石羊河流域及腾格里沙漠地下水补给过程及演化规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水是干旱地区最宝贵的自然资源及战略资源,对生态环境及生活、经济发展等方面起着重要的作用。合理有效判别地下水补给演化过程以及地下水的更新时间,对于认识地下水资源属性、认识干旱化环境形成机制与发展规律、促进水资源的科学管理及可持续发展具有重要作用。石羊河流域及毗邻的腾格里沙漠是我国西北干旱区典型的生态系统脆弱带,对气候变化极为敏感,能为揭示西北干旱地区干湿变化的自然规律和机制提供重要依据;其特殊的地质地貌与水文地质条件、相对独立的流域水循环系统在西北干旱区内陆区均具有典型的代表性。开展石羊河流域及毗邻沙漠地区地下水补给循环演化与更新能力研究,能够为全球变化及大陆水文循环研究提供新的研究方向与领域,对认识整个内陆河流域生态系统与水文系统相互作用的过程和机理有重要意义。
     论文着眼于国内外干旱区地下水研究的重要性与难度,重点应用水文地球化学理论与方法,并与自然地理学、第四纪地质学、气候学和古水文地质学等多学科领域交叉,全面系统地研究石羊河流域与腾格里沙漠地区水文循环过程及补给规律,分析对比大气降水与地下水水化学及同位素特征之间的差异,判断地下水补给与大气降水的关系;同时,强调主要离子及化学相的指示作用,结合西北干旱区特有的地质条件及气候特征,提取地下水中的多方面历史及年代信息,确定地下水水流补给历史及路径,建立区域地下水14C年龄模型。主要成果如下:
     (1)根据石羊河流域三个气象站点(九条岭,南营水库,红崖山水库)为期一年的水化学与稳定同位素(δ2H和δ180)监测结果,石羊河流域降水中主要化学离子总量不高,且随流域海拔降低而有所增加。在海拔3000 m以上的降雪中离子总量小于50 mg/L,其中Cl-介于2.14~11.7 mg/L,平均为3.17 mg/L,阴离子组成HCO3->SO4 2->Cl-;阳离子组成以Ca2+主,为9.72 mg/L,Na+仅为4.05 mg/L。中下游地区,降水中离子总量增加,水化学类型由HCO3-型变为HCO3--SO4 2-型,阳离子以Ca2+-Na+为主,受降雨持续时间、降雪沉积时间及地表物质影响差别有所不同。石羊河流域的大气降水稳定同位素δ180值介于-20.6‰~3.8‰,平均为-7.3‰,δ2H介于-158‰~33.1‰之间,平均为-46.9‰。区域降水线(LMWL)为δ2H=7.6δ180+4.4,与全球大气降水线相似但斜率稍低(7.13-7.92)反映了西北干旱区强烈的蒸发作用。影响降水稳定同位素特征的主要因子为温度,总体上石羊河流域δ18O与温度相互关系为δ18O=0.593T-12.59。
     (2)石羊河流域及腾格里沙漠地下水的水化学分布具有较明显的水平分带特征,但浅层水与深层水矿化度及水化学类型并无明显的垂直性分布特征。由出山口向细土平原至荒漠地区,地下水矿化度(TDS)逐渐增大,平均含量为1149.6mg/L,Cl-在地下水径流途径上呈现规律性变化,浓度从山前-平原-荒漠以水平分带性由2 mg/L增加到5216 mg/L。由于Cl-化学性质的稳定作用,与其它离子比值(如SO4 2-/Cl-、NO3-/Cl-、Na+/Cl-等)以及其它特殊离子间比值(Mg2+/HCO3-、Ca2+/HCO3-、Ca2+/SO4 2-等)具有较好的指示作用,能够全面反映含水层介质矿物组成对地下水化学演化及补给来源调查的水文地球化学影响作用。具体的水化学类型为:山前平原区地下水以Ca·Mg-SO4·HCO3类型为主,多为浅层水且地下水水质较好,TDS含量不高,最低值仅为203 mg/L,经平原区后阳离子分异性特征逐渐弱化,以Ca·Mg·Na-HCO3型水过渡Na·Ca·Mg-SO4·Cl型水,最终形成Na-SO4·Cl型水,尤其石羊河流域终端民勤盆地附近,地下水水位较深,矿化程度高,TDS含量最高达5952 mg/L。与区内降水的化学离子组分相比,地下水各离子显著的浓度差异及比值关系反映了大气降水不是平原区及荒漠区地下水的直接补给来源。
     (3)利用PHREEQCI反向模拟地下水一维恒定流的情况下补给演化过程及矿物质转移量的变化情况。基于石羊河流域古浪-武威剖面、红崖山-民勤剖面及腾格里沙漠东缘贺兰山-腰坝剖面地下水流动系统的模拟结果表明,沿水流路径阳离子中Na+及K+参与大量的离子交换作用而损失,Ca2+与Mg2+多在地下水中参与碳酸盐的形成与溶解,CO2气体在水流路径上游为输入项后参与水化学作用逸出,方解石(文石)、白云石、石膏(硬水)、岩盐等选定矿物相以沉淀为主,进入下游区域溶滤作用减弱,蒸发浓缩作用控制强烈,导致主要水化学离子沿地下水水流路径不断从水体中析出剥离,最终演化成矿化度偏高、水化学成分单一的地下水水体。
     (4)石羊河流域及腾格里沙漠的地下水水分子稳定同位素δ18O值范围为-11.5‰~1.5‰,平均为-8.84‰,δ2H介于-90.9‰~-27‰之间,平均为-65.1‰。其相较于现代降水(如张掖站δ18O为-6.5‰左右,δ2H为-43.9‰左右)同位素特征值较低,表明地下水基本上没有受到现代大气降水的直接补给。同位素δ18O比较负的数值伴随较低的Cl-浓度主要表征了过去湿润的补给条件。作为独立的古环境及含盐量指标,地下水较低的Cl-浓度值(平均316 mg/L)表征了长期持续性的湿润气候周期,也说明研究区内仍然保留有古代较冷较湿气候环境下补给的有氧水。
     (5)14C可以作为地下水测年的主要示踪证据及手段,以无机碳δ13C含量标准与标准物质VPDB(海成碳酸盐)的富集程度及碳酸盐的溶解量作为系统指标,说明腾格里沙漠西部石羊河流域地下水含水层封闭性(δ13C含量为-4.73‰)较好于东缘区域(δ13C含量为-10.8‰),地下水封存的14C含量干扰稀释程度基本只受补给区DIC稀释影响。区域年龄校正模型结果表明研究区内荒漠盆地区主要具有轻同位素的晚更新世及全新世时期的水(40~12ka)特征,少部分腾格里东缘中上游区地下水可能具有重同位素现代水特征干扰。该区域模型14C初始水校正源于对Pearson模型进行配合西北干旱区区域性修正。基于样品和补给区DIC的δ13C的变化,放射性碳稀释因子q值计算简便,增强14C年龄模型在我国西北干旱区的适用性及可靠性。
Groundwater is the most valuable natural and strategic resources in arid areas, which plays an important role in the local ecological environment and living, and economic development. Identifying a reasonable and effective evolution of groundwater recharge and groundwater residence time is particularly necessary to understand groundwater resource properties, the formation mechanism of drought and its development, and the promotion of water resource management and sustainable development. Shiyang River Basin and its adjacent Tengger Desert area, located in northwest China, is a typical fragile ecosystem area. It is extremely sensitive to climate changes, which can provide an important evidence for revealing changes of drought/wet transition and mechanisms in drought arid regions of Northwestern China;its specific geological features and hydro geological conditions, and the relatively independent system of water cycle in the northwestern arid area of inland are typically representative. Strenthening the research and investigation work on the groundwater recharge evolution and renewability in Shiyang River Basin and the adjacent to the desert is able to provide a new scientific field and study direction for the global changes and continent hydrological cycle; meanwhile, it is also necessary to assist prediction of the future ecosystem interactions within the hydrological system process and mechanism.
