鼻咽癌易感基因miRNA结合位点多态性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
microRNAs(miRNA)是一种内源性的长22nt的单链小分子RNA,是一组不编码蛋白质的短序列RNA。miRNA通过与靶基因mRNA 3'非翻译区(3'Untranslated regions,3'UTR)的结合,在转录后水平降解mRNA或抑制翻译,调节基因的表达。miRNA与靶基因结合的关键部位称为“种子区域”(seed regionmiRNA 5'末端开始2—7个核甘酸),与miRNA3'UTR通过碱基配对结合。单核甘酸多态性是(SNPs)人类可遗传的变异中最常见的一种,前期研究已经证实miRNA靶位点序列中,存在有功能的SNPS。那么位于miRNA靶标位点的SNP会不会影响miRNA的功能及靶基因的表达呢?从2007年开始,部分学者开始从事这方面的研究,最近的研究已经证实了某些miRNA靶标位点的SNP与乳腺癌、结肠癌、肺癌、胃肠癌发病有关。
     然而,miRNA靶位点的单核酸多态性对鼻咽癌的发病是否有影响,与疾病发生、发展、预后的关系目前仍知之甚少,因此本研究的目的是通过生物信息学预测、筛选鼻咽癌易感基因3'UTR潜在的microRNA靶位点,并发掘靶标区域SNP位点,结合病例一对照研究,探讨miRNA靶标位点基因多态性与鼻咽癌发病的关系。
     首先通过文献回顾,我们总结了鼻咽癌的七大特征所涉及到的82个易感基因:持续生成新生血管、逃避凋亡、生长信号的自足性、抗生长信号的不敏感性、无限增殖潜能、组织侵袭与转移、肿瘤相关的炎症等。在NCBI数据库中下载了82个候选基因3'UTR的SNPs,利用miRanda,PicTar,TargetScans,和RNAfold webserve网站预测SNP位点的microRNA靶标和自由能,以与“种子”序列严格碱基互补配对的位点作为候选microRNA靶位点。最终在82个基因里找到220个SNPs存在于潜在的miRNA靶位点中,挑选在鼻咽癌中高表达,3'UTRSNP等位基因频率(MAF>0.05)且miRNA结合自由能相对较小的9个基因(EGFR,COX2,CCNE1,hTERT,MMP2,MMP9,NF-κB VEGF and WNT3)进行实验验证。
     实验首先随机选取12例患者和12例对照DNA,通过直接测序法筛选9个候选基因3'UTR的SNPs,结果筛选出EGFR rs884225,CCNE1 rs3218073 andMMP2 rs7201 3个SNPs用于下一步实验。然后,采用病例-对照的研究方法,选取广东地区167例鼻咽癌患者和171例正常对照为研究对象,针对已经筛选出来的SNPs进行批量PCR扩增和测序分型。
     研究结果表明:在鼻咽癌总体样本中CCNE1基因多态位点(rs3218073)中,携带T等位基因的基因型TC+TT(OR=1.585;95%CI=1.023~2.458 P=0.046),及等位基因T(OR=1.464,95%CI=1.012~2.118;P=0.042)显著增加了鼻咽癌患病风险。进一步分层分析表明,杂合子变异型TC(OR=1.959,P=0.043)和等位基因T(OR=2.123,P=0.006)在原发肿瘤T3-T4分期中分布明显,此外,基因型TC(OR=1.959,P=0.043)和等位基因T(OR=2.123,P=0.006)与较晚临床分期(Ⅲ-Ⅳ期)有关。MMP2 rs7201位点基因型分析,选取了116例鼻咽癌患者和143例正常对照,MMP2 rs7201多态性与鼻咽癌易感性不存在关联,(杂合子变异型AC OR=0.69.95%CI=0.404~1.124,p=0.209;等位基因C OR=0.769,95%CI=0.509~1.16,p=0.135)。以167例鼻咽癌患者和171例为研究对象分析EGFR多态位点(rs884225)基因型分布,EGFR rs884225多态性与鼻咽癌发病风险无统计学差异(杂合子AG OR=1.375,95%CI=0.850~2.224 p=0.194;纯合子变异型GG OR=0.844,95%CI=0.460~1.550 p=0.584:等位基因G OR=0.969,95%CI=0.714~1.315,p=0.839)。
     上述结果提示,生物信息学预测miRNA-151靶基因CCNE1 3'UTR区miRNA结合位点的(rs3218073)多态性,携带T等位基因与鼻咽癌易感关联程度较高,并且与肿瘤分期有关,miRNA-151功能与rs3218073多态性的关系,还需进一步实验证实。
MicroRNAs(miRNAs) are endogenous 22nt small non-coding single stranded RNAs that bind with target mRNAs and function as posttranscriptional regulators of gene expression by either promoting mRNA degradation or translational silencing. The critical region for miRNA binding to mRNA is the 'seed region'(nucleotides 2-7 from the 5'end of the miRNA),which most often binds to a target site in the 3'UTR of the genes by perfect Watson-Crick complementarity.Single nucleotide polymorphisms(SNPs) build the essence of human genetic diversity.
