亚硫酸氢根诱导胞嘧啶及其衍生物水解去氨基机理的理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胞嘧啶(Cyt)及其C5-甲基化衍生物(5-MeCyt)广泛存在于生物体系中,这些衍生物在DNA链上对抑制基因表达、维持染色体结构、X染色体失活、基因印记及肿瘤的发生等有着重要影响。而且,这些衍生物在DNA链上的去甲基化(或去氨基)生成胞嘧啶(或胸腺嘧啶)将引发基因突变,导致诸多疾病的发生。因此,在临床上对DNA中胞嘧啶甲基化位置的准确识别尤为重要。目前,亚硫酸氢盐是一种广泛使用的DNA甲基化检测试剂,但由于该检测技术易受外界环境影响,使得DNA片段经亚硫酸氢盐处理后,部分Cyt未转化为尿嘧啶,而部分5-MeCyt却转化为胸腺嘧啶,从而导致DNA甲基化密度的错误估计。本论文采用量子化学双水平计算方法和组合方法,以揭示该检测技术错误估计DNA甲基化密度的深层次原因。为此,主要开展以下三个方面的研究工作,并得到了与实验现象基本吻合而又十分有意义的结论,为实验工作者探索基于亚硫酸氢盐检测DNA甲基化最佳条件提供了参考。
     5-羟甲基胞嘧啶(5-hmCyt),可能是一个重要的表观遗传学标记,也可能是5-MeCyt去甲基向Cyt转化的中间物。目前,氧化的亚硫酸氢盐测序是首次以单碱基分辨率对5-hmCyt进行定量测序的方法,该方法的主要步骤为:首先将5-hmCyt氧化为5-羧基胞嘧啶(5-caCyt)和5-甲酰基胞嘧啶(5-fCyt),然后经亚硫酸氢盐处理,脱氨基形成尿嘧啶。目前认为5-caCyt和5-fCyt在经亚硫酸氢盐处理前,将经历去羧基和去甲酰基直接转化为Cyt,而最近实验却表明5-caCyt和5-fCyt转化为Cyt的产率极低,由此设想,未转化的5-caCyt和5-flCyt经亚硫酸氢盐处理后是否可以发生去氨基反应,如果是,这两类反应是否存在竞争。为此,主要开展以下第四个方面的研究工作,并得到了一些新的结论,为实验研究亚硫酸氢盐DNA甲基化检测技术提供了新视角。
     一、利用CBS-QB3组合方法,研究了Cyt(5-MeCyt)在酸性条件下形成质子化异构体的稳定性以及质子化异构体间的相互转化机理,并比较了它们在酸性和中性条件下与HSO3-加成反应的差异,讨论了反应势能面及反应力等信息,同时采用从静电势导出原子净电荷的ChelpG法预测了亲核/亲电反应位点。研究结果表明Cyt(5-MeCyt)在N3和O2位置形成的质子化异构体CytN3+(5-MeCytN3+)和Cyt2t+(5-MeCyt2t+)较其它位置稳定;不管在气相还是在液相,质子化作用显著降低了Cyt(5-MeCyt)各加成反应通道的活化自由能;在气相中Cyt2t+(5-MeCyt2t+)极易与HSO3-发生加成反应,而在液相中CytN3+(5-MeCytN3+)与HSO3-是最有可能发生的反应通道;C5-甲基化使得Cyt的各加成反应趋势减弱;C5-甲基化通道,其加成产物存在三个异构体,除了形成顺式异构体(cis-isomer)和反式异构体(trans-isomer)外,还形成了第三种异构体(third-isomer),且顺式异构体极易向第三种异构体转化。
     二、采用MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p)双水平计算方法及CBS-QB3组合方法,研究了CytN3+与HSO3-加成产物(CytN3+-SO3-)的直接水解和HSO3-诱导水解去氨基反应机理,并对比了这两类机理的差异,同时考察了温度与各通道假一级速率常数的关系以及讨论了亚硫酸氢根浓度对反应速率的影响。研究结果表明,HSO3-的参与明显降低了水解反应的自由能垒,直接水解反应的假一级速率常数(k')明显小于HSO3-诱导水解去氨基的k',且HSO3-诱导水解反应是最有可能存在的机理,其计算的假一级速率常数k'(1.99~3.81×10-5s-1)与实验测定的假一级速率常数(26.20×10-5s-1)接近。此外,研究结果还表明,这两类反应速控步骤的假一级常数与温度呈线性关系,且在给定温度下,这两类反应速率的比值与HSO3-浓度呈正相关。
     三、采用MP2/6-311++G(3df,3pd)//B3LYP/6-311G(d,p)双水平计算方法考察了HSO3-与5-MeCytN3+加成产物(5-MeCytN3+-SO3-)的顺反异构体与HSO3-水解去氨基机理,并比较了顺反异构体与HSO3-水解反应机理的差异,进一步讨论了异构体浓度与反应速率的关系。研究结果表明,DNA片段经亚硫酸氢盐处理后,5-MeCytN3+-SO3-异构体均有可能转化为胸腺嘧啶,且5-MeCytN3+-SO3-异构体水解反应速率之比与其相应浓度的比值相等。
     四、采用MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p)双水平计算方法对比研究了HSO3-诱导5-caCytN3+-SO3-和5-O+fCytN3+-SO3-水解去氨基反应机理的差异,并与HSO3-诱导CytN3+-SO3-水解去氨基的反应机理进行了比较,同时对各通道速控步骤自由能垒进行了讨论。其研究结果表明,5-caCytN3+-SO3-在HSO3-存在下,水解去氨基反应的自由能垒明显低于5-O+fCytN3+-SO3-和CytN3+-SO3-通道,因此在亚硫酸氢盐条件下,5-caCyt去氨基反应极有可能发生。同时,HSO3-诱导5-O+fCytN3+-SO3-水解去氨基反应速控步骤的自由能垒与同水平下获得的CytN3+-SO3-的自由能垒极为接近,表明5-fCyt的去氨基反应在HSO3-存在下也有可能发生。
Cytosine (Cyt) and its C5-methyl derivative (5-MeCyt) are found in biological systems, and these derivatives have significant effects on the genomic expression, the structure of chromosome, activation of the X chromosome, genomic imprinting, and producing of tumors. Meanwhile, DNA methylation is believed to cause about one-third of all transition mutations, and it is responsible for human genetic diseases. Thus, determination of the position of DNA methylation has become clinically important prerequisite in understanding the diseases and embryonic developments. Now, the bisulfite genomic sequencing is believed to be the most common and classical approach for determining of DNA methylation. However, the bisulfite genomic sequencing is very easy to be influenced by external environment. Unmethylated Cyt treated with bisulfite is either converted to uracil or failes to be converted and remains as Cyt, and the5-MeCyt either does not undergo conversion or is inappropriately converted to thymine. Both types of conversion would lead to the erroneous estimates of methylation densities. To understand the profound reason of the inappropriate conversion mechanism, three aspects in this dissertation are as follows:
