肺泡巨噬细胞与烟曲霉相互作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟曲霉是自然界广泛存在的真菌,可以引起免疫功能低下的病人,尤其是进行了骨髓移植或器官移植的病人严重的机会感染。因为恶性肿瘤、粒细胞减少或功能障碍、糖皮质类固醇和免疫抑制剂的使用等原因造成的患者免疫功能缺陷,是侵袭性曲霉病的高危因素。烟曲霉孢子被患者吸入后,可以从气管肺泡中侵入到肺部造成初发的侵袭性感染,并常伴远隔器官的转移。近10 年来,侵袭性曲霉病发病率不断上升,并成为免疫抑制患者死亡的主要原因之一。对于免疫功能正常的人来说,它可以被肺泡巨噬细胞(PAM)杀灭并清除。然而烟曲霉孢子与肺泡巨噬细胞之间的关系尚未阐明。
    PAM 在肺组织感染的防御中起着十分重要的作用。当它被外来刺激物激活时,细胞外信号可通过与受体结合,激活信号级联通路并传递到达细胞核,激活或失活核转录因子,作用于目的基因的调控序列而引起相应蛋白质表达谱的改变。从而既提高自身吞噬、处理、递呈抗原的能力,又分泌多种细胞因子和化学趋化因子,如白介素1β(IL-1β)、肿瘤坏死因子α(TNF-α)、巨噬细胞炎症蛋白(MIP)以及白三烯B4(LTB4)等,促进T、B 细胞的增殖、成熟,募集中性粒细胞至肺,全面提高肺的免疫能力以抵御外来刺激物的不良作用。实验证明,这些炎症因子在抗烟曲霉感染中起着重要作用。NF-κB 是广泛存在于真核生物中,一种由复杂的多肽亚单位组成的蛋白家族。它作为信号传导途径中的枢纽,与免疫、肿瘤的发生、发展,细胞凋亡的调节以及胚胎发育等重要事件有着密切联系,是一种重要的核转录因子。研究发现,在烟曲霉感染中,PAM 的NF-κB 信号转导通路的激活可能起着重要作用。
    本实验以PAM 为研究靶细胞,经烟曲霉孢子及其代谢产物的刺激,分别观察PAM的形态学改变、肺泡巨噬细胞炎症因子的释放水平的改变以及相关信号通路的研究,为进一步探讨肺烟曲霉病的发病机制的研究奠定基础。
    我们首先建立并稳定了正常PAM 和免疫抑制PAM 体外培养模型,经瑞氏染色和巨噬细胞的标记抗原CD68 行免疫组化试验对巨噬细胞进行了鉴定。在此基础上,将肺泡巨噬细胞与烟曲霉孢子及其代谢产物共孵育,通过扫描电镜和透射电镜观察PAM形态学变化。我们发现,正常PAM 表面有大量微皱褶或微皱襞,在被烟曲霉孢子激活后,PAM 可以明显增大细胞的表面积,即可以使一个巨噬细胞同时粘附和吞噬多个
Aspergillus is a kind of fungus capable of causing life-threatening opportunistic infections in immunocompromised patients. Patients with host defenses compromised by malignancy, granulocytopenia, neutrophil dysfunction, corticosteroid therapy, or immunosuppressive drugs are at great risk. Inhalation of airborne Aspergillus conidia in the alveoli primarily results in pulmonary infection, usually with dissemination to other organs. The incidence of invasive aspergillosis (IA) has increased considerably in the past decade, and this infection is a major cause of mortality in immunocompromised hosts. To a nomal immune function man, Aspergillus conidia can be cleared off by pulmonary alveolar macrophage (PAM).Unfortunately, the relarionship between PAM and Aspergillus conidia is still unclear.
