超分辨率图像恢复中的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分辨率图像恢复是近年来才出现的图像处理方法,该方法通过对图像序列作图像运动估计、图像信息融合、去模糊和去噪声等,从低分辨图像序列的多张图像中恢复细节更精细的高分辨率图像,是一种既经济又容易实现的图像分辨率提高方法,可用于提高遥感和医学等图像的分辨率。本文从单独考虑超分辨率图像内插,同时考虑图像模糊估计与高分辨率图像恢复,以及同时考虑图像运动、模糊估计与高分辨率图像恢复等三种不同处理方式,对超分辨率图像恢复中的方法进行了研究。
     在仅考虑超分辨率图像内插方面,改进了现有超分辨率图像小波内插。首先指出现有超分辨率图像小波内插的不足在于它采用的是缺乏位移不变性和方向可选择性的二维实离散小波变换(DWT,discrete wavelet transformation),使得该方法恢复的高分辨率图像中容易出现“振铃效应”,在恢复细节时可选方向少。本文提出一种改进的超分辨率图像小波内插,采用具有位移不变性和更多方向可选性的二元树复小波变换(DT CWT,dual tree complex transforrnation),代替超分辨率图像小波内插中的DWT,使超分辨率图像内插可选的细节方向增多,恢复图像中的“振铃效应”也明显减少。给出了超分辨率图像DT CWT内插的计算方法。用人工低分辨率图像序列进行实验,实验结果表明了本文改进方法的有效性。
     在同时考虑图像模糊估计和高分辨率图像恢复方面,改进了现有线性正则有参超分辨率图像恢复在正则处理上的不足。由于现有线性正则有参超分辨率图像恢复在线性的Tikhonov正则中,采用的是线性位移不变的正则参数和高通低不阻的恒定正则算子,导致该方法不能在高分辨率恢复图像中较好地保留图像边缘细节。本文提出线性自适应正则有参超分辨率图像恢复,在Tikhonov正则中引入高通低阻的Laplacian正则算子,用反映图像局部光滑特征的梯度信息对正则参数进行局部加权,使正则参数能随图像光滑特征自适应地改变大小,从而使高分辨率恢复图像中的边缘细节能更好地得到保留。给出了线性自适应正则有参超分辨率图像恢复的近似求解和计算步骤。在人工低分辨率图像序列上进行实验,实验结果表明了本文正则改进方法的有效性。
     在同时考虑模糊估计和高分辨率图像恢复方面,还改进了现有线性正则有参超分辨率图像恢复在图像模型边界处理上的不足。由于现有线性正则有参超分辨率图像恢复基于的是静态的和零边界条件的图像模型,使得该方法在上述边界条件不满足时,容易在高分辨率恢复图像的边框处产生“振铃效应”。提出线性正则有参超分辨率图像恢复方法的边界改进方法,即:用Neumann边界构
Super Resolution image restoration (SR) is a newcome image processing method that extracting higher resolution images containing more details from an image sequence of lower resolution, by image process such as motion estimation, deblurring and denoising. Currently SR is one active image processing field, in which the obtained algorithms can be used to improve image resolution in remote sensing and medical applications. In this paper, algorithms in three kinds of SR processing manner are studied, that are: only considering SR interpolation, considering together blurring estimation and high-resolution image restoration, and simultaneously considering image motion, blurring estimation and high-resolution image restoration.
    When only considering SR interpolation, some improvement to the existing wavelet-based SR interpolation is proposed. It is pointed out that because of the adopted 2-D real Discrete Wavelet Transformation(DWT) lacking of shift-invariance and direction selectivity, thus in the restored high resolution image obtained by Wavelet-based SR interpolation, there will appears some undesired Ringing Effects, and only few directions of details can be selected to restore by wavelet-based SR interpolation. Dual-Tree Complex Wavelet (DT CWT), which has nearly shift-invariance and direction selectivity with limited data redundancy, is proposed to replace 2-D real DWT in wavelet-based SR interpolation, thus not only make more selectivity of detail directions, but can also reduce the Ringing Effects in the restored high resolution image. Related computation steps are given. Tests results on synthetical lower resolution image sequences are also presented to show the validation of the proposed SR interpolation based on DT CWT.