     5-hydroxymethylcytosine (5-hmCyt) is an epigenetic DNA mark, and may be an intermediate in active DNA demethylation. Present oxidative bisulfite sequencing (oxBS-Seq) is the first method for quantitative mapping of5-hmCyt in genomic DNA at single-nucleotide resolution. Selective oxide of5-hmCyt to5-carboxycytosine (5-caCyt) and5-formylcytosine (5fCyt) enables bisulfite conversion of them to uracil. However, recent experiments reported that the yield of Cyt from a decarboxylation of5-caCyt and a deformylation of5-fCyt was very low. These intriguing phenomena inspire us to question whether the rest of5-caCyt and5-fCyt by bisulfite treatment may result in deamination to give uracil. If so, whether there is competition between them treated with bisulfite? Therefore, the fourth aspect has been carried out, and some new useful conclusions are obtained. These results give a possible new insight on the5-caCyt and5-fCyt under typical bisulfite conditions.
     1. The stability and isomerization mechanisms of protonated Cyt and5-MeCyt isomers have been investigated by CBS-QB3composite approach; the difference of reaction trend in Cyt+HSO3-reactions is taken into account under neutral and acidic conditions; the potential energy surfaces and the evolution of the reaction force are discussed. Meanwhile, the site of electrophilicity or nucleophilicity index has been predicted by ChelpG procedure. Our calculations indicate the other protonated forms are obviously less stable than those of N3, O2-protonated forms (CytN3+and Cyt2t+); the proton-catalyzed process in reactions of Cyt+HSO3-and5-MeCyt+HSO3-is more favorable than their non-catalytic process both in the gas and aqueous phases; in the gas phase Cyt2t+path is the most likely to occur, whereas in the aqueous phase CytN3+path is the most feasible mechanism; compared with Cyt, the trend of the C5-methylation reaction with HSO3-group, in neutral and acidic conditions, tend to be decreased; apart from cis-isomer and trans-isomer, the third-isomer has been found in the reactions of neutral and protonated5-MeCyt with HSO3-group. The transformation of the third-isomer from cis-isomer can occur easily.
     2. Two distinct groups of mechanisms for the direct and HSO3--induced hydrolytic deamination reactions have been explored by CBS-QB3composite approach and MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) level, respectively. Meanwhile, the difference between the direct hydrolytic and HSO3--induced hydrolytic deamination reactions, the relationship of the pseudo-first-order rate constant and temperature, as well as the effect of bisulfite concentration on the deamination rate have been explored. The calculated results show that the activation free energies of the HSO3--induced reaction are significantly decreased; the pseudo-first-order rate constant (k') for direct hydrolysis is obviously smaller than that of HSO3--induced hydrolytic deamination, which is the most plausible mechanism, where the calculated the k'(1.99~3.81×10-5s-1) is in close proximity to the experimentally determined the pseudo-first-order rate constant (26.2×10-5s-1). Furthermore, the results also manifest that there is positive correlation between the k' and temperature, and the ratio of reaction rates between direct hydrolysis reaction and HSO3--induced hydrolytic deamination increases with the increase of the bisulfite concentration at a given temperature.
     3. HSO3--induced hydrolytic deamination of5-MeCytN3+-SO3-isomers has been explored by MP2/6-311++G(3df,3pd)//B3LYP/6-311G(d,p) level. Meanwhile, the difference between cis-isomer and trans-isomer reaction mechanism has been compared. Furthermore, the relationship of the5-MeCytN3+-SO3-isomers concentration and the deamination rate has been investigated as well. The calculated results show that the difference in free barrier is small in these isomer paths, manifesting that these isomers may be contributed to the conversion of5-MeCyt to thymine through bisulfite catalysis. In addition, the results also illustrate that the reaction rate of each isomer is dependent on the concentration of the isomer.