    PAM is very important in the protection of lung infection. When it is activated by exotic matierials, the exotic cellular signals can change the protein mass spectra by activating or inactivating transcription factors, regulate-controlling sequences. It can not only boost the abilities of phagotosis, disposal and presentation of antigens but also excrete multiple cytokines and chemotaxis mediators such as interleukin 1β(IL-1β), tumor necrosis factor α(TNF-α), macrophage inflammatory protein(MIP) and leukotriene B4 (LTB4) , et al, promote T and B cells to proliferate and mature, collect neutrophil to lung, raise the immune ability of lung to resist the bad effect from exotic materials. It has already been confirmed by experiments that those inflammatory mediaters are very important factors in the protection of Aspergillus infection. NF-κB, a protein family consisting of complex sub-polypeptide units, exists ubiquitouly in Eukaryota. NF-κB is a central cell nuclear transcription factor in signal conducting pathway, relating with many important funtions such as immune, the occuring and developping of tumor, the regulating of cell units and embryo growth, et al. It is reported that the activation of NF-κB is very important during the Aspergullus infection.
    In our experiment, using PAM as target cells, we observed the morphologic changes, the releasing levels of inflammatory mediators of PAM and relating signal pathway research when stimulated by Aspergillus fumigatus conidia and its metalites. Firstly, we established and stablized the models of PAM and immunosupressive PAM in vitro, PAM was identified with Reiz coloration and immune histochemistry methods. Then we used scan and transmiss electron microscopy to observe the morphologic changes by incubating PAM and Aspergillus fumigatus conidia or metablites together or alone. The results suggest that exterior of nomal PAM has plenty of microruga, the surface area of PAM was increased so as to make it possible to conglutinate and englut more conidia when activated by Aspergillus fumigatus conidia; at the same time, it provides the histologic evidence of augmentation of lysosome and endoplasmic reticulum. Aspergillus fumigatus’s metablites such as gliotoxin and Aspergillus fumigatus diffusate(AfD) have some cellular toxic functions on PAM and may do accelerating functions in the development of Aspergillus infection. Gliotoxin can induce the apotosis of PAM. We haven’t found any toxic function of fumagillin and helvelic acid on PAM.The incidence of PAM rise greatly when the quantity of Aspergillus fumigatus conidia increased. Secondly, we checked up the levels of cytokines(IL-1βand TNF-α) in the culture supernatant by ELISA. We found that Aspergillus fumigatus conidia can stimulate nomal PAM to release much IL-1βand TNF-α, having quantity-effect and time-effect relationship. Immunosuppresive PAM releases less IL-1βand TNF-αthan nomal PAM does. AfD can inhibit the releasing of IL-1βand TNF-αpartly stimulated by Aspergillus fumigatus conidia. The results suggest that AfD do some toxic functions on PAM and may accelerate the development of Aspergillus infection. Because the well known materils of toxic Aspergillus fumigatus do not have obvious effect on PAM, it is necessary to make more research on the component of AfD. There are three methods to study transcription factors: electrophoretic mobility shift assay(EMSA), western blot(WB) and gene analysis, but these methods just can do semi-quantity, spend too much time and are lack of specificity and sensitivity. ELISA of checking NF-κB is a new method to check its energy. It can be more easily and spend less time to check up NF-κB quantificationally. Research had suggested that TLR may do some functions in the interaction between Aspergillus fumigatus conidia and PAM. In our
    research, we used anti-TLR4 to block the TLR4 on the membrane of PAM and then observed the pathway activated by Aspergillus fumigatus conidia from cellular view. We confirmed that Aspergillus fumigatus conidia could activate PAM, improve the levels of IL-1βand TNF-αreleased by PAM which relating with activated of NF-κB, but its function could be blocked partly by TLR4(the cytokine turned less when TLR4 had been blocked ). Based on above, we conclude that the interaction beween Aspergillus fumigatus conidia and PAM is associated greatly with the activation of NF-κB. From our experiments, we confirm some relativity between the morphologic results and its functions. At the same time, Aspergillus fumigatus conidia could activate nomal PAM and stimulate it to release high levels of IL-1βand TNF-α, while immunosupressive PAM release less IL-1βand TNF-α, which suggest that high levels of IL-1βand TNF-αare in favor of the cleatance of Aspergillus fumigatus conidia. Morever, NF-κB is a central factor in PAM when it is activated by Aspergillus fumigatus conidia, but other signal pathway may participate in this activation of PAM.