    When considering image blurring estimation and high resolution image restoration together, improvements are proposed to the regularization method of the existing linear regularized and parametric SR blind restoration (LR PBSR). It is analyzed that because in the existing LR PBSR the adapted Tikhonov regularization is linear shift-invariance, and the adapted identity regularization operation is high-pass and low-not-stop, thus over smoothing will be induced into edge areas of the restored image which will decimate the restored image. In the same linear Tikhonov regularization frame, By adding into the regularization term a high-pass and low-stop Laplacian regularization operator and a weight matrix defined by the gradient vector magnitude which representing the local smoothing features, an local adopted linear regularization and parametric blind SR is realized, which make the regularization
引文
1. Park S C, Park M K, and Kang M G. Super-Resolution Image Reconstruction: A Technical Overview. IEEE Signal Processing Magazine, 2003, 20(3): 21-36.
    2. Almansa A, Durand S and Rouge B. Measuring and improving image resolution by adaptation of the reciprocal cell. Journal of Mathematical Imaging and Vision, 2004, 21(3): 235-27
    3.谭兵,邢帅,徐青,李建胜.SPOT5超模式数据处理技术研究.遥感技术与应用,2004,19(4):249-252
    4. Harries J L. Diffraction and resolving power. J. Opt. Soc. Amer., 1999, 4(2): 105-109
    5. Goodman J W. Introduction to Fourier optics. McGraw-Hill, New York, 1968
    6. Castleman KR. Digital Image Processing, Prentice Hall, Inc., a Simon & Schuster Company, 1996
    7. Lukosz W. Optical systems with resolving power exceeding the classical limit. J. Opt. Soc. Am. 1966, 56(11): 1463-1472
    8. Lukoz W. Optical systems with resolving power exceeding the classical limit Ⅱ. J, Opt. Soc. Am. 1967, 57(7): 932-941
    9. Papoulis A. Generalized Sampling Expansion. IEEE Trans. Circ. Syst., 1977, CAS-24(11): 652-654
    10. Huang T S and Tsay R Y. Multiple frame image restoration and registration. IN Advances in computer vision and Image Processing, T. S. Huang, Ed. Greenwich, CT: JAI, 1984, 1: 317-339
    11. Nguyen N, Milanfa P and Golub G H. Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Transactions on Image Processing, 2001, 10(9): 1299-1308
    12. Elad M and Feuer A. Restoration of a single super-resolution image from several blurred, noisy, and undersampled measured images. IEEE Transactions on Image Processing, 1997, 6(12): 1646-1658
    13. Reeves S J, Mersereau R M. Blur identification by the method of generalized cross-validation. IEEE trans, on Image Processing, 1992, 1(3): 301-311
    14. Nguyen N. Numerical techniques for image super-resolution[D]. Standford University, Standford, California, United States of America, 2000
    15. Farsiu S, Robinson D, Elad M and Milanfar P. Fast and Robust Multi-Frame Super-Resolution. IEEE Trans. IP, 2004, 13(10): 1327-1344
    16. Elad M. Super-Resolution Reconstruction of Images Static and Dynamic Paradigms[EB/OL]. 2002-02, The Scientific Computing and Computational Mathematics Program-Stanford University. http://www-sccm.stanford.edu/~elad/Lectures/Super-Resolution_All.ppt
    17. Kim S P, Bose N K and Valenzuela H M. Recursive reconstraction of high-resolution image from noisy undersampled frames. IEEE Trans. Acoust., Speech and Sign. Proc., 1990, 38: 1013-1027
    18. Electrical Engineering Department Baskin School of Engineering, University of Califomia, Super-resolution software pocket.[EB/OL] http://www.cse.ucsc.edu/~milanfar/SRSoftware.htm
    19. Chan T F and Wong C K. Multicharmel image deconvolution by total variation regularization. SPIE, 1997, 3162: 35A366
    
