连接肽(Linker)对抗人纤维蛋白单链抗体二聚体形成的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单链抗体(Single-chain,Fv)是利用基因工程的方法,将免疫球蛋白重链可变区(V_H)和轻链可变区(V_L)用一连接肽(Linker)相连接而成的,具有抗原特异性强、分子量小、组织穿透力强、体内滞留时间短、血中清除快、无Fc段所引起的非特异性反应、C-端能与其它分子相连接等优点,因而在肿瘤临床定位诊断、导向性治疗以及基础理论研究等方面具有十分重要的作用。抗人纤维蛋白单链抗体scFv-8E5的轻、重链可变区基因是从抗人纤维蛋白单克隆细胞系8E5中提取的,该单链抗体能特异性识别人纤维蛋白β链7肽,因而在血栓病的定位及导向溶栓等方面有诱人的应用前景。近来的研究表明,单链抗体若能形成二聚体结构,可以明显提高其抗原结合力及其自身的稳定性。同时,用连接肽连接异源的轻、重链可变区基因,形成的二聚体可以同时识别二种不同的抗原,即具有双特异性,这在临床应用中具有十分重要的价值。本文利用已有的抗人纤维蛋白单链抗体scFv-8E5,利用基因工程的方法,对其连接肽进行了改造,分别用三种连接肽取代原有连接肽以研究这些连接肽对该单链抗体二聚体形成、抗原结合力、稳定性的影响。
     方法:以人工合成三种新的连接肽DNA作为引物的一部分,经PCR扩增分别将这三种新连接肽插入V_H与V_L之间,取代原有的连接肽,用SDS-PAGE观察表达结果,用ELISA法检测其抗原结合力及稳定性。
     结果:本文新构建的三种质粒pOPE51-8E5-5、pOPE51-8E5-10A、pOPE51-8E5-10B均能在大肠杆菌JM109中表达,它们的表达产量均高于
Single-chain Fv (ScFv) is recombinant antibody fragment consisting of only the variable light chain (V_L) and variable heavy chain (V_H) domains covalently connected to one another by a polypeptide linker. Due to the small size, the scFv shows faster plasma clearance and stronger tissue penetration in vivo, and easier being linked to another effector molecules at the C-terminal. It has binding specificity as its parent antibody does, but has no non -specific binding induced by the Fc fragments. These advantages favour the scFv applications as imaging reagents for tumor localization and targeting delivery of drugs, toxins or radionuclides to the tumor. ScFv-8E5 is a 30KDa single chain Fv with the antigen-binding specificity against a synthetic heptapeptide of the β chain of human fibrin. Therefore, it may be useful in thrombosis imagine and targeting thrombolytic therapy. Investigation data shows that bivalent scFv has better antigen-binding specificity and stability than those of the monomer. It can also be formed by two heterogenic scFvs as bifunctional biabody.
    In this studies, the linker of the scFv-8E5 has been modified. The effects of the modifications on (scFv)_2 dimer formation and antigen binding have been carried out.
    Methods : The DNA fragments of three linkers were synthesized as parts of the primers. Using PCR techniquence, each linker was inserted between the V_H and V_L to replace the primary linker in pOPE51-8E5. Three
引文
1. Runge MS, Quertermous T, Zavodny P J, et al. A recombinant chimeric lasminogen activitor with high affinity for fibrin has increased thrombolytic potency in vitro and in vivo. Proc Natl Acad Sci USA, 1991; 88:10337-10341.
    2. Holvoet T, Laroche Y, Stassen JM, et al. Pharmacokinetic and throm-bolytic properties of chimeric plasminogen activators consisting of a single-chain urokinase. Blood, 1993;81:696-703.
    3. Song Z, Cai Y, Song D, et al. Primary structure and functional expression of heavy- and light-chain variable region genes of a monoclonal antibody specific for human fibrin. Hybridoma, 1997; 16:235-241.
    4.金冬雁,黎孟枫等译.分子克隆实验指南,第二版,科学出版社,1996;pp19.
    5.钱玉昆主编.使用免疫学新技术.北京医科大学、中国协和医科大学联合出版社.1994.
    6. Mansfield E, Amlot P, Pastan I, et al. Recombinant RFB4 immunotoxins exhibit potent cytotoxie activity for CD22-bearing cells and tumors. Blood, 1997; 90:2020-2026.
    7. Holliger P. "Diabodies": small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA, 1993; 90:6444-6448.
    8. Helfrich W, Kroesen BJ, Roovers RC, et al. Construction and characteri-zation of a bispecific diabody for retargeting T cells to human carcinomas. Int J Carcer, 1998; 76:232-239.
    9. Hu S, Shively L, Raubitschek A, et al. Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res, 1996;56: 3055-3061.10. Whitlow M, Bell BA, Feng SL, et al. An improved linker for single-chain Fv with reduces aggregation and enhanced proteolytic stability. Protein Engineering, 1993; 6(8):989-995.
    11. Wang D, Berven E, Li QZ, et al. Optimization of conditions for formation and analysis of anti-CD19 FVS191 single-chain Fv homodimer (scFv')_2. Bioconjug Chem, 1997; 8(1):64-70.
    12.陈宇萍,王琰,王雅明等.抗红细胞双价小分子抗体的构建及表达.中华微生物学和免疫学杂志,1997;17:231-234.
    13. Milenic DE, Yokota T, Filpula DR, et al. Construction, bining properties, metabolism, and tumor targeting of a single-chain Fv Derived from the pancarcinoma monoclonal antibody CC49. Cancer Res, 1991; 51:6363-6371.
    14. Kipriyanov SM, Dubel S, Breitling F, et al. Reeombinat single-chain Fv fragments carrying C-terminal cysteine residues: production of bivalent and biotinylated miniantibodies. Mol Immunol, 1994; 31(14): 1047-1058.
    15. Brinkmann U, Reiter Y, Jung S-H, et al. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc Natl Acad Sci USA, 1993; 90:7538-7542.
    16. Luo D, Geng M, Noujaim AA, et al. An engineered bivalent single-chain antibody fragment that increases antigen binding activity. J Biochem, 1997; 121:831-834.
    17. Brinkmann U, Carlo AD, Vasmatzis G, et al. Stabilization of a recombinant Fv fragment by base-loop intercormection and V_H-V_L Permutation. J Mol Biol, 1997; 268:107-117.1. Kohler G and Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975,256:495-497.
    