引文
1. Midgley G,Clayton YM,Hay RJ.Diagnosis in color Medical Mycology.Lunden:Mosby International Limited. 1997:133
    2. 吴绍熙.现代医学真菌检验手册.北京:北京医科大学中国协和医科大学联合出版社.1998:220~225
    3. 王端礼译.真菌感染诊断与治疗. Blackwell Science Asia.1999:9
    4. Radentz WH.Opportunistic fungal infections in immunocompromised hosts. J Am Acad Dermatol. 1989,20:989~1003
    5. Bodey GP, Vartivarian S. Aspergillosis. Eur J Clin Microbiol Infect Dis. 1989,8: 413~437
    6. Andriole VT. Infections with Aspergillus species. Clin Infect Dis. 1993,17 Suppl 2:481~486
    7. Birch M, Anderson MJ, Denning DW.Molecular typing of Aspergillus species. J Hosp Infect. 1995,30 Suppl:339~351
    8. Spreadbury C, Holden D, Aufauvre-Brown A, et al. Detection of Aspergillus fumigatus by polymerase chain reaction. J Clin Microbiol. 1993,31:615~621
    9. Melchers WJ, Verweij PE, van den Hurk P, et al. General primer-mediated PCR for detection of Aspergillus species. J Clin Microbiol. 1994,32:1710~1717Joan K. Brieland, Jackson C, Menzei R, et al.
    10. Cytokine networking in lungs of immunocompetent mice in response to inhaled Aspergillus fumigatus. Infect Immun. 2001;69(10): 1554-1560.
    11. Michaliszyn E, Senechal S, Martel P, et al. Lack of involvement of nitric oxide in killing of Aspergillus fumigatus conidia by pulmonary alveolar macrophage.Infect Immun 1995;63(4):2075-78.
    12. Martin J.Becker, Siem de Marie, Marcel H.A.M.Fens, et al. Effect of amphotericin B treatment on kinetics of cytokines and parameters on fungal load in neutropenic rats with invasive pulmonary aspergillosis. J Antib Chem. 2003;52(2):428-434.
    13. Roilides E, Dimitriadou-Georgiadou A, Sein T, et al. Tumor necrosis factor alpha enhances antifungal activities of polymorphonuclear and mononuclear phagocytes against Aspergillus fumigatus. Infect Immun. 1998;66(9):5999-6003.
    14. Kamei L, Watanabe A, Nishimura K,et al. Cytotoxicity of Aspergillus fumigatus culture filtrate against macrophages. Nippon Ishinkin Gakkai Zasshi.2002;43(1):37-41.
    15. Hebart H, Bollinger C, Fisch P, et al. Analysis of T-cell responses to Aspergillus fumigatus antigens in healthy individuals and patients with hematologic malignancies. Blood. 2002;100(15):4521-4528.
    16. Kurup.V.P,G.Gruing, A.P.Knutsen, et al. Cytokines in allergic bronchopulmonary aspergillosis. Res Immuonol. 1998;149(2):466-477.
    17. Kurup.V.P, Guo.J, Murali P.S., et al.Immunopathological responses to Aspergillus fumigatus antigen in interleyjub-4 knockout mice. J Lab Clin Med.1997;130(7):567-575.