     4. The hydrolytic deamination mechanisms of5-caCyt and5-fCyt in bisulfite conditions have been explored at the MP2/6-311++G(3df,3pd)//B3LYP/6-311++G(d,p) level. The activation free energy (AGs≠=54.16kJ-mol-1) for the hydrolysis deamination of5-caCytN3+-SO3-is much lower than that of the ACs≠of CytN3+-SO3-(100.91kJ-mol-1) under bisulfite conditions, implying that5-caCyt may firstly involve a process of deamination. Meanwhile, the ΔGs≠(103.84kJ·mol-1) for the HSO3--induced hydrolytic deamination of5-O+fCytN3+-SO3-is in close proximity to our previous theoretical data of CytN3+-SO3-, indicating that the deamination of5-fCyt are also likely to occur in the presence of bisulfite.
引文
[1]G. Bushhausen, B. Wittig, M. Graessman, A. Graessmann. Chromatin Structure is Required to Block Transcription of the Methylated Herpes Simplex Virus Thymidine Kinase Gene. Proc Natl Acad Sci.1987,84:1177-1181.
    [2]A. D. Riggs, G. P. Pfeifer. X-chromosome Inactivation and Cell Memory. Trends Genet.1992,8:169-174.
    [3]E. Li, T. H. Bestor, R. Jaenisch. Targeted Mutation of the DNA Methyltransferase Gene Results in Embryonic Lethality. Cell.1992,69:915-926.
    [4]S. B. Baylln, J. G. Herman, J. R. Graff, P. M. Vertino, et al. Alterations in DNA Methylation:a Fundamental Aspect of Neoplasia. Adv Cancer Res.1998,72: 141-196.
    [5]M. Sadeghi, V. Daniel, R. Weimer, M, Wiesel. Differential Early Posttransplant Cytokine Responses in Living and Cadaver Donor Renal Allografts. Transplantation.2003,75:1351-1355.
    [6]P. H. Roy, A. Weissbach. DNA Methylase from HeLa Cell Nuclei. Nucl. Acids Res. 1975,2:1669-1684.
    [7]赵向前,赵霖,冯玉全.DNA甲基化异常与肿瘤.肿瘤防治研究,1999,26:152-154.
    [8](a) D. J. L. Murdock, C. P. Walsh, DNA Methylation Reprogramming in the Germ Line. Epigenetics.2008,3:5-13. (b) P. H. Tate, A. P. Bird, Effects of DNA Methylation on DNA-binding Proteins and Gene Expression. Curr. Opin. Genet. Dev.1993,3:226-231. (c) C. Muller, C. Readhead, S. Diederichs, G. Idos, et al, Methylation of the Cyclin Al Promoter Correlates with Gene Silencing in Somatic Cell Lines, While Tissue-specific Expression of Cyclin A1 is Methylation Independent. Biochem. Soc. Trans.2000,20:3316-3329.
    [9](a) G. R. Wyatt, S. S. Cohen. A new pyrimidine base from bacterio phage nucleic acids. Nature.1952,170:1072-1073. (b) N. W. Penn, R. Suwalski, C. O'Riley, K. Bojanowski, R. Yura. The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem J.1972,126:781-790.
    [10](a) M. Tahiliani, K. P. Koh, Y. H. Shen, W. A. Pastor, H. Bandukwala, Y. Brudno, S. Agarwal, L. M. Iyer, D. R. Liu, L. Aravind, A. Rao. Conversion of 5-methylcytosine to 5-hydroxyme thylcytosine in mammalian DNA by MLL partner TET1. Science,2009,324:930-935. (b) S. Kriaucionis, N. Heintz. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science,2009,324:929-930.
    [11]赵亚华.分子生物学教程[M].北京:科学出版社,2006.
    [12]T. Colbert, B. J. Till, R. Tompa, S. Reynolds, et al. High-throughput Screening for Induced Point Mutations. Plant Physiol.2001,126:480-484.
    [13]W. Peng, B. R. Shaw. Accelerated Deamination of Cytosine Residues in UV-Induced Cyclobutane Pyrimidine Dimers Leads to CCfIT Transitions. Biochemistry.1996,35:10172-10181.
    [14]V. J. Cannistraro, J. S. Taylor. Acceleration of 5-Methylcytosine Deamination in Cyclobutane Dimers by G and Its Implications for UV-Induced C-to-T Mutation Hotspots. J. Mol. Biol.2009,392:1145-1157.
    [15]R. E. Notari, M. L. Chin, A. Cardoni. Intermolecular and Intramolecular Catalysis in Deamination of Cytosine Nucleosides. J. Pharm. Sci.1970,59:28-32.
    [16]N. Jiang, J. S. Taylor. In Vivo Vvidence that UV-induced C-T Mutations at Dipyrimidine Sites Could Result from the Replicative bypass of Cis-syn Cyclobutane Dimers or Their Deamination Products. Biochemistry.1993,32: 472-481.
    [17]F. T. Liu, N. C. Yang. Photochemistry of Cytosine Derivatives.1. Photochemistry of Thymidylyl-(3'→5')-deoxycytidine. Biochemistry.1978,17(23):4865-4876.