    2. Winter G. and Milstein C. Man-made antibodies. Nature, 1991,349:293- 299.
    
    3. Sharon J, Gefer ML, Morrison SL, et al. Expression of a VHCK chimaeric protein inmousemyeloma cell. Nature, 1984,309:364-367.
    
    4. Griffiths AD, Malmqvist M, Marks JD, et al. Human antiself antibodies with high specificity from phage display libraries. EMBO J, 1993,12:725- 734.
    
    5. Mailender WD and Voss EW. Construction, expression, and activity of a bivalent bispecific single-chain antibody. J Biol Chem, 1994,269:199-206.
    
    6. Sutherlald R, Buchegger F, Schreyer M, et al. Penetration and binding of radio-labeled anti-carcinoembryonic antigen monoclonal antibodies and their antigen binding fragments in human colon multicellular tumor spheroids. Cancer Res, 1987,47:1627-1633.
    
    7. Zdanov A, Li Y, Bundle DR, et al. Structure of a single-chain antibody vari -able domain (Fv ) fragment complexed with a carbohydrate antigen at 1.7- A resolution. Proc Natl Acad Sci USA, 1994,91:6423-6427.
    
    8. Raag R, and Whitlow M. Single-chain Fvs. FASEB J, 1995,9:73-80.
    
    9. Neri D, Petrul H, and Roncucci G. Engineering recombinant antibodies for immunotherapy. Cell Biophysics, 1995,27:47-61.
    