    18. Tomee JFC, Kauffman HF. Putative virulence factors of Aspergillus fumigatus.Clin Exp Allergy,2000,30(3):476~484
    19. Pahl HL, Krausz B, Schulze-Osthoff K, et al.The immunosuppressive fungal metabolite gliotoxin specifically inhibits transcription factoe NF-κB. J Exp Med,1996; 183(9): a) 1829~40
    20. Moster M, Menz G, Blaser R,et al.Recombinant expression and antigenic properties of a 32-kilodalton extracellular alkaline protease, reprenting a possible virulence factor from Aspergillus fumigarus.Infect Immun,1994;62(6)936~42
    21. Reichard U.The significance of secretory and structure associated protease of Aspergillus famigatus for the pathogenesis of invasive easpergillosis. Mycosis,1998; 41(suppl.1) 78~82
    22. Tomee JFC, Wierenga ATJ,Hiemstra PS,er al. Proteases from Aspergillus induce release of pro-imflammatory cytokines and cell detachment in airway epithelial cell lines.J Infect Dis,1997;176(2)300~3
    23. Amitani T,Taylor G,Elzis EN,et al. Purification and characterization of factors produced by Aspergillus fumigatus which affect human ciliated respiratory epithelium.Infect Immun,1995;63(11)3266~71
    24. Ikegami Y,Amitani R,Murayama T,et al.Effect of alkaline protease of restrictocin defeicent mutants of Aspergillus fumigarus on human polymorphonuclear leukocytes.Eur Respir J,1998;12(3):607~11
    25. Tsai HF,Washburn RG,Chang YC,et al. Aspergillus fumigatus arpl modulates conidial pigmentation and complement deposition. Mol Microbiol,1997;26(1):175~83
    26. Trouchin G, Esnault K, Renier G, et al. Expression and identification of a laminin-binding peotein in Aspergillys fumigatus conidia. Infenct Immun, 1997;65(1): 9~15
    27. Kauffman HF, Tomee JFC.Inflammatory cells and airway defence against Aspergillus fumigatus. Immunol Allergy Clin North Am1998;18(3):619~40
    28. Seaton A,Roberson MD. Aspergillus,asthma and amoebae.Lancer.1989;2(2):893~4
    29. Eda S,Suzuki Y,Kawai T, et al.Structure of a struncated human surfactant protein D is a less effective in agglutinating bacteria than the native structure and fails to inhibit haemagglutination by influenza A virus. Biochem .J.1997;323(2):393~9
    30. Allen MJ,Harbeck P,Smith B,et al. Binding og rat and human surfactant protein A and D to Aspergillus cinida. Infect Immun. 1999;67(7):4563~9
    31. Slight J,Nicholson WJ,Mitchell CG,et al. Inhibition of the alveolar macrophage oxidative burst by a diffusibale component from the surface of the spores of the fungus Aspergillus fumagatus. Thorax.1995;51(2)389~96
    32. Reichard V,Buthner S,Eiffert H,et al. Purification and characterisation of an extracellular serine protease from Aspergillus fumagatus and its detectin in tissue.J Med Microbiol. 1990;33(1)245~51
    33. Kuroki Y, Kuroki Y, Matsura E,et al. Pulmonary surfactant protein D:deisease markers. Biochim Biophys Acta.1998;1408(2)334~45
    34. Sutton P,Newcombe NR,Waring P,et al. In vivo immunosupressive activity of gliotoxin,a matablite produced by human pathogenic fungi. Infect Immun.1994; 62(8)1192~8
    35. Robinson BWS,Venaille TJ,Mende AHW,et al. Allergens as proteases:Aspergillus fumagatus protease derectly induces human epithelial cell detachemnt.J Allergy Clin Immunol.1990;86(5)726~31
    36. Chiller T, Farrukhshad K, Brammer E, et al. The interaction of human monocytes, monocyte-derived macrophages,and polymorphnucleat neytrohpils with caspofungin (MK-0991), an ethinocandin,for antifungal activity against Aspergillus fumigatus.Diagn Mictobiol.Infect.Dis.2001;39(1):99~103
    36. Chiln CC, Groll AH and Walsh TJ. New drugs and novel targets for treatment of invasive fungal infections in patients with cancer.Oncologist.2000;5(1)120~130
    37. Frusco MB and Barret JF.Importance of antifungal drug-resistance:clinical significance and need for novel therapy.Epert Opin Incestig Drugs;1998;7(2):175~197
    38. Georgopapadakou NH. Uptake on antifungals targeted to the cell wall:focus on beta-1,3-glucan synthase inhibitors.Expert Opin Investig Drugs.1998;10(2)269~280
    39. Groll AH,Shah PM, Mentzel C,et al. Trends in the postmortem epidemiology of invasive fungal infections at a university hospital.J Infect.1996;33(1)23~32
    40. Ikeda F,Wakai Y,Matsnmoto S,et al. Efficacy of FK463,a new lipopeptide antifungal agent, in mouse models of disseminated candidiasis and aspergilosis.Antimicrob Agents Chemother.2000;44(4)614~618
    41. Wayne PA, et al. National Committee for Clinical Laboratory Standards.Reference method for broth dilution antifungal susceptibility testing of yeasts.Aproved standard M27-A.