    20. Zhao W Y, Sawhney H S and Hansen M W. Supun Samarasekera:Super-Fusion: A Super-Resolution Method Based on Fusion. ICPR (2) 2002: 269-272
    
    21. Ng J and Bose N.Mathematical Analysis of Superresolution Methodology. IEEE Signal Processing Magazine, 2003,20(3): 62-74
    
    22. Vio R, Nagy J, Tenorio L and Wamsteker W. A simple but efficient algorithm for multiple-image deblurring. Astronomy & Astrophysics. 416, 403-410
    
    23. Ng M, Chan R, Chan T and Yip A. Cosine Transform Preconditioners for High Resolution Image Reconstruction, Linear Algebra Appls., 2000,316: 89-104
    
    24. Chan R H, and Ling R K. Reconstruction of High Resolution Images from Movie Frames, Numer. Math. J. Chinese Univ. (English Ser.), 2003, 12: 25-29
    
    25. Chan R H, Chan T F , Shen L X and et al. Wavelet Algorithms for High-Resolution Image Reconstruction, SIAM J. Sci. Comput., 2003,24: 1408-1432
    
    26. Chan R H, Chan T F , Shen L X and et al. Wavelet Deblurring Algorithms for Spatially Varying Blur from High-Resolution Image Reconstruction, Linear Algebra Appls., 2003, 366 : 139-155
    
    27. Chan R H, Riemenschneider S D, Shen L X and et al. Tight Frame: An Efficient Way for High-Resolution Image Reconstruction, Appl. Comput. Harmon. Anal., 2004, 17: 91-11
    
    28. Chan R H, Riemenschneider S D, Shen L X and et al. High-Resolution Image Reconstruction With Displacement Errors: A Framelet Approach, Internat. J. Imaging Syst. Tech. 2004,14: 91-104
    
    29. Elad M and Feuer A. Super-Resolution Restoration of Continuous Image Sequences Using the LMS Algorithm. The 18-th IEEE Conference in Israel, Tel-Aviv, March 1995
    
    30. Elad M and Feuer A. Super-Resolution Reconstruction of an Image. The 19-th IEEE Conference in Israel, Jerusalem, November 1996
    
    31. Elad M and Feuer A. Super-Resolution Reconstruction of Continuous Image Sequences, International Conference on Image Processing - ICIP 1999, Kobe, Japan, 1999
    
    32. Farsiu S, Robinson D, Elad M and Milanfar P. Robust Shift and Add Approach to Super-resolution. SPIE Annual meeting, 3-8 August 2003, San Diego, California, USA
    
    33. Farsiu S, Robinson D, Elad M and Milanfar P. Dynamic Demosaicing and Color Super-Resolution of Video Sequences. In Proceedings of the SPIE conference on image reconstruction from incomplete data III, Vol. 5562, October 2004
    
    34. Rajagopalan A N and Chaudhuri S. Recursive computation of maximum likelihood function for blur identification from multiple observations. IEEE Trans. Image Processing, 1998,7: 1075-1079
    
    35. Rajan D and Chaudhuri S. A generalized interpolation scheme for image scaling and super-resolution. Workshop on Vision, Models and Visualization (VMV'99), Erlangen, Germany, Nov. 1999
    
    36. Rajan D and Chaudhuri S. A physics-based approach to generation of super-resolution images, ibid.
    
    37. Wood S, Rajan D, Christensen M and et al. Resolution improvement for compound eye images through lens diversity, In Proceedings of DSP workshop, New Mexico, 2004
    