     As an issue of concern about the importance and difficulty in the arid hydrology research work of domestic and international science front porch, this thesis attempts to characterize groundwater circulation (atmosphere-surface water-groundwater) and hydrochemical evolution on an intermediate scale for water resource investigations of arid area, using a combination of theoretical and field based methods in unsaturated aquifers at Shiyang River Basin and Tengger Desert, Northwestern China. Identifying the location of active hydrogeology, flow zones and hydrochemical information along the flow paths are required as well as its complicacy and variability. Groundwater system contacts with its neighborhood water systems by mass and energy transfer, which is influenced by many factors, such as condition of weather, hydrology, geology and tectonics, hydrogeology and vegetation. So the chemical and isotopic components in groundwater are used to provide an effective method to trace the process of groundwater circulation. Furthermore, this work presents a new corrected model for the calculation of the initial 14C concentration that is the primary step to estimate the renewal capability of groundwater and reliable age. Above all, it is necessary to understand groundwater circulation and renewability as the key objective for the water resources management improvement. In addition, the hydrochemical characteristics provide unique information carriers for the global change and terrestrial hydrologic cycle.
     The main results of the present study are followed:
     (1) Samples of precipitation (rain and snow) were one-year collected at three local weather stations (Jiutiaoling, Nanying, Hongyashan) for stable isotope studies (δ2H andδ18O) and major ion analysis. Generally the precipitation of the study catchment has dilute chemistry; the total dissolved solid(TDS) of the snow from mountains above 3000 m is lower than 50 mg/L, which increases as the altitude decreases. The Cl concentrations range from 2.14-11.7 mg/L and average value is 3.17 mg/L, the composition of rainfall anions presents like HCO3->SO42->Cl-; the major cation is Ca2+ with the concentration of 9.72 mg/L while Na+ only presents 4.05 mg/L in the rainfall samples. The salinity increases significantly from upstream to downstream because of evaporation-induced saline enrichments that water of HCO3-type evolves to HCO3--SO42- type and Ca2+-Na+type for cations. This distribution variation of facies may also be influenced by rainfall duration, snow deposition time and the surface materials of catchment. Meanwhile, precipitation contains a relatively large magnitude of variations inδ18O andδ2H, withδ18O ranging from 20.6%o to 3.8%o (average of-7.3‰) andδ2H from-158‰to 33.1‰(average of-46.9%o). The Local Meteoric Water Line (LMWL) of Shiyang River Basin is defined asδ2H=7.618δ18O+4.398%o VSMOW, which lower gradients (7.13-7.92) to GMWL indicates a significant dry and evaporation effect controlling in the arid area of northwestern China. The temperature effect is the most important effect toδ18O in precipitation and the relationship between them is described asδ18O=0.593T-12.59‰.
     (2) The relationship between regional structural elements and the hydrochemical evolution of groundwater are determined as another important objective. The characteristics of groundwater chemistry and mechanisms are distributed horizontally zone by zone from mountain front to desert basin. The total dissolved solid (TDS) is increasing along the flow paths, with average value of 1149.6 mg/L; however, the vertical distribution of TDS and other hydrochemical characteristics are not significant. As well, Cl concentration also increases gradually (2 mg/L-5216 mg/L) along the groundwater flow paths from the Piedmont-Plains-Desert. Due to the stability chemical properties of Cl element, the mixing ratios with the other elements (e.g. SO42-/Cl-、NO3-/Cl-、Na+/Cl-, etc.) and other special ratios of the major ion species (e.g. Mg2+/HCO3-、Ca2+/HCO3-、Ca2+/SO42-, etc.) could be a good indicator for understanding hydrochemical evolution and mechanisms. Across the whole aquifer, groundwater evolves gradually from Ca·Mg-SO4·HCO3 type water (TDS≥203 mg/L) from mountain front aquifers to more mineralized Ca·Mg·Na-HCO3 and then Na·Ca·Mg-SO4·Cl type water in the alluvial plain, and then becomes SO4·Cl type water (TDS≤5952 mg/L) below the desert plain. The chemical composition of the water and the relationship between ions reflect that the direct infiltration of precipitation is not the recharge sources to the plain and desert, which chemistry strongly influenced by evaporation and subsequent dissolution of minerals during recharge in the rainy season, as showed in the ionic plots and saturated index. Other processes such as cation-exchange and weathering also contribute to the water composition.
     (3) The water-rock reactions were simulated using the PHREEQCI inverse model and the results showed a good agreement with the measured groundwater quality. The proposed reactions are plausible for explaining the observed concentrations in groundwater that finally evolves to become mineralized and single chemical composition water type. Based on three sections of Gulang-Wuwei, Hongyashan-Minqin and Helianshan-Yaoba flow paths, the constraints and phases used in modeling were selected on the potential reactions between water and the principal mineralogical species existing in the aquifers. The ionic exchange reaction occurring among the cations is interpreted as a result of flow of relatively dilute water through a highly saline medium, where the concentrations of Na+ and K+ are slightly reducing as the Ca2+ and Mg2+ releasing for carbonate reactions. The model requires the input of CO2 in the groundwater; however, the precipitation of calcite, gypsum, halite and dedolomitisation reaction was simulated out in the flow paths, giving rise to the production of output CO2 as well. This process leads to the existence and evolution of the most mineralized water.