     Recently,genome-wide analysis(GWA) studies of human SNPs have revealed that nocoding variation in the regulatory sites are more like to be a associated with disease than the coding region variations.
     Previous studies have described several putative functional SNPs in miRNA target sites.Whether SNPs located at miRNA binding sites can affect the expression of the miRNA target? Several researchers have conducted on these projects since 2007and recent studies have demonstrated that several putative functional SNPs in miRNA target sites may contribute to the susceptibility of humans to common diseases,For example,breast cancer,colorectal cancer,lung cancer and gastrointestinal cancers.However,Little is known about whether variability of miRNA target sites could have impact on the nasopharyngeal carcinoma risk.Thouse,The purpose of this study was to screen SNPs of NPC candidate genes,which might modify miRNA-binding predicted by bioinformatics analysis and to assess the association with NPC.
     Based on the literatures related to genetic susceptibility of nasopharyngeal carcinoma,by analyzing seven hallmarks,including self-sufficiency in growth signals, evasion of apoptosis,insensitivity to growth inhibitory signals,limitless replicative potential,sustained angiogenesis,tissue invasion and metastasis,and cancer related inflammation that are involved in NPC,We summarized 82 genes were the most characterized and studied in NPC.We downloaded human SNPs in the 3' UTRs of 82 candidate genes from NCBI database and identified putative miRNA-binding sites by specialized algorithms(PicTar,miRanda,TargetScan,and RNAfold webserve).220 SNPs were identified in miRNA-binding sites.Thus,We focused on the 9 genes,including EGFR,COX2,CCNE1,hTERT,MMP2,MMP9,NF-κB VEGF and WNT3 for further investigation due to significant overexpression in NPC.We evaluated the miRNA-binding sites SNPs by assessing the MAF(MAF>0.05) and free energy.
     Therefore,a sequence analysis of targeted region was carried out to identify the potential variants of the candidate genes in 3'UTR.SNPS in 3'UTRs were identified by directly sequencing of genomic DNAs derived from 12 randomly selected patients and 12 controls,three SNPs,such as EGFR rs884225,CCNE1 rs3218073 and MMP2 rs7201 were found for next stage work.The study was carried out on a series of167 NPC cases and 171 controls from Guangdong province,a population with the highest worldwide incidence of NPC to research the distribution frequencies of the genotype. Here,we report results from the study.
     We found statistically significant associations between risk of NPC and variant genotypes of CCNE1 rs3218073,for TC+TT(OR=1.585;95%CI=1.023~2.458 P=0.046),for allele T(OR=1.464,95%CI=1.012~2.118;P=0.042).A significant association between rs3218073 genotype TC(OR=1.959,P=0.043),T allele (OR=2.123,P=0.006) and later primary tumor(T3-T4) was retrieved.Moreover,the genotype TC(OR=1.959,P=0.043),T allele(OR=2.123,P=0.006) of rs3218073 also showed an increased risk of higher stage(Ⅲ-Ⅳ).