    42. Pittet D and Wenzel RP. Nosocomial bloodstream infections.Secular trends in tates, mortality, and contribution to total hospital deaths.Arch Intern Med.1995; 155(5) 1177~1184
    43. Ringden O, Mennier F, Tollemar J,et al. Eficacy of amphotericin B encapsulated in liposome (AmBisome) in the treatment of invasive fungal infections in immunocompromised patient.Antimicrob Chemother.1991;28(1):73~82
    44. Stynen D,Goris A, Sarfati J,et al. A new sensitive sandwich enzyme-linked immunosorbent assay to detect galactofuran in patients with invasive aspergillosis J Clin Microbiol.1995;33(3):497~500
    45. Hartshorn KL,White MR, Shepherd V,et al. Mechanisms of anti-influenza activity of surgactant proteins A and D:comparison with serum collectins.Am J Physiol. 1997; 273(6):1156~66
    46. Madan T,Eggoeton P,Klshore U,et al. Binding of pulmonary surgactant proteins A and D to Aspergillus fumigatus conodia enhanced phagocytosis and killing by juman neutrphils and alveolar macrophages. Infect Immun.1997;65(8):3171~79
    47. Bodey G,Baeltmann B, Dugmid W,et al. Fungal infections in cancer patients:an international autopsy survey.Eur J Clin Microbiol Infect Dis.1992;11(1):99~109
    48. Boachara JP,Larcher G,Joabaud F,et al. Extracellular fibrinogenolytic enzyme of Aspergillus fumigatus:substrate-dependent variations in the proteinase synthesis and characterization of the enzyme. FEMS Immunol Med Microbiol.1993;7(1)81~91
    49. Markaryan A, Mprpzova I,Yu H,et al. Purification and characterization of an elastinolytic metalloprotease frim Aspergillus fumigatus and immunoelectron microscopic evidence of secretion of this enzyme by the fungus invading the mutine lung.Infect Immun.1994;62(6):2149~57
    50. Monod M,Fatih A,Jaton-Ogay K,Paris S,et al. The secreted proteases of pathogenic species of Aspergillu and their possible role in virulence. Can J Bot. 1995; 73(S): 1081~86
    51. Monod M, Jaton-Ogay K, Paris J,et al. Isolation and chatacterization of a secreted metailoprotease of Aspergillus fumigatus.Infect Immun.1993;61(7):4099~4104
    52. Nilius AM and Farmer SG. Indentification of extracellular siderophores of pathogenic strains of Aspergillus fumigatus.J Med Vet Mycol.1990;28(2):395~403
    53. Reichard U,Monod M,Odds F,et al. Virulence of an aspergillopepsin-deficient mutant of Aspergillus fumigatus and evidence for another asparticc proteinase linked to the fungal cell wall.J Med Vet Mycol.1997;35(1):189~196
    54. Segal BH,Decarlo ES,Kwon-Chung J,et al. Aspergillus nidulars infection in chronic granulomatous disease.Medicine(Baltimore).1998;77(2):345~354
    55. Tronchin G,Bonchara JP,Lareber G,et al. Interaction between Aspergillus fumigatus and basement membrance laminin:binding and sybstrate degradation.Biol Cell.1993;77(2):201~208
    56. Wald A,Leisenring W,Burik JA, et al. Epidemiology of Aspergillus infections in a large cobort of patients undergoing bone marrow transplatation.J Infect Dis.1997; 175(12): 1459~1466
    57. Appel DJ and Gordon TR. Relationship among pathogenic and non pathogenic isolates of Fusarium axysperum based on the partial sequence of the intergenic spacer region of the ribosomal DNA.Mol Plant Microbe Interact.1996;9(1):125~138
    58. Schaffner RA, Sato A,Matsui Y,et al. Effects of Aspergillus species culture filtrates on human respiratory cilliated epitheliym in vitro.AM Rev Respir Dis.1992;145(1):548