    [18]J. C. Shen, W. M. Rideout, P. A. Jones. The Rate of Hydrolytic Deamination of 5-methylcytosine in Double-stranded DNA. Nucl. Acids Res.1994,22:972-976.
    [19]H. Cao, Y. Jiang, Y. Wang. Kinetics of Deamination and Cu(Ⅱ)/H2O2/Ascorbate-induced Formation of 5-methylcytosine Glycol at CpG Sites in Duplex DNA. Nucl. Acids Res.2009,37:6635-6643.
    [20]R. Shapiro, R. E. Servis, M. Welcher. Reactions of Uracil and Cytosine Derivatives with Sodium Bisulfite. J. Am. Chem. Soc.1970,92(2):422-424.
    [21]M. Sedlak, R. Keder, P. Skala, J. Hanusek. Steric and Electronic Substituent Effects in Hydrolysis and Aminolysis of 4-alkyl-4-methyl-2-aryl-4,5-dihydro-1,3-oxazol-5-ones. J. Phys. Org. Chem.2005,18:1099-1395.
    [22]T. C. Curran, C. R. Farrar, O. Niazy, A. Williams. Structure-reactivity Studies on the Equilibrium Reaction between Phenolate Ions and 2-aryloxazolin-5-ones:Data Consistent with a Concerted acyl-group-transfer Mechanism. J. Am. Chem. Soc. 1980,102(22):6828-6837.
    [23]B. Wang, Z. Cao. Mechanism of Acid-Catalyzed Hydrolysis of Formamide from Cluster-Continuum Model Calculations:Concerted versus Stepwise Pathway. J. Phys.Chem.A.2010,114(49):12918-12927.
    [24]Z. Q. Chen, Y. Xue. Theoretical Investigations on the Thermal Decomposition Mechanism of 5-Hydroxy-6-hydroperoxy-5,6-dihydrothymidine in Water. J. Phys. Chem.B.2010,114(39):12641-12654.
    [25]V. Labet, C. Morell, J. Cadet, L. A. Eriksson, A. Grand. Hydrolytic Deamination of 5-Methylcytosine in Protic Medium:A Theoretical Study. J. Phys. Chem. A.2009, 113(11):2524-2533.
    [26]H. J. Wang, F. C. Meng. Theoretical Study of Proton-catalyzed Hydrolytic Deamination Mechanism of Adenine. Theor. Chem. Ace.2010,127(5-6):561-571.
    [27]J. Florian, V. Baumruk, J. Leszczynski. IR and Raman Spectra, Tautomeric Stabilities, and Scaled Quantum Mechanical Force Fields of Protonated Cytosine. J. Phys. Chem.1996,100(13):5578-5589.
    [28]R. Purrello, M. Molina, Y. Wang, G. Smulevich, et al. Keto-iminol Tautomerism of Protonated Cytidine Monophosphate Characterized by Ultraviolet Resonance Raman Spectroscopy:Implications of C+Iminol Tautomer for Base Mispairing. J. Am. Chem. Soc.1993,115(2):760-767.
    [29]C. T. Wu, J. R. Morris. Genes, Genetics and Epigenetics:A correspondence. Science.2001,293:1103-1105.
    [30]C. Dahl, P. Guldberg. DNA Methylation Analysis Techniques. Biogerontology. 2003,4:233-250.
    [31]邓大君,邓国仁,吕有勇等,变性高效液相色谱法检测CpG岛胞嘧啶甲基化.中华医学杂志,2001,80:158-161.
    [32]武立鹏,朱卫国.DNA甲基化的生物学应用及检测方法进展.中国检验医学杂志,2004,27:468-474.
    [33]S. B. Baylin, J. G. Herman. DNA Methylation in Tumorigene-sis:Epigenetics Joins Genetics. Trends Genet.2000,16(4):168-174.
    [34]E. Ballestar, A. P. Wolffe. Methyl-CpG-binding Proteins. Targeting Specific Gene Repression. Eur. J. Biochem.2001,268(1):1-6.
    [35]P. Wade. A Methyl CpG Binding Proteins and Transcriptional Repression. BioEssays.2001,23(12):1131-1137.
    [36]J. Worm, A. Aggerholm, P. Guldberg. In-tube DNA Methylation Profiling by Fluorescence Melting Curve Analysis. Clin Chem.2001,47(7):1183-1189.
    [37]M. Shiraishi, H. Hayatsu. High-speed Conversion of Cytosine to Uracil in Bisulfite Genomic Sequencing Analysis of DNA Methylation. DNA Res.2004,11: 409-415.
    [38]H. Hayatsu, K. Tsuji, K. Negishi. Does Urea Promote the Bisulfite-mediated Deamination of Cytosine in DNA? Investigation Aiming at Speeding-up the Procedure for DNA Methylation Analysis. Nucl. Acids Symp. Ser.2006,50: 69-70.
    [39]K. Kleppe, E. Ohtsuka, R. Kleppe, I. Molineux, H. G. Khorana. Studies on Polynucleotides. XCVI. Repair Replications of Short Synthetic DNA's as Catalyzed by DNA Polymerases. J. Mol. Biol.1971,56(2):341-361.
    [40]J. G. K. Williams, A. R. Kubelik, K. J. Livak, et al. DNA Polymorphisms Amplified by Arbitrary Primers are Useful as Genetic Markers. Nucl. Acids Res. 1990,18(22):6531-6535.