     (4) The results of isotopic measurements for groundwater of Shiyang River Basin and Tengger Desert show a normal arid magnitude of variations, ranging between-11.5‰and-1.5‰inδ18O (average of-8.84%o), and between-90.9‰and-27%o inδ2H (average of-65.1‰). A comparison of stable isotope compositions of groundwater with local modern values of precipitation (i.e. the annual average values ofδ18O andδ2H in Zhangye station are around -6.5‰o and-43.9‰, respectively) indicates the direct infiltration of precipitation is not an important source of recharge to the groundwater in the study area. From the discussion ofδ18O and Cl, it is clear that the least isotopically-depleted waters indicates a wetter condition of the past recharge duration. As an independent indicator of ancient environments and salt constraints, the lower Cl concentration (with average of 316 mg/L) is considered to characterize a long-term sustainability of a phase of humid climate cycle, suggesting it may still retains the cooler and wetter supply of oxygen water under the ancient climate.
     (5) Radiocarbon (14C) is used as the important tracer element to calculate the groundwater age. Theδ13C-DIC contents and fractionation factor could firstly be used as the standard of the recharging water that can identify the enrichment of dissolved carbonate in the closed-system. The 14C contents in the closed-system below the water table possibly indicative of influence by the dilute DIC of the recharging water considering the amount of carbonate interfering sources, where presents much more significantly in Shiyang River basin withδ13C value of-4.73‰. However, it may not be representative of the eastern area of Tengger desert in the less closed system (δ13C of-10.8‰). A mean residence time in the range of 40-12 ka for the deserts is inferred, revealing that some replenishment to desert aquifer was only occurring in late Pleistocene and Holocene when some of the upriver characterize as the modern water. A modified version of the Pearson (1965) isotopic correction model is used to account for isotopic dilution from incongruent dissolution of carbonates. The radiocarbon dilution factor q is calculated based on the change inδ13C-DIC between the sample and the recharge zone that the advantage of this model is the reliability and practicability for arid area of northwestern China.
引文
[1]Aberg, G., Jacks, G, Hamilton, P Joseph. Weathering rates and 87Sr/86Sr ratios:An isotopic approach[J]. Journal of Hydrology.1989,109(1-2):65-78.
    [2]Allison, G. B., Cook, PG, Barnett, SR, Walker, GR. Land Clearance and River Salinization in the Western Murray Basin, Australia [J]. Journal of Hydrology.1990,119(1-4):1-20.
    [3]Allison, G. B., Gee, GW, Tyler, SW. Vadose-Zone Techniques for Estimating Groundwater Recharge in Arid and Semiarid Regions [J]. Soil Science Society of America Journal.1994,58(1):6-14.
    [4]Anthoni,J.F(2006). The chemical composition of seawater. www.seafriends.org.nz/oceano/seawater.htm.
    [5]Aravena, R., Schiff, SL, Trumbore, SE, Dillon, PJ. Evaluating dissolved inorganic carbon cycling in a forested lake watershed using carbon isotopes[J]. Radiocarbon.1991,34(3),636-645.
    [6]Back, W. Comparison of chemical hydrogeology of the carbonate peninsulas of Florida and Yucatan[J]. Journal of Hydrology.1970,10:330-368.
    [7]Barnes, C, Allison G. Tracing of water movement in the unsaturated zone using stable isotopes of hydrogen and oxygen[J]. Journal of Hydrology.1988,100(1-3):143-176.
    [8]Beekman, H., Selaolo, ET, JJ De Vries. Groundwater recharge and resources assessment in the Botswana Kalahari[R].GRES II Executive summary and technical reports.1999,48.
    [9]Bennetts, DA., Webb, JA, Stone, DJM, Hill, DM. Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence [J]. Journal of Hydrology.2006,323(1-4):178-192.
    [10]Bentley, H., Phillips, FM, Davis, SN, Habermehl, MA. Chlorine-36 dating of very old groundwater,1:The Great Artesian Basin, Australia [J]. Water Resources Research.1986, 22(13):1991-2001.
    [11]Bouhlassa, S., Aiachi, A. Groundwater dating with radiocarbon:application to an aquifer under semi-arid conditions in the south of Morocco (Guelmime)[J]. Applied Radiation and Isotopes.2002, 56(4):637-647.
    [12]Boutton, T. Stable carbon isotope ratios of natural materials:I. Sample preparation and mass spectrometric analysis[M]. Carbon isotope techniques,1991,155-171.
    [13]Bouwer, H. Groundwater hydrology[M].McGraw-Hill New York,1978.
    [14]Appelo, C.A.J., Postma, D. Geochemistry, groundwater and pollution[M]. CRC Press.2005,649 pp.
    [15]Campana,M. Generation of ground-water age distributions[J]. Ground Water.1987,25(1):51-58.
    [16]Cartwright, I., Weaver, TR, Fulton, S, Nichol, C, Reid, M. Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia[J]. Applied Geochemistry.2004,19(8):1233-1254.
    [17]Cerling, T., Solomon, D.K., Quade, J., Bowman, J.R. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta.1991,55(11):3403-3405.
    [18]Chadha, D. Aproposed new diagram for geochemical classification of natural waters and interpretation of chemical data[J]. Hydrogeologyjournal.1999,7(5):431-439.
    [19]Chae, GT., Yun, ST, Kim, K, Mayer, B. Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea:water-rock interaction and hydrologic mixing [J]. Journal of Hydrology.2006,321(1-4),326-343.
    [20]Chen, F., WU Wei, JA Holmes, DB Madsen. A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia China[J]. Chinese Science Bulletin.2003, 48(14):1401-1410.
    [21]Clark, I., Fritz, P.. Environmental Isotopes in Hydrogeology[M]. Lewis Publishers, NY,1997.
    [22]Cook, P.G, Edmunds, W.M, Gaye, C.B. Estimating paleorecharge and paleoclimate from unsaturated zone profiles[J].Water Resources Research.1992,28(10):2721-2731.
    [23]Cook, P.G., Herczeg, A.L. Environmental tracers in subsurface hydrology[M]. Kluwer Academic Publishers, Boston.2000.
    [24]Coplen, T., Herczeg, AL, Barnes, C. Isotope engineering-using stable isotopes of the water molecule to solve practical problems[C]. Environmental Tracers in Subsurface Hydrology. Boston: Kluwer Academic Publishers,2000,110.
    [25]Craig, H. Isotopic Variations in Meteoric Waters[J]. Science.1961,133(3465):1702-1703.
    [26]Dansgaard, W. Stable isotopes in precipitation[J]. Tellus.1964,16(4):436-468.
