双护盾TBM开挖深埋隧洞围岩稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与钻爆施工法相比,TBM法对围岩产生的扰动较小,能充分保护围岩的自身强度,有效利用围岩的自稳能力,减轻隧洞支护结构的自重,节约工程材料,并能保证隧洞施工的安全、高效、优质和环保。TBM已经广泛应用于水利水电、公路铁路、矿山及国防等行业的地下工程建设之中。但如何确保TBM在有松散性围岩、挤压性围岩、地下水发育、高地应力等复杂地质条件下的深埋长大隧洞中仍然能安全、连续、高效的施工,这是TBM施工中很关键且无法回避的现实问题,也是TBM隧洞围岩稳定性研究的热点与难点问题之一。
     采用微地震技术对施工中的大型水工隧洞围岩稳定性进行动态监测,试验结果表明,岩体微破裂时序特征与空间分布特性都清楚地显示出在导流洞、交通洞及勘探洞的交界区域因强应力集中而导致的岩体破裂,并发现岩体破裂程度会随着施工结束及时间推移而减小,以此推断出该交界区域岩体内应力被逐渐释放而趋于稳定的状态。与此同时还在导流洞内已有的顶板冒落区附近监测到较强的微地震事件,这些事件的时空分布有助于进一步分析该顶板动态演化的发展趋势。在此基础上,建立了以微地震事件频数与时间关系曲线的二阶导数来推测围岩稳定状态的方法,给出了微地震事件频率与传播距离的理论计算公式,提出了以微地震的空间分布、时间分布、能级变化与尺度效应等指标的综合值来判断围岩稳定的方法,并初步给出了Ⅰ、Ⅱ、Ⅲ、Ⅳ等四个级标准,为探索TBM隧洞地质微地震超前预报新方法的建立指明了方向。
     根据弹性力学理论及Hoek-Brown强度准则,研究了TBM开挖深埋隧洞围岩的变形特征及其力学效应问题,提出了围岩支护压力折减量(?)的新概念,给出了围岩塑性区半径、洞壁周边位移、最大支护压力等理论计算公式,并将理论计算结果与相关现场实测数据进行了分析对比,证实了理论计算公式的可靠性。在此基础上,讨论了TBM滚刀推力与岩石单轴抗压强度、岩体类型、岩体完整性等因素的关系,得出了以滚刀推力表示的洞壁位移方程,由此建立了TBM开挖与围岩性质的内在联系,对TBM施工有一定的实际指导意义。
     在具体分析深埋隧洞条件下松散性、挤压性围岩影响双护盾TBM施工的基础上,分别研究了聚氨酯化学灌浆的工艺流程、化学灌浆固结松散性围岩前后的数值计算模型、挤压性地层埋深与双护盾TBM卡机的关系以及挤压性围岩的数值计算模型。提出了化学灌浆固结松散性围岩合理厚度的计算方法,确定了减压支洞与主隧洞之间洞壁厚度的最佳值,从而改变了目前施工中多以经验方式确定灌浆厚度和洞壁厚度的局面,为指导双护盾TBM快速穿过不良地质地段有重要的现实意义。
     按支护衬砌方式的不同将双护盾TBM隧洞围岩支护分为钢体护盾支护段和管片衬砌段。在钢体护盾支护段,研究了护盾与围岩间摩擦阻力的计算方法,讨论了影响摩擦阻力大小的因素,并根据Hoek-Brown强度准则,计算了围岩在理想的弹性与塑性条件下钢体护盾所承受的围岩压力大小,解释了允许双护盾TBM有一定超挖的重要意义。在管片衬砌段,建立了四边形管片衬砌结构的梁——弹簧计算模型,研究了三种典型围岩条件下四边形管片衬砌结构的内力分布规律;将六边形管片——灌浆砼层——围岩作为三位一体结构系统,建立了相应的数值计算模型,并对一个工程实例进行了数值模拟计算,结果表明该管片的强度富裕程度为31%,说明管片的设计是过于安全,有待作进一步的优化设计。
     最后,应用损伤力学的基本原理,研究了灌浆砼层在受压条件下微裂纹服从Weibull分布的损伤演化方程,讨论了方程中的两个参数F_0和m的具体含义。建立了以损伤效应为基础的灌浆砼层数值计算模型,发现灌浆砼层最大主应力的理论计算值与实际测试值是相符合的,研究成果对指导灌浆砼层的设计与施工有一定的实际意义。
Comparing with drill blasting method, TBM(tunnel boring machine) can have a little additional excavation and lesser disturbing for surrounding rock. TBM can sufficient protect surrounding rock itself strength, adjust and reinforce tunnel itself bearing capacity and stability, reduce the weight of lining structure, thrift the engineering material. There are remarkable characteristics of safe, high quality, efficiency and environmental for the TBM excavating method, so it has been widely used in hydropower projects, road projects, railroad projects, mine and national defense projects. But in deep tunnel around incompact, extrusion, much more groundwater and high ground-stress, how does the TBM construct with safe, continuum and high efficiency. It is one of the key question for TBM construction, and the surrounding rock stability of the tunnels during and after the construction becomes a concern. It is one of the research topics for TBM excavating tunnels.