    [41]J. Welsh, M. McClelland. Fingerprinting Genomes Using PCR with Arbitrary Primers. Nucl. Acids. Res.1990,18(24):7213-7218.
    [42]R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, et al. Primer-directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. Science. 1988,239(4839):487-491.
    [43]M. Sono, Y. Wataya, H. Hayatsu. Role of Bisulfite in the Deamination and the Hydrogen Isotope Exchange of Cytidylic Acid. J. Am. Chem. Soc.1973,95: 4745-4749.
    [44]H. Hayatsu, K. Negishi, M. Shiraishi. DNA Methylation Analysis:Speedup of Bisulfite-mediated Deamination of Cytosine in the Genomic Sequencing Procedure. Proc. Jpn. Acad. Ser B.2004,80:189-194.
    [45]林梦海.量子化学简明教程(第1版)[M].北京:化学工业出版社,2005.
    [46]夏少武.量子化学基础(第1版)[M].北京:科学出版社,2010.
    [47]D. Zhang, R. Zhang, J. Park, S. W. North. Hydroxy Peroxy Nitrites and Nitrates from OH Initiated Reactions of Isoprene. J. Am. Chem. Soc.2002,124(32): 9600-9605.
    [48]L. K. Huynh, A. Ratkiewicz, T. N. Truong. Kinetics of the Hydrogen Abstraction OH+Alkane→H2O+Alkyl Reaction Class:An Application of the Reaction Class Transition State Theory. J. Phys. Chem. A.2006,110(2):473-484.
    [49]M. Born, K. Huang. Dynamical Theory of Crystal Lattices. Oxford University Press. New York,1954.
    [50]李奇,黄元河,陈光巨.结构化学[M].北京:北京师范大学出版社,2007.
    [51]C. C. J. Roothaan. New Development in Molecular Orbital Theory. Rev Mod Phys. 1951,23:69-89.
    [52]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法(中册)[M].北京:科学出版社,1985.
    [53]W. Kohn, L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.1965,140:A1133-A1138.
    [54]I.N.Levine.量子化学[M].北京:高等教育出版社,1982.
    [55]C. M(?)ller, M. S. Plesset. Note on An Approximation Treatment for Many-Electron Systems. Phys. Rev.1934,46:618-622.
    [56]R. G. Parr. Density-functional Theory of Atoms and Molecules. Oxford:Oxford Univ:1989.
    [57]J. K. Labanowski. Density Functional Methods in Chemistry.1991.
    [58]P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. B.1964,136: B864-B871.
    [59]W. Kohn, L. J. Sham. Self-consistent Equations Including Exchange and Correlation Effects. Phys. Rev.1965,140:1133-1138.
    [60]J. A. Pople, P. M. W. Gill, B. G. Johnson. Kohn-Sham Density-Functional Theory Within a Finite Basis Set. Chem. Phys. Lett.1992,199:557-560.
    [61]A. D. Becke. Density Functional Thermochemistry. Ⅲ. The role of Exact Exchange. J. Chem. Phys.1993,98:5648-5652.
    [62]C. Lee, W. Yang, R. G. Parr. Development of the Colic-Salvetti Correlation-energy Formula into a Functional of the Electron Density. Phys. Rev. B.1988,37: 785-789.
    [63]J. A. Montgomery, M. J. Frisch, J. W. Ochterski, G. A. Petersson. A Complete Basis Set Model Chemistry. VI. Use of Density Functional Geometries and Frequencies. J. Chem. Phys.1999,110(6):2822-2827.
    [64]J. A. Montgomery, J. W. Ochterski, G. A. Petersson. A Complete Basis-Set Model Chemistry. IV. An Improved Atomic Pair Natural Orbital Method. J. Chem. Phys. 1994,101:5900-5909.
    [65]G. A. Petersson, T. Tensfeldt, J. A. Montgomery. A Complete Basis Set Model Chemistry. Ⅲ. The Complete Basis Set-Quadratic Configuration-Interaction Family of Methods. J. Chem. Phys.1991,94:6091-6101.
    [66]B. Sirjean, R. Fournet. Theoretical Study of the Thermal Decomposition of the 5-Methyl-2-furanylmethyl Radical. J. Phys. Chem. A.2012,116(25):6675-6684.
    [67]A. Warshel. Calculations of Chemical Processes in Solutions. J. Chem. Phys.1979, 83(12):1640-1652.
    [68]S. Miertus, J. Tomasi. Approximate Evaluations of the Electrostatic Free Energy and Internal Energy Changes in Solution Processes. Chem. Phys.1982,65(2): 239-245.
    [69]M. Cossi, V. Barone, R. Cammi, J. Tomasi. Ab-initio Study of Solvated Molecules: a New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996,255:327-335.
    [70]H. S. Johnston. Gas Phase Reaction Rate Theory. Ronald Press Company. New York,1966.
    [71]傅献彩,沈文霞,姚天扬.物理化学(第五版)[M].北京:高等教育出版社,2006.
    [72]赵学庄,万学适等.化学反应动力学原理[M].北京:高等教育出版社,1990.
    [73]A. Toro-Labbe. Characterization of Chemical Reactions from the Profiles of Energy, Chemical Potential, and Hardness. J. Chem. Phys. A.1999,103(22): 4398-4403.