    [27]Darcy, H. Les Fontaines Publiquesde la Ville de Dijon[M]. Paris,Victor Dalmont,1856,647 pp.
    [28]Davis, S., Murphy,E. Dating ground water and the evaluation of repositories for radioactive waste[C]:NUREG/CR-4912, Arizona Univ., Tucson (USA). Dept. of Hydrology and Water Resources; Nuclear Regulatory Commission, Washington, DC (USA). Div. of Engineering,1987.
    [29]Davissoh, M., Smith, DK, Kenneally, J, Rose, TP. Isotope hydrology of southern Nevada groundwater:stable isotopes and radiocarbon[J].Water Resources Research.1999,35(1):279-294.
    [30]de Vries, J., Simmers, I. Groundwater'recharge:an overview of processes and challenges [J]. Journal of Hydrology.2002,10(1):5-17.
    [31]Demirel, Z., Guler, C. Hydrogeochemical evolution of groundwater in a Mediterranean coastal aquifer, Mersin-Erdemli basin (Turkey)[J]. Environmental Geology.2006,49(3):477-487.
    [32]Demlie, M. Major ion hydrochemistry and environmental isotope signatures as a tool in assessing groundwater occurrence and its dynamics in a fractured volcanic aquifer system located within a heavily urbanized catchment, central Ethiopia[J]. Journal of Hydrology.2008,353(1-2),175-188.
    [33]DeNiro, M., Epstein, S. Influence of diet on the distribution of carbon isotopes in animals[J].Geochimica et Cosmochimica Acta.1978,42(5):495-506.
    [34]Dong, D. Environmental Characteristics of Groundwater:an Application of PCA to Water Chemistry Analysis in Yulin[J]. Journal of China University of Mining and Technology.2007,17(1): 73-77.
    [35]Douglas, M., Clark, ID, Raven, K, Bottomley, D. Groundwater mixing dynamics at a Canadian Shield mine[J]. Journal of Hydrology.2000,235(1-2),88-103.
    [36]Drury, LW, Calf, GE, Dharmasiri, JK. Radiocarbon Dating of Groundwater in Tertiary Sediments of the Eastern Murray Basin[J]. Australian Journal Soil Research.1984,22:379-387.
    [37]Edmunds, W. M., Smedley, P. L. Residence time indicators in groundwater:the East Midlands Triassic sandstone aquifer[J]. Applied Geochemistry,2000,15(6):737-752.
    [38]Edmunds, W. M., Guendouz, AH, Mamou, A, Moulla A. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia:trace element and isotopic indicators [J]. Applied Geochemistry,2003,805-822.
    [39]Edmunds, W. M. Nitrate enrichiment in the vadose zone and deep groundwaters of Northern Africa [C]. Denver Annual Meeting,2004.
    [40]Edmunds, W. M. Groundwa.ter as an Archive of Climatic and Environmental Change[M]. Springer Netherlands:Isotopes in the Water Cycle,2005,pp.341-352,
    [41]Edmunds, WM., Ma, J, Aeschbach-Hertig, W, Kipfer, R. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, North West China[J]. Applied Geochemistry. 2006,21(12):2148-2170.
    [42]Edmunds, W. M. Geochemistry's vital contribution to solving water resource problems[J]. Applied Geochemistry.2009,24(6):1058-1073.
    [43]Eichinger, L. A contribution to the interpretation of 14C groundwater ages considering the example of a partially confined sandstone aquifer[J]. Radiocarbon.1983,25(2):347-356.
    [44]Eriksson, E. The chemical climate and saline soils in the arid zone[J]. Arid Zone Research, 1958,147.
    [45]Farquhar, G., Ehleringer, IJR, Hubick, KT. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Biology.1989,40(1):503-537.
    [46]Favreau, G., Cappelaere, B, Massuel, S, Leblanc, M. Land clearing, climate variability, and water resources increase in semiarid southwest Niger:A review[J].Water Resources Research.2009,45, 18.
    [47]Fisher, R. S., F.Mullican, W. Hydrochemical Evolution of Sodium-Sulfate and Sodium-Chloride Groundwater Beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA[J]. Hydrogeology Journal.1997,5(2), pp.4-16.
    [48]Fontes, J., Gamier J. Determination of the initial 14C activity of the total dissolved carbon:a review of the existing models and a new approach[J]. Water Resources Research.1979,15(2).
    [49]Fontes, J.Chemical and isotopie constraints on 14C dating of ground water[C]. Radiocarbon After Four Decades, An Interdisciplinary Perspective,1992, pp 242-261.
    [50]Fritz, P. Considerations on radiocarbon dating of groundwater[R]. International Symposium on Isotope Hydrology Instituto de Asuntos Nucleares, Vienna, IAEA,1980.
    [51]Fritz, P., Frape, SK, Fontes, JC, Louvat, D. et al. The isotope geochemistry of carbon in groundwater at Stripa[M]. Geochimica et Cosmochimica Acta,1989.
    [52]Froehlich, K.,Gibson,J.J, Aggarwal,P. Deuterium excess in precipitation and its climatological significance[R]. Study of environmental change using isotope techniques,2002,54-65.
    [53]Gao, S., L, Ruijie, Q, Mingrui, H, Eerdun et al. Reconstruction of precipitation in the last 140 years from tree ring at south margin of the Tengger Desert, China[J]. Chinese Science Bulletin.2005, 50(21):2487-2492.
    [54]Garcia, G., del V. Hidalgo, M, Blesa, MA. Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina [J]. Hydrogeology Journal.2001,9(6):597-610.
    [55]Garcia Pereira, H., Renca, S, Saraiva, J. A case study on geochemical anomaly identification through principal components analysis supplementary projection[J].Applied Geochemistry, 2003,18(1):37-44.
    [56]Garrels, R., Thompson, M. A chemical model for sea water at 25 degrees C and one atmosphere total pressure[J]. American Journal of Science,1962,260(1):57.
    [57]Garrels, R., Christ, CL. Solutions, Minerals, and Equilibria[M]. New York, Harper & Row,1965.
    [58]Garrels, R., Mackenzie, FT. Origin of the chemical compositions of some springs and lakes[R]. Geochemistry of water, American Chemical Society,1967.
    [59]Gat, J. R. The isotopes of hydrogen and oxygen in precipitation[J]. Handbook of environmental isotope geochemistry.1980,1:21-47.
    [60]Gates, J. B., Edmunds, W. M, Darling, W. G, Ma, J, Pang, Z. Conceptual model of recharge to southeastern Badain Jaran Desert groundwater and lakes from environmental tracers[J]. Applied Geochemistry.2008,23(12):3519-3534.