    10. Chen HQ, Wang PC, Stastny JJ, et al. Molecular cloning and primary characterization of a single-chain antibody against human sarcoma- associated antigen p200. Anticancer Res, 1996,16(6B):3551-3556.
    
    11. Hoedemaeker FJ, Signorelli T, Johns K, et al. A single chain Fv fragment of P-glycoprotein-specific monoclonal antibody C219. J Biol. Chem, 1997, 272(47):29784-29789.12. Chapal N, Bouanani M, Embleton MJ, et al. In-cell assembly of scFv from human thyroid-infiltrating B cells. Biotechniques, 1997,23:518-524.
    
    13. Cai X and Garen A. Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: Selection of specific antibolies from single-chain Fv fusion phage libraries. Proc Natl Acad Sci USA, 1995,92:6537-6541.
    
    14. Marks JD, Griffiths AD, Malmqvist M, et al. By-passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology, 1992,10:779-783.
    
    15. Nissim A, Hoogenboom HR, Tomlinson IM, et al. Antibody fragments from a 'single pot' phage display library as immunochemical reagents. EMBO J, 1994,13:692-698.
    
    16. Zhou NM, Paemen L, Opdenakker G, et al. Cloning and expression in Escherichia coli of a human gelatinve B-inhibitory single-chain immuno- globulin variable fragment (scFv). FEBS Lett, 1997,414:562-566.
    
    17. Ayala M, Balint RF, Fernandez-de-Cossio L, et al. Variable region sequence modulates periplasmic export of a single-chain Fv antibody fragment in Escherichia coli. Biotechniques, 1995,18:832.
    
    18. Laukkanen ML, Alfthan K, Keinanen K. Functional immunoliposome harboring a biosynthetically lipid-tagged single-chain antibody. Biochemistry, 1994,33:11664-11670.
    
    19. Keinanen K and Laukkanen ML. Biosynthetic lipid-tagging of antibodies. FEBS Lett, 1994,346:123-126.
    
    20. Kipriyanov SM, Dubel S, Breitling F, et al. Bacterial expression and refolding of single-chain Fv fragments with C-terminal cysteins. Cell Biophysics, 1995,26:187-204.
    
    21. Libyh MT, Goossens D, Oudin S, et al. A recombinant human scFv anti-Rh (D) antibody with multiple valences using a C-terminal fragment of C4- Binding Protein. Blood, 1997,90:3978-3983.
    22. Whitlow M, Bell BA, Feng SL, et al. An improved linker for single-chain Fv with reduces aggregation and enhanced proteolytic stability. Protein Engineering, 1993,6(8):989-995.
    
    23. Huston JS, Levinson D, Mudgentt-Hunter M, wt al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA, 1988,85:5879-5883.
    
    24. Bird RE, Hardman KD, Jacobson JW, et al. Single-chain antigen-binding proteins. Science, 1988,242:423-426.
    
    25. He M, Kang AS,Hamon M, et al. Characterization of a progesterone-binding, three-domain antibody fragment (V_H/K) expressed in Escherichia coli. Immunology, 1995,84:662-668.
    
    26. Mallender WD and Voss, Jr EW. Construction, expression, and activity of a bivalent bispecific single-chain antibody. J Biol Chem, 1994,269:199- 206.
    
    27. Brocks B, Rode HJ, Klein M, et al. A TNF receptor antagonistic scFv, which is not secrected in mammalian cells, is expressed as a soluble mono- and bivalent scFv derivative in insect cells. Immunotechnology, 1997,3:173 -184.
    
    28. Fielder U, Phillips J, Artsaenko O, et al. Optimization of scFv antibody production in transgenic plants. Immunotechnology, 1997,3:205-216.
    