    [74]P. Politzer, J. S. Murray. The Position-Dependent Reaction Force Constant in Bond Dissociation/Formation. Collect. Czech. Chem. Commun.2008,73:822-830.
    [75]J. S. Murray, A. Toro-Labbe, T. Clark, P. Politzer. Analysis of Diatomic Bond Dissociation and Formation in Terms of the Reaction Force and the Position-dependent Reaction Force Constant. J. Mol. Model.2009,15(6): 701-706.
    [76]B. Herrera, A. Toro-Labbe. The Role of Reaction Force and Chemical Potential in Characterizing the Mechanism of Double Proton Transfer in the Adenine-uracil Complex. J. Chem. Phys. A.2007,111(26):5921-5926.
    [77]A. Toro-Labbe, S. Gutierrez-Oliva, J. S. Murray, P. Politzer. A New Perspective on Chemical and Physical Processes:the Reaction Force. Mol. Phys.2007, 105(19-22):2619-2625.
    [78]L. E. Chirlian, M. M. Francl. Atomic Charges Derived from Electrostatic Potentials: A Detailed Study. J. Comput. Chem.1987,8(6):894-905.
    [79]C. M. Breneman, K. B. Wiberg. Determining Atom-centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. J. Comput. Chem.1990,11(3):361-373.
    [80]P. O. Lowdin. Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction. Phys. Rev. 1955,97(6):1474-1489.
    [81]A. E. Reed, R. B. Weinstock, F. Weinhold. Natural population analysis@fa@f). J. Chem. Phys.1985,83:735-746.
    [82]R. Stoger, P. Kubicka, C. G. Liu, T. Kafri, et al. Maternal-specific Methylation of the Imprinted Mouse Igf2r Locus Identifies the Expressed Locus as Carrying the Imprinting Signal. Cell.1993,73(1):61-71.
    [83]J. L. Swain, T. A. Stewart, P. Leder. Parental Legacy Determines Methylation and Expression of an Autosomal Transgene:A Molecular Mechanism for Parental Imprinting. Cell.1987,50(5):719-727.
    [84]P. A. Jones, D. Takai. The Role of DNA Methylation in Mammalian Epigenetics. Science.2001,293:1068-1070.
    [85]R. A. Martienssen, V. Colot. DNA Methylation and Epigenetic Inheritance in Plants and Filamentous Fungi. Science.2001,293:1070-1074.
    [86]C. Cogoni. Homology-Dependent Gene Silencing Mechanisms in Fungi. Annu. Rev. Microbiol.2001,55:381-406.
    [87]J. Paszkowski, S. A. Whitham. Gene Silencing and DNA Methylation Processes. Curr. Opin. Plant Biol.2001,4(2):123-129.
    [88]A. P. Feinberg, B. Vogelstein. Alterations in DNA Methylation in Human Colon Neoplasia. Semin. Surg. Oncol.1987,3(3):149-151.
    [89]S. E. Jacobsen, E. M. Meyerowitz. Hypermethylated SUPERMAN Epigenetic Alleles in Arabidopsis. Science.1997,277:1100-1103.
    [90]K. D. Robertson. DNA Methylation, Methyltransferases, and Mancer. Oncogene. 2001,20:3139-3155.
    [91]M. Frommer, L. E. McDonald, D. S. Millar, C. M. Collis, et al. A Genomic Sequencing Protocol that Yields a Positive Display of 5-methylcytosine Residues in Individual DNA Strands. Proc. Nati. Acad. Sci. USA.1992,89:1827-1831.
    [92]S. J. Clark, J. Harrison, M. Frommer. CpNpG Methylation in Mammalian Cells. Nat. Genet.1995,10(1):20-27.
    [93]R. Stoger, T. M. Kajimura, W. T. Brown, C. D. Laird. Epigenetic Variation Illustrated by DNA Methylation Patterns of the Fragile-X Gene FMR1. Hum. Mol. Genet.1997,6:1791-1801.
    [94]D. P. Genereux, B. E. Miner, C. T. Bergstrom, C. D. Laird. A population-epigenetic Model to Infer Site-specific Methylation Rates from Double-stranded DNA Methylation Patterns. Proc. Natl. Acad. Sci. USA.2005,102:5802-5807.
    [95]J. C. Susan, J. Harrison, C. L. Paul, M. Frommer. High Sensitivity Mapping of Methylated Cytosines. Nucl. Acids Res.1994,22(15):2990-2997.
    [96]D. P. Genereux, W. C. Johnson, A. F. Burden, R. Stoger, et al. Errors in the Bisulfite Conversion of DNA:Modulating Inappropriate-and Failed-conversion Frequencies. Nucl. Acids Res.2008,36:e150.
    [97]H. Hayatsu. Bisulfite Modification of Cytosine and 5-Methylcytosine as used in Epigenetic Studies. Genes and Environment. 2006,28(1):1-8.
    [98]Y. Huang, W. A. Pastor, Y. Shen, M. Tahiliani, et al. The Behaviour of 5-Hydroxymethylcytosine in Bisulfite Sequencing. PLoS ONE.2010,5(1):e8888.
    [99]T. Lindahl, B. Nyberg. Heat-induced Deamination of Cytosine Residues in Deoxyribonucleic Acid. Biochemistry.1974,13(16):3405-3410.