     At the first time, in Jin Ping hydropower station left riverbank during the super tunnel construction, the microseismic monitoring is used for the surrounding rock stability estimating, and seismic events were recorded. The microseismic results have shown that rock fractures were developed at the intersection of the water, traffic and exploration tunnels where rock weakening between these tunnels might be developed, but after the super tunnel has be excavated the intersection would become more and more stability. Fracturing was also detected where a significant roof-fall occurred nearby. The microseismic results have provided good information for engineers to understand stress conditions in the rock mass and to assess the stability of the tunnels. Using the second derivative of the relation curve of microseismic frequency as a function of time,we may confer the surrounding rock that is stable or not. The study has also obtained the relationship between microseismicity and seismic transmission distance. At last, using the results colliqated microseismic interspace distributing, time distributing, power grade changing and scale domino offect, the tunnel surrounding rock stability can be set off four grades from stabilization to unstable estate, they are I , II, III and IV, this also is the results of tunnel microseismic prediction.
     Based on deformation characteristic and mechanical effect of the surrounding rock in deep tunnel by TBM excavating inland, a new concept of lining press discount coefficient for tunnel surrounding rock is presented according to elasticity mechanics principle and Hoek-Brown criterion. It is suggested some of calculating formulae for plastic radius, plastic displacement and the best lining press. The results of academic calculating were in good agreement with the site monitoring results, and it has shown that the academic calculating formulae were credible. At the same time, it is discussed the connection of TBM hob thrust for the uniaxial compressive strength, the style, the inteqrality, the airslake degree of the rock, and the displacement equation with TBM hob thrust is presented. The internal relation is set up about TBM excavating with surrounding rock quality, and it is very important for TBM constructing tunnel.
     The incompact surrounding rock and extrusion stratum are unfavorable geological conditions for TBM excavating, they might have huge influence to time limit for a project and cost . In order to understand their influence near the tunnel, it is suggested some of study for a craftwork flow, numerical simulation of polyurethane chemical grouting concreting incompact surrounding rock, a connection of deep extrusion stratum with TBM jamming and a mathematic mode of extrusion stratum. It is suggested a calculating formulae for the thickness of polyurethane chemical grouting, and a fine value of the decompress branch hole between the main tunnel. The theory study of the incompact surrounding rock and extrusion stratum infected the double-shield TBM constructing is very important, it has changed the old experiential method for chemical grouting concreting incompact surrounding rock and the analytical results might also channel off the double-shield TBM passing through unfavorable geological sections safely and quickly.
     According to different lining fashion, there are two kind of lining frames for double-shield TBM excavating tunnel, one is shield lining and the other is segment lining. In shield lining sect, the calculating method and influencing factor of frictional resistance to the shield between surrounding rock are discussed. Based on the Hoek-Brown criterion, the surrounding rock press around TBM shield is calculated in two kind of ideal state of elasticity and plastic, and explaining a little additional excavation of double-shield TBM is very importance. In segment lining sect, the beam-spring model for quadrangled segment is built, and to study internal force and deformation of the segment lining for three typical sections, which include fault fracture belt, squeezing strata and surrounding rock of class III. Following the study the structural stress zones where hexagon segment and pea gravel backfilling grouting and surrounding rock might be regarded as lining system, and the calculating results of a puoject example are shown that the richness intension of hexagon segment is 31%, so the segment is above safe intension, and it may be farther optimized.