    29. Ward ES. Antibody engineering using Escherichia coli as host. Adv Pharmacol, 1993,24:1-20.
    
    30. Gruber M, Schodin BA, Wilson ER, et al. Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Escherichia coli. J Immunol, 1994,152:5368-5374.
    
    31. Buchner J, Pastan I, Brinkmann U. A method to increase the yield of properly folded recombinant fusion proteins: single-chain immunotoxinsfrom renaturation of bacterial inclusion bodies. Anal Biochem, 1992,205: 263-270.
    
    32. Anand NN, Mandal S, MacKenzie CR, et al. Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for a Salmonella serotype B O-antigen. J Biol Chem, 1991,15(266):21874- 21879.
    
    
    33. Barbas CF 3d, Bain JD, Hoekstra DM, et al. Semisynthetic combination antibody libraries: chemical solution to the diversity problem. Proc Natl AcadSci USA, 1992,89:4457-4461.
    
    34. Sharon J. Structural correlates of high antibody affinity: three engineered amino acid substitutions can increase the affinity of an anti-p-azophenylar- sonate antibody 200-fold. Proc Natl Acad Sci USA, 1990,87:4814-4817.
    
    35. Pantoliano MW, Bird RE, Johnson S, et al. Conformational stability, folding, and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed in Eschrichia coli. Biochemstry, 1991,30(42): 10117- 10125.
    
    36. Webb SR, Lee H, Hall JC. Cloning and expression in Escherichia coli of an anti-cyclohexanedione single-chain variable antibody fragment and comparison to the parent monoclonal antibody. J Agric Food Chem, 1997, 45(2):535-541.
    
    37. Milenic DE, Yokota T, Filpula DR, et al. Construction, bining properties, metabolism, and tumor targeting of a single-chain Fv Derived from the pancarcinoma monoclonal antibody CC49. Cancer Res, 1991,51:6363- 6371.
    
    38. Kipriyanov SM, Dubel S, Breitling F, et al. Recombinat single-chain Fv fragments carrying C-terminal cysteine residues: production of bivalent and biotinylated miniantibodies. Mol Immunol, 1994,31(14):1047-1058.
    
    39. Brinkmann U, Reiter Y, Jung S-H, et al. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc Natl Acad Sci USA,1993, 90:7538-7542.
    40. Adams GP, McCartney JE, Tai MS, et al. Highly specific in vivo tumor targeting by monovalent and divalent forms of 741F8 anti-c-erbB-2 single-chain Fv. Cancer Res, 1993, 53:4026.
    41. Luo D, Geng M, Noujaim AA, et al. An engineered bivalent single-chain antibody fragment that increases antigen binding activity. J Biochem, 1997, 121:831-834.
    42. Cumber A J, Ward ES, Winter G, et al. Comparative stabilities in vitro and in vivo of a recobinant moues antibody FvCys fragent and a bisFvCys conjugate. J Immunol, 1992, 149:120-126.
    43. Pack P and Pluckthum A. Miniantibodies: use of amphipathic helices to produce functional, flexible linked dimerie Fv fragments with high avidity in Escherichia coli. Biochem, 1992, 31:1579-1584.
    44. Owens RJ and Yong RJ. The genetic engineering of monoclonal antibodies. J Immunol Meth, 1994, 168:149-165.
    45. De Jonge J. Production and characterization of bispeeific single-chain antibody fragments. Mol Immunol, 1995, 32:1405-1412.
    46. Whitlow M, Filpula D, Rollence ML, et al. Multivalent Fvs: characterization of single-chain Fv oligomers and preparation of a bispecific Fv. Protein Eng, 1994, 7(8): 1017-1026.
    47. Holliger P. "Diabodies ": small bivalent and bispecific antibody fragments. Proc Natl Acad Sci USA, 1993, 90:6444-6448.
    48.陈宇萍,王琰,王雅明等.抗红细胞双价小分子抗体的构建及表达.中华微生物学和免疫学杂志,1997,17:231-234.
    49. Wu AM, Chen W, Raubitschek A, et al. Tumor localization of anti-CEA single-chain Fvs: improved targeting by non-covalent dimers. Immunotechnology, 1996, 2:21-36.
    50. Wang D, Berven E, Li QZ, et al. Optimization of conditions for formation??and analysis of anti-CD 19 FVS191 single-chain Fv homodimer (scFv')_2. Bioconjug Chem, 1997,8(l):64-70.
    