    [100]R. Y. H. Wang, K. C. Kuo, C. W. Gehrke, L. H. Huang, M. Ehrlich. Heat-and Alkali-induced Deamination of 5-methylcytosine and Cytosine Residues in DNA. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression.1982, 697(3):371-377.
    [101]M. Ehrlich, K. F. Norris, R. Y. H. Wang, K. C. Kuo, C. W. Gehrke. DNA Cytosine Methylation and Heat-induced Deamination. Biosci. Rep.1986,6:387-393.
    [102]M. Ehrlich, X. Y. Zhang., N. M. Inamdar. Spontaneous Deamination of Cytosine and 5-methylcytosine Residues in DNA and Replacement of 5-methylcytosine Residues with Cytosine residues. Mutat. Res.1990,238:277-286.
    [103]M. Shiraishi, H. Hayatsu. High-Speed Conversion of Cytosine to Uracil in Bisulfite Genomic Sequencing Analysis of DNA Methylation. DNA Res.2004,11: 409-415.
    [104]C. Gonzalez, H. B. Schlegel. An Improved Algorithm for Reaction Path Following. J. Chem. Phys.1989,90:2154-2161.
    [105]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et al. Gaussian 03, revision C.02. Gaussian, Inc.:Wallingford CT,2004.
    [106]F. Bulat, A. Toro-Labbe. A Theoretical Study of the Rotational Isomerization of Glyoxal and Halogen Derivatives. Chem. Phys. Lett.2002,354:508-517.
    [107]P. Politzer, J. S. Murray, P. Lane, A. Toro-Labbe. A Noteworthy Feature of Bond Dissociation/Formation Reactions. Int. J. Quant. Chem.2007,107(11):2153-2157.
    [108]V. Labet, C. Morell, A. Grand, A. Toro-Labbe. Theoretical Study of Cytosine Deamination from the Perspective of the Reaction Force Analysis. J. Phys. Chem. A.2008,112(45):11487-11494.
    [109]P. K. Chattaraj, B. Maiti, U. Sarkar. Philicity:A Unified Treatment of Chemical Reactivity and Selectivity. J. Phys. Chem. A.2003,107(25):4973-4975.
    [110]R. G. Parr, L. Szentpaly, S. Liu. Electrophilicity Index. J. Am. Chem. Soc.1999, 121(9):1922-1924.
    [111]R. G. Parr, W. Yang. Density Functional Approach to the Frontier-electron Theory of Chemical Reactivity. J. Am. Chem. Soc.1984,106(14):4049-4050.
    [112]A. E. Reed, L. A. Curtiss, F. Weinhold. Intermolecular Interactions from a Natural Bond Orbital, Donor-acceptor Viewpoint. Chem. Rev.1988,88(6):899-926.
    [113]P. Mezey, J. Ladik, M. Barry. Non-empirical SCF MO Studies on the Protonation of Biopolymer Constituents. Theoret. Chim. Acta.1979,54(3):251-258.
    [114]L. R. Domingo, M. J. Aurell, P. Perez, R. Contreras. Quantitative Characterization of the Local Electrophilicity of Organic Molecules. Understanding the Regioselectivity on Diels-Alder Reactions. J. Phys. Chem. A.2002,106(29): 6871-6875.
    [115]M. Esteller, J Garcia-Foncillas, E. Andion, S. N. Goodman. Inactivation of the DNA-repair Gene MGMT and the Clinical Response of Gliomas to Alkylating Agents. N Engl J Med.2000,343:1350-1354.
    [116]M. D. Anway, A. S. Cupp, M. Uzumcu, M. K. Skinner. Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility. Science. 2005,308:1466-1469.
    [117]E. Pennisi. Supplements Restore Gene Function via Methylation. Science.2005, 310:1761.
    [118]H. Enokida, H. Shiina, S. Urakami, M. Terashima, et al. Smoking Influences Aberrant CpG Hypermethylation of Multiple Genes in Human Prostate Carcinoma. Cancer.2006,106:79-86.
    [119]R. Shapiro, V. DiFate, M. Welcher. Deamination Cytosine Derivatives by Bisulfite. Mechanism of the Reaction. J. Am. Chem. Soc.1974,96:906-912.
    [120]L. X. Jin, W. L. Wang, D. D Hu, S. T. Min. Effects of Protonation and C5 Methylation on the Electrophilic Addition Reaction of Cytosine:A Computational Study. J. Phys. Chem. B.2013,117:3-12.
    [121]H. Hayatsu. Discovery of Bisulfite-mediated Cytosine Conversion to Uracil, the Key Reaction for DNA Methylation Analysis-A Personal Account. Proc. Jpn. Acad. Ser. B.2008,84:321-330.
    [122]T. Suzuki, S. Ohsumi, K. Makino. Mechanistic Studies on Depurination and Apurinic Site Chain Breakage in Oligodeoxyribonucleotides. Nucl. Acids Res. 1994,22:4997-5003.
    [123]K. Munson, J. Clark, K. Lamparska-Kupsik, S. S. Smit. Recovery of Bisulfite-converted Genomic Sequences in the Methylation-sensitive QPCR. Nucl. Acids Res.2007,35:2893-2903.
    [124]M. K. Hazra, A. Sinha. Formic Acid Catalyzed Hydrolysis of SO3 in the Gas Phase:A Barrierless Mechanism for Sulfuric Acid Production of Potential Atmospheric Importance. J. Am. Chem. Soc.2011,133:17444-17453.