     Based on principle of damage mechanics, the press damage variable of pea gravel backfilling grouting is defined. The damage evolution equations corresponding for subjection Weibull distributing is determined, and to discuss the parameter F_0 and m inside the damage evolution equations. To build the mathematic model of pea gravel backfilling grouting for damage effect, the main stress of pea gravel backfilling grouting was in good agreement with the test results.
引文
[1]徐书林,傅冰骏.推广应用隧道掘进机,促进我国地下空间开发[J].TBM专题.2003.6
    [2]王思敬.中国岩石力学与工程世纪成就[M].南京:河海大学出版社,2004:582-597
    [3]钱七虎,李朝甫,傅德明.全断面掘进机在中国地下工程中的应用现状及前景展望[J].建筑机械,2002(5):28-36
    [4]张镜剑.山西省万家寨引黄工程应用TBM简介[J].建筑机械,2003(3):32-33
    [5]张镜剑.长隧道中隧道掘进机的应用[J].华北水利水电学院学报,2001,Vol.22 No.3:40-49
    [6]铁道科学研究院西南分院.铁路隧道采用掘进机施工的研究(J92G069)[R]成都:1993年11月
    [7]薛继洪.隧洞掘进机在引大入秦工程中的应用[J].四川水力发电,1998,Vol.17 No.3:4-9
    [8]张镜剑,傅冰骏.隧道掘进进机在我国应用的进展[J].岩石力学与工程学报,2007,26(2):226-238
    [9]殷耀章,茅承觉.全断面岩石掘进机施工[J].建筑机械,1999(2):29-34
    [10]王梦恕.开敞式TBM在铁路长隧道特硬岩、软岩地层的施工技术[J].土木工程学报,2005,38(5):54-58
    [11]苏华友,张继春,史丽华.TBM通过不良地质地段的施工技术[J].岩石力学与工程学报,2005Vol.24 No.9:1635-1638
    [12]薛继洪.TBM掘进技术的发展与展望[J].现代隧道技术(增刊).2004.6:25-29
    [13]孙钧.山岭隧道工程的技术进步[J].西部探矿工程,2000,No.1:1-11
    [14]龚秋明,赵坚,张喜虎.岩石隧道掘进机的施工预测模型[J].岩石力学与工程学报,2004,Vol.23(增2):4709-4714
    [15]中华人民共和国电力行业标准《水工隧洞设计规范》(DL/T5195-2004)
    [16]中华人民共和国水利行业标准《水工隧洞设计规范》(SL297-2002)
    [17]姜德义.岩盐溶腔稳定性及失稳控制研究[D].重庆大学博士论文,2001
    [18]宋建波,张倬元,于远忠等.岩体经验强度准则及其在地质工程中的应用 (M).北京:地质出版社,2002:77-79
    [19]徐志英.岩石力学(第三版)(M).北京:水利电力出版社,1993
    [20]巨能攀.大跨度高边墙地下洞室群围岩稳定性评价及支护方案的系统工程地质研究[D].成都理工大学博士论文,2005
    [21]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002
    [22]席先武.松动岩体群洞围岩稳定性研究[D].长安大学博士论文,2006
    [23]徐军,郑颖人.隧道围岩弹塑性随机有限元分析及可靠度计算[J].岩土力学,2003,24(1):70-74.
    [24]李斯海.厦门市仙岳山隧道围岩稳定性三维有限元计算分析[J].岩石力学与工程学报,2000,19(2):211-214.
    [25]余卫平,汪小刚等.地下洞室群围岩稳定性分析及其结果的可视化[J].岩石力学与工程学报,2005,24(20):3030-3736.
    [26]李杰,郭海燕等.丈八口隧道围岩稳定性分析[J].岩土力学,2004(增刊):536-540.
    [27]唐春安,李连崇.岩土工程稳定性分析RFPA强度折减法[J]岩石力学与工程学报,2006年,25(8):1522-1530.