    [61]Gee, G. W., Hillel, D. Groundwater recharge in arid regions:Review and critique of estimation methods[J]. Hydrological Processes,2006,2(3):255-266.
    [62]W,Genxu, C, Guodong. Fluoride distribution in water and the governing factors of environment in arid north-west China[J]. Journal of Arid Environments,2001,49(3):601-614.
    [63]Geyh, M. A. An Overview of 14C Analysis in the Study of Groundwater[J]. Radiocarbon,2000,42: 99-114.
    [64]Glynn, P. D., Plummer, L. N. Geochemistry and the understanding of ground-water systems[J]. Hydrogeology Journal.2005,13(1):263-287.
    [65]Gonfiantini, R. Carbon Isotope Exchange in Karst Groundwater[C]. Karst Hydrogeology and Karst Environment Protection., IAH,21st, Congress, Guilin, China,1988.
    [66]Grove, D. Carbon-14 dates of ground water from a Paleozoic carbonate aquifer, south-central Nevada[R]. U.S. Geology.1969,650(C):C215-C218.
    [67]Gu, Z. Climate as the dominant control on C3 and C4 plant abundance in the Loess Plateau:Organic carbon isotope evidence from the last glacial-interglacial loess-soil sequences[J]. Chinese Science .Bulletin,2003,12.
    [68]Helgeson, H. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-Ⅱ[J]. Applications:Geochimica et Cosmochimica Acta,1968,33:455-481.
    [69]Helgeson, H. Brown, T.H.,Nigrini,A.Jones, T.A. Calculation of mass transfer in geochemical processes involving aqueous solutions[J]. Geochimica et Cosmochimica Acta.1970,34:569-592.
    [70]Herczeg, A. L., Edmunds, W. M. Inorganic ions as tracers, in Environmental Tracers in Subsurface Hydrology[C]. Kluwer Academic Publishers, C. P.G. and H, A.L., Boston,2000,pp.529.
    [71]Hubbert, M. Darcy's law and the field equations of the flow of underground fluids[J]. Trans:AIME, 1956,207(7),222-239.
    [72]I. Haag, Westrich, B. Processes governing river water quality identified by principal component analysis[J].:Hydrological Processes,2002;16(16):3113-3130.
    [73]Ingerson,.E., F. Pearson Jr. Estimation of age and rate of motion of groundwater by the 4C method[C]. Recent Researches in the Fields of Hydrosphere, Atmosphere,and Nuclear Geochemistry (Sugawara Festival Volume), Tokyo:Maruze,1964.
    [74]Ingraham, N. Isotopic variations in precipitation[J]. Isotope tracers in catchment hydrology,1998, 87-118.
    [75]Jeong, C. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea [J]. Journal of Hydrology.2001,253(1-4),194-210.
    [76]Jouzel, J., Merlivat L. Deuterium and oxygen 18 in precipitation:modeling of the isotopic effects during snow formation[J]. Journal of Geophysical Research-Atmospheres,1984,89(D7), 11749-11757.
    [77]Jouzel, J., Froehlich, K, Schotterer, U. Deuterium and oxygen-18 in present-day precipitation data and modelling[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques,1997,42(5), 747-764.
    [78]Kalin, R. M. Radiocarbon Dating of Groundwater System in Environmental Tracers in Subsurface Hydrology[C]. Kluwer Academic Publishers, C. P.G. and H. A.L., Boston,2000, pp.111-144,
    [79]Kaufman, S., Libby, W. The natural distribution of tritium[J],Physical Review,1954,93(6): 1337-1344.
    [80]Keene, W., Pszenny, Alexander A. P., Galloway, James N., Hawley, Mark E. Sea-salt corrections and interpretation of constituent ratios in marine precipitation, Journal of Geophysical Research,1986, 91:6647-6658.
    [81]Kumar, M., Kumari, K, Ramanathan, AL, Saxena, R. A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India[J]. Environmental Geology,2007,53(3),553-574.
    [82]Langmuir, D., Hall, P, Drever, JI. Environmental Geochemistry[M]. New Jersey:Prentice Hall, 1997.
    [83]Lehmann, B., Love, A, Purtschert, R, Collon, P et al. A comparison of groundwater dating with 81Kr, 36Cl and 4He in four wells of the Great Artesian Basin, Australia[J]. Earth and Planetary Science Letters,2003,211(3-4):237-250.
    [84]Lerner, D., Issar, AS, Simmers, I. Groundwater recharge:a guide to understanding and estimating natural recharge[M]. Hannover:Taylor & Francis,1990.
    [85]Lerner, D. Groundwater recharge, in Geochemical processes, weathering and groundwater recharge in catchments[C]. Rotterdam:AA Balkema, O. Saether and P. De Caritat,1997, pp 109-150.
    [86]Lerner, D. Identifying and quantifying urban recharge:a review[J]. Hydrogeology Journal,2002, 10(1),143-152.
    [87]Li, X.R., Xiao, H,L. Zhang, J,G. Wang X,P. Long-Term Ecosystem Effects of Sand-Binding Vegetation in the Tengger Desert, Northern China[J]. Restoration Ecology,2004,12(3),376-390.
    [88]Li, X. J., Li, X.R, Song, W.M. Gao, Y.P. Zheng, J.G, Jia. R.L. Effects of crust and shrub patches on runoff, sedimentation, and related nutrient (C, N) redistribution in the desertified steppe zone of the Tengger Desert, Northern China[J]. Geomorphology,2008,96(1-2),221-232.
    [89]Libby, W. Radiocarbon Dating[M]. The University of Chicago Press, Chicago,1952, pp.111-175.
    [90]Lojen, S., Dolenec, T, Vokal, B, Cukrov, N et al. C and O. stable isotope variability in recent freshwater, carbonates (River Krka, Croatia)[J]. Sedimentology,2004,51(2),361-375.
    [91]Loosli, H., Lehmann, B, Aeschbach-Hertig,.W, Kipfer, R et al. Tools used to study paleoclimate help in water management[J]. Eos Trans. AGU,1998,79(47):576.
    [92]Love, A. J., Herczeg, A,L, Armstrong, D, Stadter, F. Groundwater-flow regime within the Gambier Gmbayment of the Otway Basin, Australia-Evidence from hydraulics and hydrochemistry[J]. Journal of Hydrology.1993,143(3-4),297-338.
    [93]Love, A. J., Herczeg, A,L, Armstrong, D, Stadter, F. Groundwater residence time and paleohydrology in the Otway basin, south Australia-H-2,O-18 and C-14 data[J]. Journal of Hydrology.153(1-4),157-187.