    38. Kim H W, Jang J H and Hong K S. Edge-enhancing super-resolution using anisotropic diffusion. Proc. IEEE Intl. Conf. Image Process. Thessaloniki, Greece, Oct., 2001, 130-133
    39. Shin J H, Jung J S and Paik J K. Image fusion-based adaptive regularization for image expansion. Proc. SPIE Image, Video Comm, Proc. 2000, 3974: 1040-1051
    40. 香港大学数学系.International conference on super resolution imaging: Theory, algorithms and applications.[EB/OL] http://hkumath.hku.hk/~math/event/Super/home.htm
    41.赵书斌,张蓬,彭思龙.基于小波域HMT模型的彩色图像超分辨率复原.中国图象图形学报,2004,9(2):172-177
    42.赵书斌,张蓬,彭思龙.基于小波域LS方法的图象超分辨率重构算法.中国图象图形学报.2003,8A(11):1283-1285
    43.郭坡,彭思龙,余达太,孙昌国.保留边缘信息的静态数字图象超分辨率重建.中国图象图形学报,2003,9A(6):653-656
    44.李金宗,黄建明,陈凤等.超分辨率处理中振铃现象的分析与抑制.系统工程与电子技术,2003,25(6):664-668
    45.孟庆武.预估计混叠度的MAP超分辨率处理算法.软件学报,2004,15(2):207-214
    46. JIANG Zhong-ding, LIN Hai, BAO Hu-jun, and et al. A super-resolution method with EWA. Comput. Sci. & Technol., 2003, 18(6): 822-832
    47.王程,王润生.基于MAP框架的图像序列超分辨率和模板匹配.计算机学报,2003,26(8):961-967
    48.邵凌,丁佩律,张立明,胡波.从多帧低分辨率图像序列中获取高分辨率图像的算法研究.电子学报,2002,30(1):58-61
    49.邵凌,丁佩律,张立明,胡波.重建高分辨率图像的实时串行迭代算法.红外与毫米波学报,2002,21(2):104-108
    50.陈小蔷,张俊,吴乐南.多帧超分辨率重建中的插值方法.信号处理.2004,20(3):268-271
    51.程臻,黄槐,姜新发.贝叶斯超分辨率方法探讨.系统工程与电子技术,2000,22(10):27-29,96
    52.刘良云,李英才,相里斌.超分辨率图象重构技术的仿真实验研究.中国图象图形学报,2001,6A(6):629-635
    53.周峰.提高航天传输型CCD相机地面像元分辨率方法研究.航天返回与遥感.2002,23(3):35-42
    54.周峰.关于亚像元成像技术几个问题的探讨.航天返回与遥感.2002,23(4):26-33
    55.张毅,张保民.基于像素重组的彩色阵列超分辨率显示技术.南京理工大学学报,2004,28(2):145-148
    56.苏秉华.超分辨率力图像复原研究.[D],北京理工大学博士论文,2002
    57.田岩,田金文,柳健,张继贤,林宗坚,超分辨率技术的实现—一种改善的小波插值方法.中国图象图形学报[A],2003,9A(12):1422-1426
    58. Tekalp A M, Ozkan M K and Sezan M L. High-resolution image reconstruction for lower-resolution image sequences and space-varying image restoration. Proceeding of the IEEE international conference on Acoustics, Speech and Signal Processing. San Francisco, CA, 1992
    59. Borman S and Stevenson R L. Super-resolution from image sequences-A review. Midwest Symposium on Circuits and Systems, G/A, 1998
    60. Ur H, and Gross D. Improved resolution from subpixel shifted pictures. Graphical Models and Image Processing, 1992, 54(2): 181-186
    61. Komatsu T, Igarashi T at el. Very high resolution imaging scheme with mutiple difference aperture cameras. Signal Processing Image Communication, 1993, 5:511-526
    
    62. Nguyen N and Milanfar P. A Wavelet-Based Interpolation-Restoration Method for Superresolution [A], Invited Paper, Circuits, Systems, and Signal Processing, Special issue on advanced signal and image reconstruction, 2000, 19(4):321-338
    
    63. Lertrattanapanich S, Bose N K. High resolution image formation from low resolution frames using delaunay triangulation. IEEE Trans. Image Processing, 2002, 11(12): 1427-1441
    
    64. Irani M and Peleg S. Motion analysis for image enhancement: Resolution, occlusion and transparency. Jouranl of Visual Communications and Image Representation, 1993,4:324-335
    
    65. Schultz R R and Stevenson R L. Extraction of high resolution frames from video sequences. IEEE Trans. IP, 1996, 5(6): 996-1011
    