    [28]刘庭金,朱合华,唐春安.围岩卸载损伤演化及应力场调整有限元分析[J].地下空间,2002年,22(4):310-319.
    [29]P.Kumar.Infinite Elements for Numerical Analysis of Underground Excavations[J].Tunnelling and Underground Technology,2000,15(1):117-124.
    [30]朱合华,陈清军,杨林德.边界元法及其在岩土工程中的应用[M].上海:同济大学出版社,1997.
    [31]K.J.Shou.A Three-Dimensional Hybrid Boundary Element Method for Non-Linear Analysis of a Weak Plane Near an Underground Excavation[J].Tunnelling and Underground Space Technology,2000,15(2):215-226.
    [32]宋丽霞,陶干强,王清良.隧道围岩稳定性数值模拟研究现状与发展方向[J].矿业快报,2007(6):16-20.
    [33]胡夏嵩,赵法锁.低地应力区地下洞室初始和二次应力离散元模拟[J].金属矿山,2004,(11):18-21.
    [34]王涛,陈晓玲,于利宏.地下洞室群围岩稳定的离散元计算[J].岩土力学,2005,26(12):1936-1940.
    [35]Charles Fairhurst,Juemin Pei.A Comparison Between the Distinct Element Method and the Finite Element Method for Analysis of the Sta-bility of an Excavationin Jointed Rock[J].Tunnelling and Underg-round Space Technology,1990,5(1):111-117
    [36]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999
    [37]何思明.预应力锚索作用机理研究[D].西南交通大学博士论文,2004
    [38]刘春原,朱济祥,郭抗美等.工程地质学[M].北京:中国建材工业出版社,2000
    [39]从会涛.隧道动态设计方法与实用技术研究[D].铁道科学研究院硕士论文,2004
    [40]杨志法.有限元法图谱[M].北京:科学出版社,1988
    [41]王芝银,李云鹏.地下工程位移反分析法及程序[M].西安:陕西科学技术出版社,1993
    [42]赵常洲,李占强,魏风华等.地下工程中支架和围岩相互作用的突变模型[J].岩土力学,2005,Vol.26(增):17-20
    [43]常斌,李宁,马玉扩.神经网络方法在洞室施工期应力及变形预测中的应用及其改进[J].岩石力学与工程学报,2004,Vol.23(7):1132-1135
    [44]易顺民,朱珍德.裂隙岩体损伤力学导论[M].北京:科学出版社,2005
    [45]薛继洪,章跃林.“TBM隧洞施工趋势”国际研讨会文集[C],奥地利:HAGENBERG,1995
    [46]Sebastiano Pelizza,TUSC,Politecnico di Torino等.TBM法隧道掘进-与中国相关的国际事项综述[J].TBM专题,中铁隧道集团科研所信息室,翟进营翻译 2002.4
    [47]张镜剑.TBM的应用及其有关问题和展望[J].岩石力学与工程学报,1999,18(3):363-367
    [48]肖书安,吴世林.复杂地质条件下的隧道地质超前探测技术[J].现代隧道技术(增刊),2004.6:369-374
    [49]王占生,王梦恕.TBM在不良地质地段的安全通过技术[J].中国安全科学学报,2002 Vol.12 No.4:55-59
    [50]傅淑芳,刘宝诚,李文艺.地震学教程[M].北京:地震出版社,1980:74-77
    [51]倪川江,陈运泰,陈祥熊.地震矩张量及其反演[J].地震地磁观测与研 究,1991,(3):1-17
    [52]齐传生.隧道及地下工程超前地质预报技术[J].隧道建议,2005,25(3):9-11
    [53]刘志刚,刘秀峰.TSP(隧道地震勘探)在隧道隧洞超前预报中的应用与发展[J].岩石力学与工程学报,2003 Vol.22 No.8:1399-1402
    [54]张照煌,李福田.全断面隧道掘进机施工技术[M].北京:中国水利水电出版社,2006:32-63
    [55]逢焕东.岩体微地震的模式定位及其失稳预报[D].山东科技大学博士论文,2004
    [56]陈文化,景立平,徐兵.岩石声发射监测技术应用分析-对三峡水利枢纽运行时库区内滑坡实时动态监测的建议[J].自然灾害学报,1999,8(2):103-109
    [57]X.Luo,H.Su,C.Sha,et al.A Microseismic Monitoring Trial for the S-tability Assessment of a Super Tunnel at Jinping Dam,China[A].C.F.Leung,Y.X.Zhou.ISRM International Symposium 2006 4~(th) Asian Rock Mechanics Symposium,Rock Mechanics in Underground Construction[C].S-ingapore:World Scientific,2006.11
    [58]赵向东,陈波,姜福兴.微地震工程应用研究[J].岩石力学与工程学报,2002,21(增2):2609-2612.