    59. Amitani R, Wilson R,Rutman A,et al. Effects of human neutrophil elastase and Pseudomonas proteinases on human respiratory epithelium.Am J Respor Cell Mol Biol.1991;4(1):26~32
    60. Feldman C,Anderson R,Kanthakmmar K,et al. Oxidant-mediated ciliary dysfunction in human respiraty epithelium.Free Radial Biol Med.1994;17(1):1~10
    61. Wiktor-Jedrzejczak, W., and S. Gordon. Cytokine regulation of the macrophage (M phi) system studied using the colony stimulating factor-1-deficient op/op mouse. Physiol. Rev. 1996.76:927–947
    62. Masubuchi, T., Koyama S., Sato E., et al. Smoke extract stimulates lung epithelial cells to release neutrophil and monocyte chemotactic activity. Am. J. Pathol. 1998. 153(6):1903–1912
    63. 廖军,郝飞,钟白玉等.血浆beta-葡聚糖检测用于大鼠系统性念珠菌感染诊断的评价.第三军医大学学报.2003,25:13~15
    64. Hunninghake, G. W., and R. G. Crystal. Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers. Am. Rev. Respir. Dis. 1983.128(7):833–838
    65. Lopez, A. F., Williamson J., Gamble J. R., et al. Recombinant human granulocyte-macrophage colony-stimulating factor stimulates in vitro mature human neutrophil and eosinophil function, surface receptor expression, and survival. J. Clin. Invest. 1986. 78(9):1220–1228
    66. Brach, M. A., Sott C., Kiehntopf M., et al. Expression of the transforming growth factor-alpha gene by human eosinophils is regulated by interleukin-3, interleukin-5, and granulocyte-macrophage colony-stimulating factor. Eur. J. Immunol. 1994.24(5): 646–650
    67. Laan, M., Prause O., Miyamoto M., et al. A role of GM-CSF in the accumulation of neutrophils in the airways caused by IL-17 and TNF-. Eur. Respir. J. 2003. 21(2):387–393
    68. Silberstein, D. S., Owen W. F., Gasson J. C., et al. Enhancement of human eosinophil cytotoxicity and leukotriene synthesis by biosynthetic (recombinant) granulocyte-macrophage colony stimulating factor. J Immunol. 1986.137(10): 3290–3294
    69. Nakata J. C. Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood 1991.77(6):1131–1145
    70. Repentigny K., K. S. Akagawa, M. Fukayama, Y. Hayashi, M. Kadokura, and T. Tokunaga. Granulocyte-macrophage colony-stimulating factor promotes the proliferation of human alveolar macrophages in vitro. J Immunol. 1991.147(5):1266–1272
    71. Bergmann, M., P. J. Barnes, and R. Newton. Molecular regulation of granulocyte macrophage colony-stimulating factor in human lung epithelial cells by interleukin-1?, IL-4, and IL-13 involves both transcriptional and post-transcriptional mechanisms. Am. J. Respir. Cell Mol. Biol. 2000. 22(4):582–589
    72. Barnes, P. J. Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 1997.336(9):1066–1071
    73. Meja, K. K., P. M. Seldon, Y. Nasuhara, K. Ito, P. J. Barnes, M. A. Lindsay, and M. A. Giembycz. p38 MAP kinase and MKK-1 co-operate in the generation of GM-CSF from LPS-stimulated human monocytes by an NF-kappa B-independent mechanism. Br. J. Pharmacol. 2000. 131(10):1143–1153
    74. Cano, E., and L. C. Mahadevan. Parallel signal processing among mammalian MAPKs. Trends Biochem. Sci. 1995. 20(1):117–122
    75. Vanden Berghe, W., K. De Bosscher, E. Boone, S. et al. The nuclear factor-kappaB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J. Biol. Chem. 1999. 274(9):32091–32098
    76. Ait-Si-Ali, S., D. Carlisi, S. Ramirez, L. C. et al. Phosphorylation by p44 MAP Kinase/ERK1 stimulates CBP histone acetyl transferase activity in vitro. Biochem. Biophys. Res. Commun. 1999.262(1):157–162