    [94]Love, A. J., Herczeg, AL, Sampson, L.Cresswell, RG, Fifield, LK. Sources of Chloride and Implications for 36C1. Dating of Old Groundwater, Southwestern Great Artesian Basin, Australia[J]. Water Resour.ces Research,2000,36.
    [95]Love, A. J. Groundwater flow and solute transport dynamics in a fractured meta-sedimentary aquifer[R]. Flinders University, Adelaide,2003.
    [96]Ma, J. Z., Wang, X,S, Edmunds W,M. The characteristics of ground-water resources and their changes under the impacts of human activity in the arid Northwest China-a case study of the Shiyang River Basin[J]. Journal of Arid Environments,2005,61,277-295.
    [97]Ma, J. Z., Ding, Z, Gates,. JB, Su, Y. Chloride and the environmental isotopes as the indicators of the groundwater recharge in the Gobi Desert, northwest China[J]. Environmentall Geology,2008,55(7), 1407-1419.
    [98]Ma, J. Z., Ding, Z.Y, Edmunds, W. M, Gate, J.B., Huang,T. Limits to recharge of groundwater from Tibetan plateau to the Gobi, desert, implications for water management in the mountain front[J]. Journal of Hydrology.2009,364(1-2),128-141.
    [99]Ma, Y., Zhang, H, Pachur, HJ, Wunnemann, B, Li, J. Late Glacial and Holocene vegetation history and paleoclimate of the Tengger Desert, northwestern China[J]. Chinese Science Bulletin,2003, 48(14),1457-1463.
    [100]Madsen, D. B., Chen, F, Oviatt, CG, Zhu, Y et al. (2003), Late Pleistocene/Holocene wetland events recorded in southeast Tengger Desert lake sediments, NW China[J]. Chinese Science Bulletin, 2003,48(14):1423-1429.
    [101]Maloszewski, P., et al. (1983), Application of flow models in an alpine catchment area using tritium and deuterium data[J]. Journal of Hydrology.1983,66(1-4).
    [102]Marfia, A., Krishnamurthy, RV, Atekwana, EA. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting:a case study from Belize, Central America[J]. Applied Geochemistry,2004,19(6):937-946.
    [103]Mathieu, R., Bariac T. An isotopic study (2H and 18O) of water movements in clayey soils under a semiarid climate[J]. Water Resources Research,1996,32(4).
    [104]Matter, J., Waber, H.N, Loew, S, Matter. A. Recharge areas and geochemical evolution of groundwater in an alluvial aquifer system in the Sultanate of Oman, Hydrogeology Journal.2006, 14(1),203-224.
    [105]Mazor,E.Paleotemperatues and other hydrological parameters deduced from noble gases dissolved in groundwaters;Jordan Rift Valley, Israel,Geochimica et Cosmochimica Acta,1972,36, 1321-1336.
    [106]Merlivat, L., J. Jouzel. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation[J]. Journal of Geophysical Research,1979,84(C8);5029-5033.
    [107]Migliavacca,D., Teixeira,E.G, Wiegarid, F et al. Atmospheric precipitation and chemical composition of an urban site,Guaiba hydrographic basin, Brazil[J]. Atmospheric Environment, 2005,39(10),1829-1844.
    [108]Millero,F.,Feistel,R, Wright,D.G, McDougall,T.J. The compobsition of Standard Seawater and the definition of the Reference-Composition Salinity Scale[J].Deep-Sea Research Part Ⅰ,2008, 55(1),50-72.
    [109]Mook, W., Grootes, P. The measuring procedure and corrections for the high-precision mass-spectrometric analysis of isotopic abundance ratios, especially referring to carbon, oxygen and nitrogen[J]. International Journal of Mass Spectrometry and Ion Physics,1973,12(3),273-298.
    [110]Mook, W.,Koene,B. Chemistry of dissolved inorganic carbon in estuarine and coastal brackish waters[J]. Estuarine and Coastal Marine Science,1975,3(3),325-336.
    [111]Moser,H., W. Stichler. Deuterium and oxygen-18 contents as an index of the properties of snow covers[J].International Association of Hydrological Sciences Publication,1974,114,122-135.
    [112]Moser, H., W. Rauert. Determination of groundwater movement by means of environmental isotopes:state of the art[C]. International Association of Hydrological Sciences. Dunin, FX; Matthess, G.; Gras, RA. Relation of groundwater quantity and quality. Oxfordshire,IAHS,1985, p. 241-57 (IAHS Publication).
    [113]Mrklas, O., Bentley, LR, Lunn, SRD, Chu, A. Principal component analyses of groundwater chemistry data during enhanced bioremediation, Water, Air, and Soil Pollution,2006,169(1-4), 395-411.
    [114]Munnich, K. Heidelberg natural radiocarbon measurements I, Science,2006,126(3266),194.
    [115]Negrel, P., Guerrot, C, Millot, R. Chemical and strontium isotope characterization of rainwater in France:influence of sources and hydrogeochemical implications, Isotopes in Environmental Health Studies,2007,43(3),179-196.
    [116]North, G. R., et al. (1982), Sampling Errors in the Estimation of Empirical Orthogonal Functions, Monthly Weather Review,1982,110(7),699-706.
    [117]Pachur, H. J., Wiinnemann, B, Zhang, H. Lake evolution in the Tengger desert, Northwestern China, during the last 40,000 years[J]. Quaternary Research,1995,44(2),171-180.
    [118]Parkhurst, D. L., Appelo, C. A. J. User's guide to PHREEQC (Version 2)-Acomputer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations., Water-Resources Investigations, Denver, Co, USA,1999.
    [119]Pearson Jr, F., D. White. Carbon 14 Ages and Flow Rates of Water in Carrizo Sand, Atascosa County, Texas[J]. Water Resources. Research,1967,3,251-261.
    [120]Pearson Jr, F., Fisher, DW, Plummer, LN. Correction of ground-water chemistry and carbon isotopic composition for effects of CO2 outgassing[J]. Geochimica et Cosmochimica Acta,1978, 42(12),1799-1807.
    [121]Pearson Jr, F. Effects of parameter uncertainty in modeling 14C in groundwater[J]. Radiocarbon after four decades:an interdisciplinary perspective,1992,262-273.
    [122]Phillips, F., Tansey, MK, Peeters, LA, Cheng, S, Long A et al.An isotopic investigation of groundwater in the central Sari Juan Basin[C]. New Mexico, Carbon 14,1989,2259-2273.
    [123]Phillips, F. M. Environmental tracers for water movement in desert soils of the American southwest[J]. Soil Science Society of America Journal,1994,58(1),15-24.