    [59]姜福兴,杨淑华,XUN LUO.微地震监测揭示的采场围岩空间破裂形态[J].煤炭学报,2003,28(4):357-360
    [60]李会义,姜福兴,杨淑华.基于的Matlab岩层微地震破裂定位求解及其应用[J].煤炭学报,2006,31(2):154-158
    [61]黄今.水工隧道围岩微地震监测信号分析与研究[D].西南科技大学硕士论文,2007
    [62]张兴民,于克君,席京德等.微地震技术在煤矿“两带”监测领域的研究与应用[J].煤炭学报,2000,25(6):566-570
    [63]唐春安,王述红,傅宇方.岩石破裂过程数值试验[M].北京:科学出版社,2003:41-60
    [64]余天堂,任青文.锦屏高拱坝整体安全评估[J].岩石力学与工程学报,2007Vol.26 No.4:787-794
    [65]逢焕东,姜福兴,张兴民.微地震监测技术在矿井灾害防治中的应用[J].金属矿山,2004,(12):58-61
    [66]傅鹤林,韩汝才.隧道衬砌荷载计算理论及岩溶处治技术[M].长沙:中南大学出版社,2005:46-73
    [67]杨承祥,罗周全,唐礼忠.基于微地震监测技术的深井开采地压活动规律研究[J].岩石力学与工程学报,2007 Vol.26 No.4:818-824
    [68]Chen Z.,R.Stewart,H.Bland,J.Thurston,2005,Microseismic activity and location at Turtle Mountain,Alberta,2005 CSEG National Convention
    [69]Gale,W.J.,Heasley,K.A.,Iannacchione,A.T.,Swanson,P.L.,Hatherly,P.and King,.A.,2001,"Rock Damage Characterization from Microseismic Monitoring," Proceedings of the 38~(th) U.S.Symposium of Rock Mechanics,Washington DC,July 7-10,pp.1313-1320
    [70]Luo,X.,Hatherly,P.and Gladwin,M.,1998,Application of microseismic monitoring to longwall geomechanics and safety,Proc.17th Conf.Ground Control in Mining(ed Syd S.Peng),Morgantown,USA,August 4-6,1998,pp72-78
    [71]Luo X.,J.Ross,P.Hatherly,A,King,2002,Microseismic monitoring of fault reactivation at an underground coal mine,Eos.Trans.AGU 83(22),West.Pac.Geophys.Meet.Suppl.,SE41B-07
    [72]Martin C.D.,2001,Rock stability considerations for siting and constructing a KBS-3 repository,Technical Report TR-01-38,Svensk Kambranslehantering AB(SKB)
    [73]丁建敏.TBM施工隧洞的地质超前预报方法的选择[J].水利水电工程设计.2003.22(1):9-10
    [74]王占生,王梦恕.TBM通过断层破碎带的技术[J].西部探矿工程.2002.75(2):1-3
    [75]杨智国.地质超前预报在桃花铺一号隧道TBM施工中的应用[J].铁道工程学报.2004.81(3):65-71
    [76]唐经世.隧道与地下工程机械---掘进机[M].北京:中国铁道出版社,1998
    [77]宋天田.TBM应用与施工技术研究[D].西南科技大学硕士论文,2005
    [78]王梦恕,王建智,刘启山等.岩石隧道掘进机(TBM)施王及工程实例[M].北 京:中国铁道出版社,2004
    [79]朱汉华,尚岳全等.公路隧道设计与施工新法[M].北京:人民交通出版社,2002
    [80]李通林,谭学术,刘传伟.矿山岩石力学[M].重庆:重庆大学出版社,1991:155-159
    [81]华安增.矿山岩石力学基础[M].北京:煤炭工业出版社,1980:60-90