     Analysis of the MMP2 rs7201and EGFR rs884225 genotype frequencies were performed in 116 NPC cases vs 143 controls and 167 NPC cases vs 171 controls, respectively.Allele case-control,and genotype case-control test statistics did not identify statistically significant association involving the two polymorphisms in NPC (p>0.05),according to MMP2 rs7201(the variant heterozygous AC OR=0.69,95% CI 0.404~1.124;allele C OR=0.769,95%CI=0.509~1.161 p=0.135) and to EGFR rs884225(the variant heterozygous AG OR=1.375,95%CI=0.850~2.224,p=0.194; the homozygotes variant GG OR=0.844,95%CI=0.460~1.550 p=0.584;allele G OR=0.969,95%CI=0.714~1.315,p=0.839).
     In conclusion,CCNE1 rs3218073 polymorphisms located at miRNA-151 binding sites through bioinformation prediction,T allele was associated with susceptibility to NPC and correlated with staging.Experimental assays will determine the functional effects of miRNA- 151 and rs3218073 polymorphisms.
引文
[1]Chou J, Lin YC, Kim J, et al.Nasopharyngeal carcinoma-review of the molecular mechanisms of tumorigenesis.Head Neck 2008; 30: 946-63.
    [2]Barrel DP.MicroRNAs: genomics, biogenesis, mechanism, and function.Cell 2004;116:281-97.
    [3]Burton PR, Clayton DG, Cardon LR, et al.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.Nature 2007; 447: 661-78.
    [4]Saunders MA, Liang H, Li WH.Human polymorphism at microRNAs and microRNA target sites.Proc Natl Acad Sci U S A 2007; 104: 3300-5.
    [5]Chen K, Rajewsky N.Natural selection on human microRNA binding sites inferred from SNP data.Nat Genet 2006; 38: 1452-6.
    [6]Sethupathy P, Collins FS.MicroRNA target site polymorphisms and human disease.Trends in Genetics 2008; 24: 489-97.
    [7]Lee RC, Feinbaum RL, Ambros V.THE C-ELEGANS HETEROCHRONIC GENE LIN-4 ENCODES SMALL RNAS WITH ANTISENSE COMPLEMENTARITY TO LIN-14.Cell 1993; 75: 843-54.
    [8]Reinhart BJ, Slack FJ, Basson M, et al.The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature 2000; 403: 901-06.
    [9]Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ.miRBase: tools for microRNA genomics.Nucleic Acids Research 2008; 36: D154-D58.
    [10]Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E.Phylogenetic shadowing and computational identification of human microRNA genes.Cell 2005; 120: 21-4.
    [11]Kim VN, Han J, Siomi MC.Biogenesis of small RNAs in animals.Nat Rev Mol Cell Biol 2009; 10: 126-39.
    [12]He L, Harmon GJ.MicroRNAs: small RNAs with a big role in gene regulation.Nat Rev Genet 2004; 5: 522-31.
    [13]Tan Z, Randall G, Fan J, et al.Allele-speciflc targeting of microRNAs to HLA-G and risk of asthma.Am J Hum Genet 2007; 81: 829-34.
    [14]Mishra PJ, Banerjee D, Bertino JR.MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell - Introducing microRNA pharmacogenomics.Cell Cycle 2008; 7: 853-58.
    [15]Park SY, Lee JH, Ha M, Nam JW, Kim VN.miR-29 miRNAs activate p53 by targeting p85a and CDC42.Nature Structural & Molecular Biology 2009; 16: 23-29.
    [16]Landi D, Gemignani F, Barale R, Landi S.A catalog of polymorphisms falling in microRNA-binding regions of cancer genes.DNA Cell Biol 2008; 27: 35-43.
    [17]Chen KX, Song FJ, Calin GA, Wei QY, Hao XS, Zhang W.Polymorphisms in microRNA targets: a gold mine for molecular epidemiology.Carcinogenesis 2008; 29: 1306-11.
    [18]Watanabe Y, Tomita M, Kanai A.Computational methods for microRNA target prediction.Methods Enzymol 2007; 427: 65-86.
    [19]Rajewsky N.microRNA target predictions in animals.Nat Genet 2006; 38 Suppl: S8-13.
    [20]Bartel DP.MicroRNAs: target recognition and regulatory functions.Cell 2009; 136:215-33.