    51. Essig NZ, Wood JE, Howard AJ, et al. Crystallization of single-chain Fv fragments. J Mol Biol, 1993,234:897-901
    
    52. Kortt AA, Malby RL, Caldwell JB, et al. Recombinant anti-sialidase single- chain variable fragment antibody: characterization, formation of dimer and higher-molecular-mass multimers and the solution of the crystal structure of the single-chain variable fragment/sialidase complex. Eur J Biochem, 1994,211:151-157.
    
    53. Lawrence LJ, Kortt AA, Iliades P, et al. Orientation of antigen binding sites in dimeric and timeric single chain Fv antibody fragments. FEBS Lett, 1998,425:479-484.
    
    54. Pietersz GA, Patrick MR, Chester KA. Preclinical characterization and in vivo imaging studies of an engineered recombinant technetium-99m- labeled metallothionein-containing anti-carcinoembryonic antigen single- chain antibody. J Nucl Med, 1998,39:47-56.
    
    55. Konishi H, Ochiya T, Chester KA, et al. Targeting strategy for gene delivery to carcinoembryonic antigen-producing cancer cells by retrovirus displaying a single-chain variable fragment antibody. Hum Gene Ther. 1998,9:235-248.
    
    56. Begent RH and Chester KA. Single-chain Fv antibodies for targeting cancer therapy. Biochem Soc Trans, 1997,25:715-717.
    
    57. Winberg G, Grosmaire LS, Klussman K, et al. Surface expression of CD28 single-chain Fv for costimulation by tumor cells. Immunol Rev, 1996,153: 209-223.
    
    58. Huston JS, George AJ, Adams GP, et al. Single-chain Fv radioimmuno-targeting. Q J Nucl Med, 1996,40:320-333.
    59. Spellerberg MB, Zhu D, Thompsett A, et al. DNA vaccines against lymphoma-Promotion of anti-idiotypic antibody responses induced by single chain Fv genes by fusion to tetanus toxin fragment C. J Immunol, 1997, 159:1885-1892.
    60. Foryen G and Billiau A. Potential therapeutic use of antibodies directed towards HuIFN-gamma. Biotherapy, 1997, 10:49-57.
    61. Pentel PR and Keyler DE. Drug-specific antibodies as antidoties for tricyclic antidepressant overdose. Toxicol Lett, 1995, 82-83:801-806.
    62. Wick B and Groner B. Evaluation of cell surface antigens as potential targets for recombinant tumor toxins. Cancer Letters, 1997, 118:161-172.
    63. George AJ, Titus JA, Jost CR, et al. Redirection of cellualr cytotoxicity. A two-step approach using recombinant single-chain Fv molecules. Cell Biophys, 1995, 26:153-165.
    64. Gerstmayer B, Hoffmann M, Altenschmidt U, wt al. Costimulation of Tcell proliferation by a chimeric B7-antibody fusion protein. Cancer Immunol Immunother, 1997, 45:156-158.
    65. Wang D, Li Q, Hudson W, et al. Generation and characterization of an anti-CD19 single-chain Fv immunotoxin composed of C-terminal disulfidelinked dgRTA. Bioconjug Chem, 1997, 8:878-884.
    66. Helfrich W, Kroesen B J, Roovers RC, et al. Construction and characterization of a bispecific diabody ofr retargeting T cells to human carcinomas. Int J Cancer, 1998, 76:232-239.