    [82]G.SWOBODA,M.MANSOUR.浆液盾构施工的三维数值模拟,“TBM隧洞施工趋势”国际研讨会文集[C],奥地利:HAGENBERG,1995:36-49
    [83]E.Hock,P.K.Kaiser,W.F.Bawden.Support of underground excavations in hard rock[M].A.A.BALKEMA/ROITERDAM/BROODFIELD/1988(Fourth print:2005):84-126
    [84]Evert Hoek,Carlos Carranza-Torres,Brent Corkum.Hock-Brown failure criterion -2002 edition[C].NARMS-TAC 2002,"Mining and Tunnelling Innovation and Opportunity" Vol.1:267-273
    [85]K.H.GEBRING.在围岩压力条件下TBM的设计准则,“TBM隧洞施工趋势”国际研讨会文集[C],奥地利:HAGENBERG,1995:51-62
    [86]山西万家寨黄河引水工程公司.引黄入晋联结段7号隧洞TBM招标报告(第二卷第九章技术规范)[R).2000
    [87]尚彦军,王思敬,薛继洪等.万家寨引黄工程泥灰岩段隧洞岩石掘机(TBM)卡机事故工程地质分析和事故处理[J].工程地质学报,20042Vol.10No.3:293-296
    [88]Xue Ji Hong,Feknous Nadia,Wang Jia Lin.Wangjiazhai Yellow River Diversion Lot V,the Connection Work[C].NARMS-TAC 2002,"Mining and Tunnelling Innovation and Opportunity" Vol.2:1473-1483
    [89]汤雷,鄢建华,陈仲先.围岩大变形锚杆与安全监测[M].北京:中国水利水电出版社.2006
    [90]成都极星工程技术有限公司.山西省万家寨引黄入晋工程联接段土建工程国际V标7“隧洞仪器监测工程竣工报告[R].2002年8月
    [91]李志业,曾艳华.地下结构设计原理与方法[M].成都:西南交通大学出版社.2003:88-97
    [92]国家电力公司昆明勘测设计研究院.掌鸠河引水供水工程土建Ⅰ标招标文件[R].昆明:掌鸠河引水供水工程建设管理局,2002
    [93]周维垣.高等岩石力学[M].北京:中国水利电力出版社.1990:54-57
    [94]何川,曾东洋.盾构隧道结构设计及对施工环境的影响[M].成都:西南交通大学出版社,2007
    [95]尹俊涛.与TBM相关的主要工程地质质问题研究[D].中南大学硕士学位论文,2005:45-62
    [96]J.P.Kaegi,M.Bachmann,A.Colombi.昆明掌鸠河引水隧洞工程[J].现代隧道技术(增刊),2004.6:491-495
    [97]刘光尧.渗透系数概念发展的回顾[J].工程勘察,1997年第2期:34-38
    [98]陈义斌,高鸣安,陈明祥等.江垭工程孔口封闭帷幕灌浆高压下灌浆材料性能试验研究[J].岩石力学与工程学报,2001,20(增):1809-1813
    [99]李守巨,刘迎曦,王登刚等.基于神经网络的岩体渗透系数反演方法及其工程应用[J].岩石力学与工程学报,2002,21(4):479-483
    [100]王卫军,杨磊,林大能等.松散破碎围岩两步耦合注浆技术与浆液扩散规律[J].中国矿业,2006 Vol.15 No.3:70-73
    [101]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982.1(1):1-19
    [102]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报,2000.8(1):56-62
    [103]尚彦军,史永跃,曾庆利等.昆明上公山隧道复杂地质条件下TBM卡机及护盾变形问题分析和对策[J].岩石力学与工程学报,2005 Vol.24N0.21:3858-3863
    [104]Goel R K,Jethwa J L,Pathankar A G.Indian experience with Q and RMR system[J].Tunnelling and Underground Space Technology,1995,10(1):97-109