    [21]Hu Z, Liang J, Wang Z, et al.Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women.Hum Mutat 2009;30: 79-84.
    [22]Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A.Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma.Proc Natl Acad Sci U S A 2008; 105: 7269-74.
    [23]Clop A, Marcq F, Takeda H, et al.A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.Nature Genetics 2006; 38: 813-18.
    [24]Clop A, Marcq F, Takeda H, et al.A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.Nat Genet 2006; 38: 813-8.
    [25]Mishra PJ.MicroRNA polymorphisms: a giant leap towards personalized medicine.Personalized Medicine 2009;6:119-25.
    [26]Landi D,Gemignani F,Naccarati A,et al.Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer.Carcinogenesis 2008;29:579-84.
    [27]Brendle A,Lei H,Brandt A,et al.Polymorphisms in predicted microRNA binding sites in integrin genes and breast cancer-ITGB4 as prognostic marker.Ejc Supplements 2008;6:42-43.
    [28]Young LE,Moore AE,Dixon DA.MicroRNA control of COX-2 expression.Gastroenterology 2008;134:A61-A62.
    [29]Chin L J,Ratner E,Leng SG,et al.A SNP in a let-7 microRNA Complementary Site in the KRAS 3'Untranslated Region Increases Non-Small Cell Lung Cancer Risk.Cancer Research 2008;68:8535-40.
    [30]Tchatchou S,Jung A,Hemminki K,et al.A variant affecting a putative miRNA target site in estrogen receptor(ESR)1 is associated with breast cancer risk in premenopausal women.Carcinogenesis 2009;30:59-64.
    [31]Coutinho-Camillo CM,Brentani MM,Nagai MA.Genetic alterations in juvenile nasopharyngeal angiofibromas.Head Neck 2008;30:390-400.
    [32]Chang ET,Adami HO.The enigmatic epidemiology of nasopharyngeal carcinoma.Cancer Epidemiology Biomarkers & Prevention 2006;15:1765-77.
    [33]卢泰祥等,主编.实用临床放射肿瘤学.第1版.广东:中山大学出版社,2005
    [34]殷蔚伯等,主编.肿瘤放射治疗学.第4版.北京:中国协和医科大学出版社,2008
    [35]Brooks L,Yao QY,Rickinson AB,Young LS.Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells:coexpression of EBNA1,LMP 1,and LMP2 transcripts.J Virol 1992;66:2689-97.
    [36]Lee JW,Liu PF,Hsu LP,Chen PR,Chang CH,Shih WL.EBV LMP-1 negatively regulates expression and pro-apoptotic activity of Par-4 in nasopharyngeal carcinoma cells.Cancer Lett 2009.
    [37]Dalmay T,Edwards DR.MicroRNAs and the hallmarks of cancer.Oncogene 2006;25:6170-5.
    [38]Hanahan D,Weinberg RA.The hallmarks of cancer.Cell 2000;100:57-70.
    [39]Mantovani A.Cancer:Inflaming metastasis.Nature 2009;457:36-7.
    [40]段朝军 陈,赵明伦.EB病毒LMP与EGF自分泌在鼻咽癌细胞生长中的作用及其相互关系[J].湖南医科大学学报,1997,22(06)483-486.
    [41]Jorissen RN,Walker F,Pouliot N,Garrett TPJ,Ward CW,Burgess AW.Epidermal growth factor receptor:mechanisms of activation and signalling.Experimental Cell Research 2003;284:31-53.
    [42]Yip WK,Leong VCS,Abdullah MA,Yusoff S,Seow HF.Overexpression of phospho-Akt correlates with phosphorylation of EGF receptor,FKHR and BAD in nasopharyngeal carcinoma.Oncology Reports 2008;19:319-28.
    [43]Yuan T-Z,Li X-X,Cao Y,Qian C-N,Zeng M-S,Guo X.[Correlation of epidermal growth factor receptor activation to metastasis-free survival of nasopharyngeal carcinoma patients].Ai Zheng 2008;27:449-54.
    [44]陈鑫苹,符生苗,邓立群,et al.鼻咽癌p16、p130/Rb2、nm23-H1基因mRNA 表达研究.中国医疗前沿2008.