    [124]Piper, A. A graphic procedure in the geochemical interpretation of water analyses[J]. Chemical hydrogeology,1983,50.
    [125]Plummer, L. N., Busby, JF, Lee, RW, Hanshaw, BB. Geochemical Modeling of the Madison Aquifer in parts of Montana, Wyoming and South-Dakota[J]. Water Resources. Research,1990, 26(9),1981-2014.
    [126]Plummer, N., Sprinkle C. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA[J]. Hydrogeology Journal,2001, 9(2),127-150.
    [127]Poulsen, D., Simmons, C.T, C Le Galle La Salle et al. Assessing catchment-scale spatial and temporal patterns of groundwater and stream salinity[J]. Hydrogeology Journal,2006,14(7), 1339-1359.
    [128]Ran, S. Division of vulnerable ecology region type and analysis of its characteristics[J]. China Population, Resources and Environment,2001,11(4),73-77.
    [129]Robertson, F. Geochemistry of ground water in alluvial basins of Arizona and adjacent parts of Nevada, New Mexico, and California[R]. US Geological Survey Professional Paper,1991.
    [130]Roy, S., Negrel P. A Pb isotope and trace element study of rainwater from the Massif Central (France)[J]. Science of the Total Environment,2001,277(1-3),225-239.
    [131]Rozanski, K. Deuterium and oxygen-18 in European groundwaters-links to atmospheric circulation in the past[J]. Chemical Geology (Isotope Geoscience Section),1985,52,349-363.
    [132]Sanford, W. Recharge and groundwater models:an overview, Hydrogeology Journal.,2002, 10(1),110-120.
    [133]Sarmiento, J., C Le Quere, SW Pacala. Limiting future atmospheric carbon dioxide[J]. Global Biogeochemical Cycles,1995,9(1),121-137.
    [134]Sayles,F. L., W. B. Curry.δ13C, TCO2, and the metabolism of organic carbon in deep sea sediments[J]. Geochimica et Cosmochimica Acta,1988,52(12),2963-2978.
    [135]Schramke, J., Murphy, EM, Wood, BD. The use of geochemical mass-balance and mixing models to determine groundwater sources[J]. Applied Geochemistry,1996,11(4),523-539.
    [136]Shiklomanov, I., Rodda J. World water resources at the beginning of the twenty-first century[M]. Cambridge University Press,1994.
    [137]Shrestha, S., Kazama F. Assessment of surface water quality using multivariate statistical techniques:A case study of the Fuji river basin, Japan[J]. Environmental Modelling & Software, 2007,22(4),464-475.
    [138]Silar, J. The use of radiocarbon dating in groundwater conservation[R]. IAHS-AISH Publication., No.103(Groundwater Pollution-Symposium Pollution des Eaux Souterraines),1975.
    [139]Silar, J. Time and its meaning in groundwater studies[R]. IAHS Publ, No.190(Hydrology of Mountainous Areas),1990.
    [140]Simmers, I. Recharge of phreatic aquifers in (semi-) arid areas[C]. Iah International Contributions to Hydrogeology 19, Taylor & Francis Group,1997.
    [14.1]Simmons, C.Henry Darcy (1803-1858):Immortalised by his scientific legacy[J]. Hydrogeology Journal,2008,16(6),1023-1038.
    [142]Stute, M., Sonntag, C, Deak, J, Schlosser, P. Helium in deep circulating groundwater in the Great Hungarian Plain:Flow dynamics and crustal and mantle helium fluxes[J]. Geochimica et Cosmochimica Acta, 1992,56(5),2051-2067.
    [143]Sylvia R. Esterby.Review of methods for the detection and estimation of trends with emphasis on water quality applications[J]. Hydrological Processes,1996,10(2),127-149.
    [144]Tamers, M. Ground water recharge as revealed by naturally occurring radiocarbon:aquifers of Coro and Paraguana, Vezezuela[J]. Nature,1966,212(5061),489-492.
    [145]Tamers,.M.,Thielen,C.Radiocarbon ages of ground water flowing into a desiccating lake[J]. Acta Cientifica Venezolana,1966,17,150-157.
    [146]Taylor, S. Abundance of chemical elements in the continental crust:a new table[J]:Geochimica et Cosmochimica Acta,1964,28,1273-1285.
    [147]Turner, J. V. Kinetic fractionation of carbon-13 during calcium carbonate precipitation[J]. Geochimica et Cosmochimica Acta,1982,46,1183-1191.
    [148]UNESCO, W. The UnitedNations World Water Development Report 2[R]. UNESCO and Berghahn Books, Paris, France and New York, USA,2006.
    [149]Van Genuchten, M., Leij, FJ, Lund, LJ.Indirect methods for estimating the hydraulic properties of unsaturated soils[C]. International Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils (1989 Riverside, Calif.),1992.
    [150]Vander, W., Appelo, CAJ, Walraevens, K. Inverse chemical modeling and radiocarbon dating of paleogroundwater:the Tertiary Ledo-Paniselian aquifer in Flanders, Belgium[R]. Water Resource Research.,2000,36(5),1277-1287.
    [151]Vitvar, T., Balderer W. Estimation of mean water residence times and runoff generation by 180 measurements in a Pre-Alpine catchment(Rietholzbach, Eastern Switzerland)[J]. Applied Geochemistry,1997,12(6),787-796.
    [152]Vogel, J., Ehleringer, JR, Hall, AE et al. Variability of carbon isotope fractionation during photosynthesis[M]. Academic Press,1993, pp.29-46.
    [153]Wakida, F., Lerner, D. Non-agricultural sources of groundwater nitrate:a review and case study[J]. Water research,2005,39(1),3-16.
    [154]Wang, B. C. The mechanism of groundwater salinization amd its control in the Yaoba Oasis, Inner Mongolia[J]. Geological Soc China,2000.
    [155]Wang, G., Han, J, Zhou, L, Xiong, X et al. Carbon isotope ratios of plants and occurrences of G4 species under different soil moisture regimes in arid region of Northwest China, Physiologia Plantarum,2005,125(1),74-81.
    [156]Wang, X. P., Young, M.H, Yu, Z, Li, X.R, Zhang, Z.S. Long-term effects of restoration on soil hydraulic properties in revegetation-stabilized desert ecosystems [J]. Geophysical Research Letters, 2007,34(24).
    [157]Wigley, T., Plummer, L.N, Pearson Jr F.J. Mass transfer and carbon isotope evolution in natural water systems[J]. Geochimica et Cosmochimica Acta,1978a,42(8),1117-1139.