    66. Cheeseman P, Kanefsky B, Kraft R and et al. Super-resolved surface reconstruction form multiple images. In Maximun Entropy and Bayesian Methods, Kluwer, Santa Barbarra, CA 1996
    
    67. Hardie R C, Barnard K J and Armstrong E E. Joint MAP registration and high-resolution image estimation using a sequences of undersampled images. IEEE Trans. IP, 1997, 6(12):1621-1633
    
    68. Capel D and Zisserman A. Computer Vision Applied to Super Resolution. IEEE Signal Processing, 2003,20(3): 75-86
    
    69. Tom B C and Katsaggelos A K. Reconstruciton of a high resolution image from multiple degraded mis-registered low resolution images. In SPIE VCIP, Chicago, 1994, 2308:971-981
    
    70. Patti A J, Sezan M I and Tekalp A M. Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE. Transacions on Image Processing, 1997, 6(8): 1064-1076
    
    71. Eren P E, Sezan M I and Tekalp A M. Robust, object-based high-resolution image reconstruction from low-resolution video. IEEE Trans. IP, 1997,6(10): 1446-1451
    
    72. Patti A J, Tekalp A M and Sezan M I. A new motion compensated reduced order model Kalman filter for space-varying restoration of progressive and interlaced video. IEEE Trans. IP, 1998, 7(4): 543-554
    
    73. Elad M and Feuer A. Super-resolution restoration of continuous image sequence- adaptive filtering approach. IEEE Trans. IP, 1999, 8(3): 387-395
    
    74. Hong M C, Kang M G and Katsaggelos A K. A regularized multichannel restoration approach for globally optimal high resolution video sequence. In SPIE VCIP, 1997, San Jose, 3024: 1306-1316
    
    75. Ng M, Koo J, and Bose N K. Constrained total least-squares computations for high-resolution image reconstruction with multisensors. International Journal of Imaging Systems and Technology, 2002, 12: 35-42
    
    76. Fu H Y, Barlow J. A regularized structured total least squares algorithm for high resolution image reconstruction. Linear Algebra and its Applications, 2004, 391:75-98
    
    77. Dlagnekov L. Super-resolution on Text Image Sequences. [EB/OL] http://www.cse.ucsd.edu/ classes/fa04/cse252c/dlagnekov2.pdf, November 4, 2004
    