    [45]Hui ABY,Or YYY,Takano H,et al.Array-based comparative genomic hybridization analysis identified cyclin Dl as a target oncogene at 11q13.3 in nasopharyngeal carcinoma.Cancer Research 2005;65:8125-33.
    [46]张勇,秦娜,李祖云.TGF-β1、TGF-β2和Smad7在鼻咽癌中的表达及意义.广西医科大学学报2008.
    [47]Sheu LF,Chen A,Lee HS,Hsu HY,Yu DS.Cooperative interactions among p53,bc1-2 and Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma cells.Pathology International 2004;54:475-85.
    [48]Johansson P,Jansson A,Rueetschi U,Rymo L.Nuclear Factor-kappa B Binds to the Epstein-Barr Virus LMP1 Promoter and Upregulates Its Expression.Journal of Virology 2009;83:1393-401.
    [49]吴显祥,陈云芳.Hsp70与hsp27在鼻咽癌中的表达及其临床病理研究.中国医师杂志2006.
    [50]Zeng ZY,Zhou YH,Zhang WL,et al.Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway.Human Pathology 2007; 38: 120-33.
    [51]Kim S, Takahashi H, Lin WW, et al.Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis.Nature 2009; 457: 102-U08.
    [52]Zhu YH, Xu YC, Wei YS, Liang WB, Liao M, Zhang L.Association of IL-1B gene polymorphisms with nasopharyngeal carcinoma in a Chinese population.Clinical Oncology 2008; 20: 207-11.
    [53]Pratesi C, Bortolin MT, Bidoli E, et al.Interleukin-10 and interleukin-18 promoter polymorphisms in an Italian cohort of patients with undifferentiated carcinoma of nasopharyngeal type.Cancer Immunology Immunotherapy 2006; 55:23-30.
    [54]Wei YS, Kuang XH, Zhu YH, et al.Interleukin-10 gene promoter polymorphisms and the risk of nasopharyngeal carcinoma.Tissue Antigens 2007; 70: 12-17.
    [55]Ben Nasr H, Chahed K, Mestiri S, Bouaouina N, Snoussi K, Chouchane L.Association of IL-8 (-251)T/A polymorphism with susceptibility to and aggressiveness of nasopharyngeal carcinoma.Hum Immunol 2007; 68: 761-69.
    [56]Zhou XX, Jia WH, Shen GP, et al.Sequence variants in toll-like receptor 10 are associated with nasopharyngeal carcinoma risk.Cancer Epidemiol Biomarkers Prev 2006; 15: 862-6.
    [57]Chen JM, Ferec C, Cooper DN.A systematic analysis of disease-associated variants in the 3 ' regulatory regions of human protein-coding genes I: general principles and overview.Human Genetics 2006; 120: 1-21.
    [58]Chen JM, Ferec C, Cooper DN.A systematic analysis of disease-associated variants in the 3' regulatory regions of human protein-coding genes Ⅱ: the importance of mRNA secondary structure in assessing the functionality of 3' UTR variants.Hum Genet 2006; 120: 301-33.
    [59]Carninci P, Kasukawa T, Katayama S, et al.The transcriptional landscape of the mammalian genome.Science 2005; 309: 1559-63.
    [60]Xie XH, Lu J, Kulbokas EJ, et al.Systematic discovery of regulatory motifs in human promoters and 3 ' UTRs by comparison of several mammals.Nature 2005; 434: 338-45.
    [61]Imanishi T, Itoh T, Suzuki Y, et al.Integrative annotation of 21,037 human genes validated by full-length cDNA clones.Plos Biology 2004; 2: 856-75.
    [62]George Priya Doss C, Sudandiradoss C, Rajasekaran R, et al.Applications of computational algorithm tools to identify functional SNPs.Funct Integr Genomics 2008; 8: 309-16.
    [63]Colt JS, Rothman N, Severson RK, et al.Organochlorine exposure, immune gene variation, and risk of non-Hodgkin lymphoma.Blood 2009; 113: 1899-905.