    [125]Z. Q. Chen, C. H. Zhang, C. K. Kimand, Xue, Y. Quantum Mechanics Study and Monte Carlo Simulation on the Hydrolytic Deamination of 5-methylcytosine Glycol. Phys. Chem. Chem. Phys.2011,13:6471-6483.
    [126]V. Labet, A. Grand, C. Morell, J. Cadet, et al. Proton Catalyzed Hydrolytic Deamination of Cytosine:A Computational Study. Theor Chem Account.2008, 120:429-435.
    [127]K. M. Uddin, R. A. Poirier. Computational Study of the Deamination of 8-Oxoguanine. J. Phys. Chem. B.2011,115:9151-9159.
    [128]K. M. Uddin, M. H. Almatarneh, D. M. Shaw, R. A. Poirier. Mechanistic Study of the Deamination Reaction of Guanine:A Computational Study. J. Phys. Chem. A. 2011,115:2065-2076.
    [129]J. L. Przybylski, S. D. Wetmore. Designing an Appropriate Computational Model for DNA Nucleoside Hydrolysis:A Case Study of 2'-Deoxyuridine. J. Phys. Chem. B.2009,113:6533-6542.
    [130]T. L. Zhang, W. L. Wang, P. Zhang, J. Lu, Y. Zhang. Water-catalyzed Gas-phase Hydrogen Abstraction Reactions of CH3O2 and HO2 with HO2:A Computational Investigation. Phys. Chem. Chem. Phys.2011,13:20794-20805.
    [131]B. J. Lynch, Y. Zhao, D. G. Truhlar. Effectiveness of Diffuse Basis Functions for Calculating Relative Energies by Density Functional Theory. J. Phys. Chem. A. 2003,107:1384-1388.
    [132]A. M. Joshi, W. N. Delgass, K. T. Thomson. Comparison of the Catalytic Activity of Au3, Au4+, Au5, and Au5-in the Gas-Phase Reaction of H2 and O2 to Form Hydrogen Peroxide:A Density Functional Theory Investigation. J. Phys. Chem. B. 2005,109(47):22392-22406.
    [133]M. S. Gordon. The Isomers of Silacyclopropane. Chem. Phys. Lett.1980,76: 163-168.
    [134]H. Eyring. The Activated Complex and the Absolute Rate of Chemical Reactions. Chem. Rev.1935,17(1):65-77.
    [135]A. M. Deaton, A. Bird. CpG Islands and the Regulation of Transcription. Genes Dev.2011,25,1010-1022.
    [136]S. Ito, A. C. D. Alessio, O. V. Taranova, K. Hong, L. C. Sowers, Y. Zhang. Role of Tet Proteins in 5mC to 5hmC Conversion, ES-cell Self-renewal and Inner Cell Mass Specification. Nature.2010,466:1129-1133.
    [137]M. R. Branco, G. Ficz, W. Reik. Uncovering the Role of 5-Hydroxymethylcytosine in the Epigenome. Nat. Rev. Genet.2012,13:7-13.
    [138]C. Nestor, A. Ruzov, R. R. Meehan, D. S. Dunican. Enzymatic Approaches and Bisulfite Sequencing Cannot Distinguish between 5-Methylcytosine and 5-Hydroxymethylcytosine in DNA. Biotechniques.2010,48:317-319.
    [139]M. J. Booth, M. R. Branco, G. Ficz, D. Oxley, F. Krueger, W. Reik, S. Balasubramanian. Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at Single-base Resolution. Science.2012,336:934-937.
    [140]Y. F. He, B. Z. Li, Z. Li, P. Liu, Y. Wang, Q. Tang, J. Ding, Y. Jia. Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science.2011,333:1303-1307.
    [141]T. Pfaffeneder, B. Hackner, M. Truβ, M. Munzel, T. Pfaffeneder. The Discovery of 5-Formylcytosine in Embryonic Stem Cell DNA. Angew. Chem. Int. Ed. Engl. 2011,50:7008-7012.
    [142]S. Ito, L. Shen, Q. Dai, S. C. Wu, L. B. Collins, J. A. Swenberg, C. He, Y. Zhang. Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science.2011,333:1300-1303.
    [143]S. Schiesser, B. Hackner, T. Pfaffeneder, M. Miiller, C. Hagemeier, M. Truss, T. Carell. Mechanism and Stem-Cell Activity of 5-Carboxycytosine Decarboxylation Determined by Isotope Tracing. Angew. Chem. Int. Ed.2012,51:6516-6520.
    [144]S. Schiesser, T. Pfaffeneder, K. Sadeghian, B. Hackner, B. Steigenberger, A. S. Schroeder, J. Steinbacher, G. Kashiwasaki, G. Hofner, K. T. Wanner, C. Ochsenfeld, T. Carell. Deamination, Oxidation and CC bond Cleavage Reactivity of 5-Hydroxymethylcytosine,5-Formylcytosine and 5-Carboxycytosine. J. Am. Chem. Soc. DOI:10.1021/ja403229y.
    [145]E. J. Meijer, M. Sprik. Ab Initio Molecular Dynamics study of the Reaction of Water with Formaldehyde in Sulfuric Acid Solutions. J. Am. Chem. Soc.1998,120: 6345-6355.
    [146]M.J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. J. Zheng, L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J.V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford, CT,2009.