    78. Farsiu S, Robinson D, Elad M and Milanfar P. Fast and Robust. Super-Resolution. Proceedings of ICIP 2003
    
    79. Nguyen N, Milanfa P and Golub G H. A Computationally Efficient Super-resolution Image Reconstruction Algorithm. IEEE Transactions on Image Processing, 2001, 10(4): 573-583
    80. Wirawan, Duhamel P, and Maitre H. Multi-channel high resolution blind image restoration. In Proc. IEEE ICASSP, AZ, 1989, 3229-3232
    81. Devcic Z. and Loncaric S. Simultaneous estimation of PSF and global frame shifts at lower S/N ratios. Proceedings of the First Int'l Workshop on Image and Signal Processing and Analysis, Pula, Croatia, 2000, 41-46
    82. Mateos J, Katsaggelos A K and Molina R. Simultaneous motion estimation and resolution enhancement of compressed low resolution video, in 2000 IEEE International Conference on Image Processing, vol. 2, 653-656, Vancouver, Canada
    83. Shah N R and Zakhor A. resolution enhancement of color video sequences. IEEE Trans. on Image Processing, 1999, 8(6): 879-885
    84. Segall C A, Katsaggelos A K, Molina RMateos J. Super-Resolution from compressed video. In Super-Resolution Imaging, S. Chaudhuri (ed.), ch. 9, 211-242, Kluwer Academic Publishers, 2001
    85. zhang Z and Blum R S. Region-based image fusion scheme for concealed weapon detection. in: Proceedings of the 31th Annual Conference on Information Sciences and Systems, 1997, 168-173
    86. Nagy J G and O'leary D P. Image restoration through subimages and confidence images. Elec. Trans. Num. Anal., 2002, 13: 22-37
    87. Weerasinghe C, Ji L and Yan H. ROI extraction from motion affected MRI images based on fuzzy and active contour models. IMDSP 8.2, 6: 3405-3408
    88. Baker S and Kanade T. Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24(9): 1167-1183
    89. Baker S and Kanade T. Hallucinating Faces. Proc. Fourth Int'l Conf. Automatic Face and Gesture Recognition, 2000
    90. Freeman W T, Jones T R and Pasztor E C. Example-based super-resolution. IEEE. Computer Graphics and Applications, 2002, 22: 56-65
    91. Freeman W and Pasztor E and Carmichael O T. Learning low-level vision. In IEEE International Conference on Computer Vision (ICCV), 1999, 2: 1182-1189
    92. Candocia F M and Principe J C. Super-resolution of images based on local correlations. IEEE Transcation on Neural Networks, 1999, 10(2): 372-380
    93. Borman S and Stevenson R. Spatial resolution enhancement of low-resolution image sequences: a comprehensive review with direction for future research. 1998
    94.张新明,沈兰荪.在小波变换域内实现图像的超分辨率复原.计算机学报,2003,26(9):1183-1189
    95. Ford C and Etter D M. Wavelet basis reconstruction of nonuniformly sampled data. IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, 1998, 45(8): 1165-1168
    96. Kingsbury N G. Complex wavelets for shift invariant analysis and filtering of signals. Applied Computational and Harmonic Analysis, 2000, 10(3): 234-253
    97. Yokoya N, Yamamoto K. Fractal-based analysis and interpolation of 3D natural surface shapes and their application to terrain modeling Computer Vision. Graphics and Image Processing, 1989, 46(1): 284~302
    98. Cressman G. An operational objective analysis system. Monthly Weather Review, 1959, 87(10): 367-374
    99. Davis J C. Statistics and data analysis in geology. 2nd, New York: Wiley, 1986
    100. Fieguth P W, Karl W C, Willsky A S, Wunsch C. Multiresolution optimal interpolation and statistical analysis of TOPEX/POSEIDON satellite altimetry. IEEE Trans. Geosci. Remote Sensing, 1995, 33(2): 280-292
    101. Everson R, Sirovich L. Karhunen-Loeve procedure for gappy data. Opt. Soc. Amer., 1995, 12(8): 1687-1664
    102. Lancaster P, Salkauskas K. Curve and surface fitting: an introduction. New York: Academics, 1986
    103. Feichtinger H G. GrOchenig K. Irregular sampling theorems and series expansions of band-limited functions. Math. Anal. Appl., 1992, 167(2): 530-556
    104. Feichtinger H G. GrOchenig K, Strohmer T. Efficient numerical methods in nonuniforming sampling theory. Numerische Machematik, 1995, 69: 423-440
    105. Ferreira P J S G. Noniterative and fast iterative methods for interpolation and extrapolation. IEEE Trans. Signal Processing, 1994, 42(11): 3278-3282
    106. Ferreira P J S G. Incomplete sampling series and the recovery of missing samples from oversampled band-limited signals. Signal Processing, 1992, 40(1): 225-227
    107. Hendriks C L L, Van Vliet L J. Improving resolution to reducee aliasing in an undersampled image sequence. SPIE, 2000, 3965: 1-9
    108. Daubechies I C. Ten lectures on wavelets. SIAM, New York, NY, 1992