    [64]Suzuki H, Li YN, Dong XQ, Hassan MM, Abbruzzese JL, Li DH.Effect of Insulin-Like Growth Factor Gene Polymorphisms Alone or In Interaction with Diabetes on the Risk of Pancreatic Cancer.Cancer Epidemiology Biomarkers & Prevention 2008; 17: 3467-73.
    [65]Ramus SJ, Vierkant RA, Johnatty SE, et al.Consortium analysis of 7 candidate SNPs for ovarian cancer.International Journal of Cancer 2008; 123: 380-88.
    [66]Choudhury A, Elliott F, Iles MM, et al.Analysis of variants in DNA damage signalling genes in bladder cancer.Bmc Medical Genetics 2008; 9.
    [67]Chen HC, Chen GH, Chen YH, et al.MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma.British Journal of Cancer 2009; 100:1002-11.
    [68]Lo AKF, Lo KW, Tsao SW, et al.Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells.Neoplasia (New York) 2006;8: 173-80.
    [69]Chang ET, Birmann BM, Kasperzyk JL, et al.Polymorphic Variation in NFKB1 and Other Aspirin-Related Genes and Risk of Hodgkin Lymphoma.Cancer Epidemiology Biomarkers & Prevention 2009; 18: 976-86.
    [70]Kato M, Nakazaki K, Sato Y, et al.Genome-Wide Analysis of B Cell Non-Hodgkin's Lymphoma Disclosed Frequent Involvement of Genes in NFkB Pathway.Blood 2008; 112: 300-00.
    [71]Lo AKF, To KF, Lo KW, et al.Modulation of LMP1 protein expression by EBV-encoded microRNAs.Proceedings of the National Academy of Sciences of the United States of America 2007; 104: 16164-69.
    [72]Pan JJ, Kong L, Lin SN, Chen G, Chen Q, Lu JJ.The Clinical Significance of Coexpression of Cyclooxygenases-2, Vascular Endothelial Growth Factors, and Epidermal Growth Factor Receptor in Nasopharyngeal Carcinoma.Laryngoscope 2008; 118: 1970-75.
    [73]Wang ZL, Li LL, Guo LL, et al.STAT3 INDUCED BY EPSTEIN-BARR VIRUS LATENT MEMBRANE PROTEIN 1 CAUSES VASCULAR ENDOTHELIAL GROWTH FACTOR EXPRESSION AND CELLULAR INVASIVENESS VIA JAK3 AND ERK1/2 SIGNALING.Cell Biology International 2008; 32: S36-S36.
    [74]Nasr HB, Chahed K, Bouaouina N, Chouchane L.Functional vascular endothelial growth factor -2578 C/A polymorphism in relation to nasopharyngeal carcinoma risk and tumor progression.Clin Chim Acta 2008; 395: 124-9.
    [75]Hua Z, Lv Q, Ye W, et al.MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia.PLoS ONE 2006; 1: el 16.
    [76]Fendri A, Khabir A, Hadhri-Guiga B, et al.Overexpression of COX-2 and LMP1 are correlated with lymph node in Tunisian NPC patients.Oral Oncology 2008; 44: 710-15.
    [77]Ben Nasr H, Chahed K, Bouaouina N, Chouchane L.PTGS2 (COX-2) -765 G > C functional promoter polymorphism and its association with risk and lymph node metastasis in nasopharyngeal carcinoma.Molecular Biology Reports 2009; 36:193-200.
    [78]Strillacci A, Griffoni C, Sansone P, et al.MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells.Exp Cell Res 2009;315: 1439-47.
    [79]Cui D, Zhang X, Fu Y.[Expressions of COX-2 and MMP-2 in nasopharyngeal carcinoma and the their relationship with lymph node metastasis].Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2008; 22: 692-4.
    [80]Yang EV, Sood AK, Chen M, et al.Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells.Cancer Research 2006; 66: 10357-64.
    [81]Tsang NM.Single nucleotide polymorphism (SNP) in matrix metalloproteinase-9 (MMP-9) promoter gene predicts local recurrence but not distant metastasis in the patients with nasopharyngeal carcinoma.Proceedings of the American Association for Cancer Research Annual Meeting 2007; 48: 1289-90.
