.An international standard formulation of the thermodynamic properties of 1,1.1.2-tetrafluoroethane(HFC-134a) covering temperatures from 170K to 455K at pressue up to 70MPa[J].J.Phys.Chem.Ref. Data.1994,(23):657-729
    [28]S.L.Outcalt,M O.McLinden.An modified Benedict-Webb-Robin equation of state for the thermodynamic properties of R152a(1,1-difluoroethane). Accepted for publication in J.Phys. Chem.Ref.Data,1996.25
    [29]Defibaugh,D.R.,Moldover,M. R.Comperssed and saturated liquid densities for 18 halogenated organic compounds[J].J.Chem.Eng.Data,1997,42(1):160-168
    [30]Younglove,B.A.,Ely.J.F.Thermophysical properties of fluids.II.Methane,ethane. propane.isobutane and normal butane[J].J.Phys.Chem.Ref Data,1987,16:577-798
    [31]Navin C..Patel and Amyn S. Teja, A new cubic equation of state for fluids and fluid mixtures. Chemical Engineering Science,1982,37 (3):463-473
    [32]BROWN J S. Predicting performance of refrigerants using the Peng-Robinson Equation of State [J].International Journal of Refrigeration,2007, 30(8):1319-1328.
    [33]庄友明.RKS状态方程用于制冷剂热力性质的计算.化学工程[J].1990,18(4):44-47.
    [34]郑臣明.CF_3I的热力学性质与制冷、空调循环性能研究[D].天津大学,2003
    [35]沈维道,蒋智敏,童钧耕.工程热力学[M].第3版.北京:高等教育出版社,2000.
    [36]苏长荪.谭连城,刘桂玉.高等工程热力学[M].北京:高等教育出版社,1987.
    [37]童景山.流体热物性学·基本理论与计算[M].北京:中国石化出版社,2008
    [38]Han 1 ey.H.J,Mcarty.R.D.Equations for the Viscosity and Thermal Conductivity Coeficients of Methane[J].Cryodenics,1975:415-418
    [39]陈新志,蔡振云,胡望明.化工热力学[M].北京:化学工业出版社,2001
    [40]鲁钟琪.两相流与沸腾传热[M].北京:清华大学出版社.2000.
    [41]Rice C K, Pate M B. The effect of void fraction correlation and heat flux assumption on refrigerant charge inventory predictions. ASHRAE Transactions.1987,93 (1):341-367.
    [42]丁国良,张春路.制冷空调装置智能仿真[M].北京:科学出版社,2002.
    [43]丁国良,张春路.制冷空调装置仿真与优化[M].北京:科学出版社.2001.
    [44]F.W.Dittos, L.M.K.Boelter. Thermodynamic Evaluation of R22 Alternative Refrigerants and Refrigerant Mixtures,ASHRAE Transactions.1930, 99:636-648.
    [45]许为全.热质交换过程与设备[M].北京:清华大学出版社,1999.
    [46]彦启森.空气调节用制冷技术[M].北京:中国建筑工业出版社,1980.
    [47]张也影.流体力学[M].北京:高等教育出版社.1998.
    [48]王辉涛.低温余热发电有机朗肯循环技术的应用基础研究[M].昆明理工大 学,2009
    [49]F.W. Dittos. L.M.K. Boelter. Thermodynamic Evaluation of R-22 Alternative Refrigerants and Refrigerant Mixtures, ASHRAE Transactions,1930.99: 636-648.
    [50]H.Wang and S.Touber. Distributed and Non-steady-state Modelling of an Air Cooler. Int.J.of Refrig,1991,14(2):98 - 111
    [51]张社佑.制冷原理与设备[M].北京:机械工业出版社,1987.
    [52]Pirompugd W, Wang C C, Wongwises S. Finite circular fin method for heat and mass transfer characteristics for plain fin-and-tube heat exchangers under fully and partially wet surface conditions[J]. International Journal of Heat and Mass Transfer,2007,50(3-4):552-565.
    [53]赵镇南.传热学[M].北京:高等教育出版社,2002.
    [54]Gray D L, Webb R L.Heat transfer and friction correlations for plate finned-tube heat exchangers having plain fins[C]. In:8th ASME International Heat Transfer Conference,1986:2745-2750.
    [55]史美中,王中铮.热交换器原理与设计[M].南京:东南大学出版社,1989.