    77. Ito, K., P. J. Barnes, and I. M. Adcock. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol. Cell. Biol. 2000. 20(4):6891–6903
    78. Lin, Y. Z., S. Y. Yao, R. A. Veach, T. R. Torgerson, and J. Hawiger. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J. Biol. Chem. 1995. 270(8):14255–14258
    79. Grimshaw, C. E. Identification of a potent, orally active small molecule IKK-2 inhibitor. Inflammation Res. 2001.50(S):149
    80. Osborn, L., S. Kunkel, and G. J. Nabel. TNF-a and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the NF-kB. Proc. Natl. Acad. Sci. USA 1989. 86(10):2336–2340
    81. Ogryzko, V. V., Schiltz R. L., Russanova V., et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996.87(8):953–959
    82. Frankenberger M, Pforte A, Sternsdorf T, et al. Constitutive nuclear NF-kappa B in cells of the monocyte lineage. Biochem. J. 1994.304(1):87–94
    83. Monick, M. M., A. B. Carter, and G. W. Hunninghake. Human alveolar macrophages are markedly deficient in REF-1 and AP-1 DNA binding activity. J. Biol. Chem. 1999. 74(5):18075–18080
    84. Imhof, A., and Wolffe A. P.. Transcription: gene control by targeted histone acetylation. Curr. Biol. 1998. 8(R):422–R424
    85. Boyes, J., P. Byfield, Y. Nakatani, and V. Ogryzko. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature .1998.396(2):594–598
    86. Chen C., Gonzalez-Sancho J. M., and Munoz A. Nuclear hormone receptor antagonism with AP-1 by inhibition of the JNK pathway. Genes Dev. 1997.11(12):3351–3364
    87. Garwell H., Lin R. J., Xie W., et al. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 1999.98(4): 675–686
    88. Espinos, E. Le Van TA, Pomies C, Weber MJ. Cooperation between phosphorylation and acetylation processes in transcriptional control. Mol. Cell. Biol. 1999.19(11): 3474–3484.
    89. Vogeser M, Haas A, Aust D, et al. Postmortem analysis of invasive aspergillosis in a tertiary care hospital. Eur J Clin Microbiol Infect Dis. 1997,16:1~6
    90. Aisner J, Wiernik PH, Schimpff SC.Treatment of invasive aspergillosis: relation of early diagnosis and treatment to response. Ann Intern Med. 1977,86:539~543
    91. Yeo SF, Wong B.Current status of nonculture methods for diagnosis of invasive fungal infections. Clin Microbiol Rev. 2002,15:465~484
    92. Alexander BD.Diagnosis of fungal infection: new technologies for the mycology laboratory. Trans Infect Dis. 2002,4 Suppl 3:32-37
    93. Becker J, Lugtenburg EJ, Cornelissen JJ, et al. Galactomannan detection in computerized tomography-based broncho-alveolar lavage fluid and serum in haematological patients at risk for invasive pulmonary aspergillosis. Br J Haematol. 2003,121:448~457
    94. Martin MJ, Van Eldere J, Verhaegen J, et al. Use of circulating galactomannan screening for early diagnosis of invasive aspergillosis in allogeneic stem cell transplant recipients. J Infect Dis. 2002,186:1297~1306
    95. Roilides J, de Marie S, Willemse D, et al. Quantitative galactomannan detection is superior to PCR in diagnosing and monitoring invasive pulmonary aspergillosis in an experimental rat model. J Clin Microbiol. 2000,38(4):1434~1438
    96. Kohno S, Misutake K, Maesaki S, et al. An evaluation of serodiagnostic tests in patients with candidemia: beta-D-glucan, mannan, Candida antigen by Cand-tec and D-arabinitol. Microbiol. Immunol. 1993; 37: 207~212