    [82]Gabriely G, Wurdinger T, Kesari S, et al.MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators.Molecular and Cellular Biology 2008; 28: 5369-80.
    [83]Tan EL, Sam CK.Biological properties of TW01 cells expressing latent membrane protein-1 gene of EBV-derived from nasopharyngeal carcinoma cells at different stages of malignancy.Exp Oncol 2007; 29: 166-74.
    [84]Shi W, Bastianutto C, Li A, et al.Multiple dysregulated pathways in nasopharyngeal carcinoma revealed by gene expression profiling.International Journal of Cancer 2006; 119: 2467-75.
    [85]Lijavetzky D, Cabezas JA, Ibanez A, Rodriguez V, Martinez-Zapater JM.High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology.Bmc Genomics 2007;8.
    [86]Malumbres M, Barbacid M.Cell cycle, CDKs and cancer: a changing paradigm.Nature Reviews Cancer 2009; 9: 153-A.
    [87]Goode EL, Fridley BL, Vierkant RA, et al.Candidate Gene Analysis Using Imputed Genotypes: Cell Cycle Single-Nucleotide Polymorphisms and Ovarian Cancer Risk.Cancer Epidemiology Biomarkers & Prevention 2009; 18: 935-44.
    [88]Liu X, Sempere LF, Galimberti F, et al.Uncovering Growth-Suppressive MicroRNAs in Lung Cancer.Clinical Cancer Research 2009; 15: 1177-83.
    [89]Cohen EEW, Zhu HY, Lingen MW, et al.A Feed-Forward Loop Involving Protein Kinase C alpha and MicroRNAs Regulates Tumor Cell Cycle.Cancer Research 2009; 69: 65-74.
    [90]Liu Q, Fu HJ, Sun F, et al.miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes.Nucleic Acids Research 2008; 36: 5391-404.
    [91]Fatar M, Stroick M, Steffens M, et al.Single-nucleotide polymorphisms of MMP-2 gene in stroke subtypes.Cerebrovascular Diseases 2008; 26: 113-19.
    [92]Choi JE, Park SH, Kim KM, et al.Polymorphisms in the epidermal growth factor receptor gene and the risk of primary lung cancer: a case-control study.Bmc Cancer 2007; 7.
    [93]Zhu JY, Pfuhl T, Motsch N, et al.Identification of Novel Epstein-Barr Virus MicroRNA Genes from Nasopharyngeal Carcinomas.Journal of Virology 2009; 83: 3333-41.
    [94]Cosmopoulos K, Pegtel M, Hawkins J, et al.Comprehensive Profiling of Epstein-Barr Virus MicroRNAs in Nasopharyngeal Carcinoma.Journal of Virology 2009; 83: 2357-67.
    [95]Sengupta S, den Boon JA, Chen IH, et al.MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins.Proceedings of the National Academy of Sciences of the United States of America 2008; 105: 5874-78.
    [96]Kim J, Krichevsky A, Grad Y, et al.Identification of many microRNAs that copurify with polyribosomes in mammalian neurons.Proceedings of the National Academy of Sciences of the United States of America 2004; 101: 360-65.
    [97]Fu HJ, Tie Y, Xu CW, et al.Identification of human fetal liver miRNAs by a novel method.Febs Letters 2005; 579: 3849-54.
    [98]Guo Y, Chen ZL, Zhang L, et al.Distinctive MicroRNA profiles relating to patient survival in esophageal squamous cell carcinoma.Cancer Research 2008; 68: 26-33.
    [99]Rossi L, Bonmassar E, Faraoni I.Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro.Pharmacological Research 2007; 56: 248-53.
    [100]Mi SL, Lu J, Sun M, et al.MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia.Proceedings of the National Academy of Sciences of the United States of America 2007; 104: 19971-76.
    [101]Agirre X, Jimenez-Velasco A, Jose-Eneriz ES, et al.Down-Regulation of hsa-miR-lOa in Chronic Myeloid Leukemia CD34(+) Cells Increases USF2-Mediated Cell Growth.Molecular Cancer Research 2008; 6: 1830-40.