    [105]Jack Burke.Upcoming and ongoing tunneling projects across North America[J].TBM Tunnel Business Magazine,June 2001:34-37
    [106]Winnign.Tunnels & Tnnelling International[J].2002 NOVEMBER VOL 34NO 11:16-19
    [107]尹俊涛,尚彦军,史永跃等.掌鸠河引水供水工程TBM施工段相关工程地质问题探讨[J].现代隧道技术,2005 Vol.42 No.3:49-52
    [108]K.H.Gebring.DESIGN CRITERIA FOR TBM'S WITH RESPECT TO REAL ROCK PRESSURE[C].A.ABALDEMA/ROTTERDAM/BROOKFIDE/1996:43-53
    [109]杨洁,王敬芝,尚彦军.引黄入晋联结段7号隧洞TBM卡机事故原因数值模拟分析[J].西安科技学院学报,2004 Vol.24 No.1:53-56
    [110]任月宗.TBM施工地质工作方法的探讨[J].水利水电技术,2002 Vol.33No.8:23-61
    [111]郝竹林.TBM施工中的质量控制[J].山西水利,1999(5):29-30
    [112]苏华友,汪家林.TBM施工中的质量控制与管理[J].岩石力学与工程学报,2004 Vol.23 No.11:1930-1934
    [113]薛继洪,苏枢.双护盾TBM隧洞掘进机在万家寨引黄工程中的应用与发展[J].山西水利科技,2001(增刊):6-17
    [114]章跃林,宋海忠,邵山鹰等.引黄隧洞工程设计与施工[J].地下工程技术,1997(3):26-45
    [115]G.Swoboda,M.Mansour,K.Gehring.Three-Dimensional Numerical Modelling of Slurry Shield Tunnelling[C].Third Asion-Pacific Conference on Comprtational Mechanics 16-18 September 1996,Seoul,Korea:2659-2665
    [116]王钊,王俊奇,咸付生.万家寨引水隧洞成洞和运行的有限元分析[J].岩石力学与工程学报,2004,Vol.23(8):1257-1262
    [117]朱伟,陈仁俊.盾构隧道施工技术现状及展望(盾构隧道基本原理及在我国的使用情况)[J].岩土工程界,2001 Vol.4 No.11:19-21
    [118]朱伟,胡如军,钟小春.几种盾构隧道管片设计方法的比较[J].地下空间,2003 Vol.23 No.4:352-356
    [119]何川,林刚,佘才高等.地铁盾构隧道管片衬砌结构受力特征研究[J].现代隧道技术(增刊,第11届隧道和地下工程科技动态报告会报告文集),2004.6.Vol.41:256-262
    [120]朱合华,崔茂玉,杨金松.盾构衬砌管片的设计模型与荷载分布的研究[J].岩土工程学报,20020Vol.22 No.2:190-194
    [121]于宁,朱合华.复杂地层条件下管片设计与计算方法研究[J].工业建筑,2004 Vol.34 No.4:57-72
    [122]钟小春,朱伟,秦建设.盾构隧道衬砌管片通缝与错缝的比较分析[J].岩土工程学报,2003 Vol.25 No.1:109-112
    [123]闫治国,朱合华,廖小明等.地铁隧道钢纤维混凝土管片力学性能研究[J]. 岩石力学与工程学报,2006 Vol.25(增刊):2887-2893
    [124]孙钧,候学渊.地下结构[M].科学出版社,1996
    [125]Michael Alber.Classifying TBM contracts[J].Tunnels&Tunnelling.1996(1):41-43
    [126]赵廷式.双护盾掘进机六边形管片衬砌性能评价[J].山西水利科技,2006TotalNo.159 No.1:1-8
    [127]王建宇.关于山岭隧道工程的技术进行[J].现代隧道技术(增刊,第11届隧道和地下工程科技动态报告会报告文集),2004.6.Vol.41:1-10
    [128]张安哥,朱成九,陈梦成.疲劳、断裂与损伤[M].成都:西南交通大学出版社,2006:110-137
    [129]唐雪松,郑健龙,蒋持平.连续损伤理论与应用[M].北京:人民交通出版社.2006:79-107
    [130]邓宗才.混凝土Ⅰ型裂缝的损伤断裂判据[J].岩石力学与工程学报,2003Vol.22 No.3:420-424