    109. Mallet S. A theory for multiresolution in signal decomposition: The wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-683
    110.陈武凡.小波分析及其在图像处理中的应用.科学出版社,2002
    111. Magarey J F A, Kingsbury N G. Motion estimation using a complex-valued wavelet transform. IEEE Trans. Signal Process, 1998, 46(4): 1069-84
    112. Kingsbruy N G. The dual-tree complex wavelet transform: A new efficient tool for image restoration and enhancement. Proc. EUSIPCO 98, Rhodes, 1998, 319-322
    113.唐良瑞,蔡安妮,孙景鳌.二元树复小波变换及其在图象方向滤波中的应用.中国图形图象学报,2003,8A(4):434-440
    114. Jalobeanu A, Blanc-Feraud L, Zerubia J. Satellite image deblurring using complex wavelet packets. IJCV, 51(3), 2003
    115. Hatipoglu S, Mitra S K, Kingsbury NG. Texture classification using dual-tree complex wavelet transform. Proc. 7th international IEE conference on Image Processing and Its applications, 1999, 344-347
    116. de Tivaz P F C, Kingsbury N G. Fast segmentation using level set curves of complex wavelet surfaces. Proc. ICIP, 2000, Vol. 3, 592-595
    117. de Rivaz P F C. Complex wavelet based image analysis and synthesis. Doctor thesis, October, 2000
    118. Jansen M. House image[EB/OL]. Http://www.cs.kuleuven.ac.be/~maarten/image/house.tif, 2002-01-12/2003-12-11 Signal & image processing institute, Electrical Engineering Department, University of southern California. house. tif http://sipi.usc.edu/services/database/database.cgi?volume=misc&image=5#top
    119. Ayears G, Dainty J. Iterative blind deconvolution method and its applications, Optics Letters, 1988, 13(7): 547-549
    120. McCallum B. Blind deconvolution by simulated annealing. Opticas Communications, 1983, 75(2): 101-105
    121. Biggs D, Andrews M. Asymmetric iterative blind deconvolution of multiframe images. SPIE, 1998, 3461: 328-338
    122. Andrews H and Hunt B. Digital Image Restoration. Prentice-Hall, Englewood Cliffs, New Jersey, United States of America, 1977
    123. Glub G H and Matt U V. Generalized cross-validation for large scale problems. Journal of Computational and Graphics, 1997, 6(1): 1-34
    124. Hutchinson M F. A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Communications in Statistics, Simulation and Computation, 1990, 19: 433-450
    125. Lagendijk R L, Biemond J, and Boekee D E. Regularized iterative image restoration with ringing reduction. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(12): 1874-1888
    126. Kang M G, Katsaggelos A K. General choice of the regularization functional in regularized image restoration. IEEE Transactions on Image Processing, 1995, 4(5): 594-602
    127.杨朝霞,逯峰,田芊.小波构造变正则参数变分模型在带噪图像恢复中的应用.计算机辅助设计与图形学学报,2004,16(12):1645-1650
    128. Reeves S J. Optimal space-varying regularization in iterative image restoration. IEEE Transactions on image processing, 1994, 3(5): 319-324
    129. Osher R S, Fatemi E. Nonlinear total variation based noise removal algorithms, 1992, Physica D60: 259-268
    130. Charbonnier P, Blanc-Feraud L, Aubert G, Barlaud M. Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing, 1997, 6(2): 298-311
    131. Blake A, Zisserman A. Visual resolution. Cambridge, MA: MIT Press, 1987
    132. Geiger D, Girosi F. Parallel and deterministic algorithms from MRF's: Surface reconstruction. IEEE Trans. Pattern Anal. Machine Intell., 1991, 13(5): 401-412
    133. Gilboa G, Sochen N Zeevi Y Y. Texture preserving variational denoising using an adaptive fidelity term. Proc. VLSM 2003, 137-144
    134.杨朝霞,逯峰,李岳生.变正则参数方法在带噪图像保边缘恢复中的应用.计算机辅助设计与图形学学报,2003,15(4):406-409
    135. Vio R, Nagy J G, Tenorio L, and et al. Digital deblurring of CMB maps: performance and efficient implementation. Astronomy & Astrophysics. 2003, 401: 389-404
    136. Elad M, Teo P, Hel-Or Y. On the design of optimal filters for gradient-based motion. Intl. Journ. Comp. Vis. (submitted), 2002
    137. Barron J L, Fleet D J, and Beauchemin S S. Performance of optical flow techniques. International Journal of Computer Vision. 1994, 12(1): 43-77
    138. Elden L. A weighted pseudoinverse, generalized singular values, and constrained least squares problems. BIT, 1982, 22: 487-502
    139. Staudacher J. Multigrid methods for matrices with structure and applications in image processing[D]. Department of Computer Science, Technical University Munich, submitted April 2002.
    140. Westerink P H, Biemond J, and de Bruin P H L. Digital color image restoration, in Signal Processing III: Theories and Applications, I. T. Yong et al., Eds. Amsterdam, The Netherlands: Elsevier North-Holland, 1986,761-764
    