    97. Kawayama T and Oizumi K. Clinical features of deep mycosis in critical care center--comparison of serological tests and cultures for mycosis. Kansenshogaku Zasshi, 1999,73:743~748
    98. Loeffler J, Kloepfer K, Hebart H J. Polymerase chain reaction detection of Aspergillus DNA in experimental models of invasive aspergillosis. Infect Dis. 2002,185: 1203~1206
    99. Rad I, Hanna H, Sumoza D, et al. Cancer Polymerase chain reaction on blood for the diagnosis of invasive pulmonaryaspergillosis in cancer patients. 2002,94: 1032~1036
    100.Buchheidt D, Baust C, Skladny H, et al. Clinical evaluation of a poly merase chain reaction assay to detect Aspergillusspecies in bronchoalveolar lavage samples of neutropenic patients. Br J Haematol, 2002,116:803~811
    101.Bowman C, Costa JM, Chaumette MT, et al. Galactomannan and polymerase chain reaction for the diagnosis of primarydigestive aspergillosis in a patient with acute myeloid leukaemia. J Infect, 2001,43:213~214
    102.Mutayama JC, Abruzzo GK, Anderson JW, et al. Antimicrob Agents Chemother Quantitative PCR assay to measure Aspergillus fumigatus burden in a murine modelof disseminated aspergillosis: demonstration of efficacy of caspofungin acetate. 2001,45: 3474~3481
    103.Kami M. Current approaches to diagnose invasive aspergillosis: application of real-timeautomated polymerase chain reaction Nippon Ishinkin Gakkai Zasshi, 2001,42: 181~188
    104.Sandhu GS, Kline BC, Stockman L, et al. Molecular probes for diagnosis of fungal infections. J Clin Microbiol, 1995,33:2913~2919
    105.Meletiadis J, Melchers WJ, Meis JF, et al. Evaluation of a polymerase chain reaction reverse hybridization line probe assay for the detection and identification of medically
    important fungi in bronchoalveolar lavage fluids. Med Mycol, 2003,41:65~74
    106.Wu Z, Blomquist G, Westermark SO, et al. Application of PCR and probe hybridization techniques in detection of airborne fungal spores in environmental samples. J Environ Monit. 2002,4:673~678
    107.Blackwell TS and Christman JW.The role of nuclear factor-κB in cytokine gene regulation.Am J Respir Cell Biol.1997.17:3~9
    108.Baldwin AS.The NF-κB and IκB protein:new discoveries and insights.Annu Rer Immunol J.1996.14:649~683Lass-Florl C. Aigner J, Gunsilius E, et al. Screening for 4 spergillus spp, using polymerase chain reaction of whole blood samples from patients with haematologicalmalignancies. Br J Haematol, 2001, 113: 180~184
    109.Williamson E C, Leeming J P, Palmer H M, et al. Diagnosis of invasive aspergillosisin bone marrow recipients by polymerase chain reaction. Br J Haematol, 2000.108: 132~139
    110.Maertens J, Verhaegen J, Lagrou K, et al. Screening for circulating galactomannanas a noninvasive diagnostic tool for invasive aspergillosis in prolonged neutropenicpatients and stem cell transplantation recipients: a prospective validation. Blood, 2001,97: 1604~1610
    111.Rahman I,Nee WM. Role of reanscription factors in inflammatory lung disease.Thotax J.1998.53:601~612
    112.Patterson TF, Miniter P, Ryan JL, et al. Effect of immunosuppression and amphotericin B on Aspergillus antigenemia in an experimental model. J Infect Dis. 1988,158: 415~422
    113.Latge J P. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev, 1999,12: 310~350
    114.Chen S C. Halliday C L, Meyer W. A review of nucleic acid-based diagnostic testsfor systemic mycoses with an emphasis on polymerase chain reaction-based assavs. Med Mycol, 2002, 40:333~357