    141. Woods J W, Biemond J, and Tekalp A M. Boundary value problem in image restoration, in Proc. IEEE int. Conf. Acoust., Speech, Signal Processing 1985,692-695
    
    142. Luk F T and Vandevoorde D. Reducing boundary distortion in image restoration. Proceedings of SPIE, the international society for optical Enginerring, 1994,2296: 554-866
    
    143. NgMK, Chan R H and Tang W C. A fast algorithm for deblurring models with Neumann boundary conditions. SIAM journal of Scientific Computing, 1999,21(3): 851-866
    
    144. Koo J and Bose N K. Spatial restoration with boundary error. In Proc. Mathematical theory of networks and systems (MTNS), 2002, 12-16
    
    145. Schultz R R, Meng L, Stevenson. Subpixl motion estimation for super-resolution image sequence enhancement. Journal of visual communication and image representation. 9:38-50
    
    146. Tom B C, Katsaggelos A. Resolution enhancement of monochrome and color video using motion compensation. IEEE Trans Image Process, 2001,10:278-287
    
    147. Chiang M C and Boult T E. Efficient image warping and super-resolution. In Proceedings of the Third Workshop on Applications of Computer Vision, 1996,56-61
    
    148. Horn B and Schunk B. Dtermining optical flow. Aritficial Intelligence, 1981,17:185-203
    
    149. Lucas B and Kanade T. An iterative image registration techniqued with an application to stereo vision. Proc. DARPA IU Workshop, 1981, 121-130
    
    150. Lucas B. Generalized image matching by the method of differences [D]. Dept. of computer science, Carnegie-Mellon University, 1984
    
    151. Jahne B. Spatio-temporal image processing. Springer, 1993.
    
    152. Granlund G and Knutsson H. Signal processing for computer vision. Lluwer, 1995
    
    153. Haubecker H and Spies H. Motion. In Jahne B, Haubecker H and Geibler P., editors, Handbook of computer vision and applications, volume 2, chapter 13. Academic Press, 1999
    
    154. K(?)hne G, Richter S and Beier M. Motion-based segmentation and contour-based classification of video objects. Proceedings of the ninth ACM international conference on Multimedia, 2001, Vol. 9: 41-50
    
    155. Spies H and Scharr H. Accurate optical flow in noisy image. Sequences. Proc. ICCV, 2001, 1:587-592
    
    156. Deriche R, Komprobst P and Aubert G Optical-flow estimation while preserving its discontinuities: a variational approach. In Proc. Second Asian Conference on Computer Vision, Singapore, 1995, 2: 290-29
    
    157. Chan T F and Wong C K. Convergence of the Alternating Minimization Algorithm for Blind Deconvolution, UCLA Mathematics Department CAM Report 99-17
    
    158. Geman D and Reynolds G Constrained image restoration and the recovery of discontinuities, PAMI, 1992, 14: 367-383
    
    159. Geman D and Yand C. Nonlinear image recovery with half-quadratic regularization, IEEE Trans. Image Proc. 1995, 4: 932-945
    
    160. Aubert G and Vese L. A Variational Method in Image Recovery. SIAM Journal on Numerical Analysis, 1997 34(5): 1948-1979
    
    161. Weickert J, Romeny B M H and Viergever M A. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing, 1998,, 7(3): 398-410
    162. Weichert J. Applications of nonlinear diffusion in image processing and computer vision. Acta Math. Univ. Comeniane, Processings of Algorithmy 2000, Vol. LXX: 33-50
    163. Weichert J and Schnorr C. Variantional optic flow computation with a spatio-temporal smoothness constratint. Technical report of the CVGPR 15/2000, computer science series.[EL/OB] http://www.cvgpr.uni-mannheim.de/publication.html
    164. Fleet D J and Jepson A D. Computation of component image velocity from local phase information. Int. J. Comp. Vision 5, 1990, 77-104