    [158]Wigley, T., Plummer, L.N, Pearson Jr F.J. Mass transfer and carbon isotope evolution in natural water systems[J]. Geochimica et Cosmochimica Acta,1978b,42,1117-1139.
    [159]Wigley, T., Plummer, L.N, Pearson Jr F.J. Mass transfer and carbon isotope evolution in natural water systems[J]. Geochimica et Cosmochimica Acta,1978c,42(8),1117-1139.
    [160]Wu, Y, Wen, X, Zhang, Y. Analysis of the exchange of groundwater and river water by using Radon-222 in the middle Heihe Basin of northwestern China[J]. Environmental Geology.,2004, 45(5),647-653.
    [161]Yokoo, Y., Nakano, T, Nishikawa, M, Quan, H. Mineralogical variation of Sr-Nd isotopic and elemental compositions in loess and desert sand from the central Loess Plateau in China as a provenance tracer of wet and dry deposition in the northwestern Pacific[J]. Chemical Geology,2004, 204(1-2),45-62.
    [162]Zhang, H., Ma, Y, Li, J, Pachur, H. J et al. The Holocene Palaeoclimatic change in southern vicinity of Tengger Desert[J].Chinese Science Bulletin; 1999,44(6),550-555.
    [163]Zhang, H., Ma, Y, Peng, J, Li, J, Cao, J, Qi, Y, Chen, G. Palaeolake and palaeoenvironment between 42 and 18 kaBP in tengger desert, NW China[J].Chinese Science Bulletin,2002a,47(23), 1946-1956.
    [164]Zhang, H. Lake Level and Climate Changes between 42,000 and 18,000 14C yr B.P. in the Tengger Desert, Northwestern China [J]. Quaternary Research,2002b,58(1),62-72.
    [165]Zhang, Z. S., Liu, L.C, Li, X.R, Zhang, J.G, He, M.Z et al. Evaporation properties of a revegetated area of the Tengger Desert, North China [J]. Journal of Arid Environments,2008,72(6), 964-973.
    [166]Zhao, Y, Yu, Z, Chen, F, Ito, E, Zhao, C. Holocene vegetation and climate change from a lake sediment record in the Tengger Sandy Desert, northwest China[J]. Journal of Arid Environments, 2008,72(11),2054-2064.
    [167]Z, Zhiyi, Dean, W. Phanerozoic Geology of Northwest China[M]. VSP Intl Science,1996.
    [168]Zhu, C. Estimate of recharge from radiocarbon dating of groundwater and numerical flow and transport modeling[J]. Water Resources. Research.,2000,36(9),2607-2620.
    [169]Zuppi, G., Sacchi, E. Hydrogeology as a climate recorder:Sahara-Sahel (North Africa) and the Po Plain (Northern Italy)[J]. Global and Planetary Change,2004,40(1-2),79-91.
    [170]曹玉清,胡宽容.岩溶化学环境水文地质[M].长春:吉林大学出版社,1994.
    [171]陈梦熊.中国水文地质环境地质问题研究[M].北京:地震出版社,1998.
    [172]陈梦熊,马凤山.中国地下水资源与环境[M].北京:地震出版社,2002.
    [173]陈善科,吴平.腾格里沙漠对周边地区生态环境的影响及其综合治理措施[J].草业科学.2003,20(002):1-3.
    [174]陈宗宇.从华北平原地下水系统中古环境信息研究地下水资源演化[D].吉林大学,2001.
    [175]丁悌平.氢氧同位素地球化学[M].北京:地质出版社,1980.
    [176]丁贞玉,马金珠,何健华.腾格里沙漠西南缘地下水水化学形成特征及演化.干旱区地理.2009.11,32(6):948-957.
    [177]董光荣,李森.中国沙漠形成演化的初步研究[J].中国沙漠,1991,11(4):23-32.
    [178]董维红.反向水文地球化学模拟技术在鄂尔多斯白垩系自流水盆地深层地下水14C年龄校正中的应用[D].吉林大学,2005.
    [179]范锡朋.河西走廊地下水与河水的相互转化及水资源合理利用问题[J].水文地质与工程地质,1981.
    [180]冯绳武,吴景山.民勤绿洲区划与几个历史地理问题[J].西北史地.1986,3:1-6.
    [181]冯兆东,陈发虎,张虎才,马玉贞.末次冰期-间冰期蒙古高原与黄土高原对全球变化的重要贡献[J].中国沙漠.2000,20(02):171-177.
    [182]高前兆,李小雁,仵彦卿,胡兴林.河西内陆河流域水资源转化分析[J].冰川冻土.2004,26(001):48-54.
    [183]高志发.环境同位素法在西北地区地下水资源评价中的应用[J].甘肃地质学报.1995,4(1):62-72.
    [184]顾慰祖.阿拉善高原地下水的稳定同位素异常[J].水科学进展,1998,9(4):333-337.
    [185]韩冬梅.忻州盆地第四系地下水流动系统分析与水化学场演化模拟[D].中国地质大学,2007.
    [186]郝爱兵,李文鹏,梁志强.利用TDS和δ18O确定溶滤和蒸发作用对内陆干旱区地下水咸化贡献的一种方法[J].中国地质大学学报(地球科学).2000,1:4~6.
    [187]黄天明,聂中青,袁利娟.西部降水氢氧稳定同位素温度及地理效应[J].干旱区资源与环境.2008,22(8):76-81.
    [188]李学礼,陈晓秦.水文地球化学[M].北京:原子能出版社,1982.
    [189]李文鹏,郝爱兵.中国西北内陆干旱盆地地下水形成演化模式及其意义[J].水文地质工程地质.1999,26(4):28-32.
    [190]林祚顶.同位素技术在水文水资源领域的应用[J].水利水电技术.2003,34(7):6-8.
    [191]刘昌明.二十一世纪中国水资源若干问题的讨论[J].水利水电技术.2002,33(001):15-19.
    [192]刘丹,刘世青.应用环境同位素方法研究塔里木河下游浅层地下水[J].成都理工学院学报.1997,24(3):89-95.
    [193]刘蔚,王涛,高晓清,苏永红.黑河流域水体化学特征及其演变规律[J].中国沙漠.2004,24(6):755-762.
    [194]刘振敏.腾格里沙漠地区水化学特征[J].化工矿产地质.1998,20(001),41-48.
    [195]刘振敏.腾格里沙漠区盐湖物质成分研究[J].盐湖研究.2000,8(3):21-26.
    [196]柳富田.基于同位素技术的鄂尔多斯白垩系盆地北区地下水循环及水化学演化规律研究[D].吉林大学,2008.
    [197]柳鉴容,宋献方,袁国富,孙晓敏,刘鑫,陈锋,王志民.西北地区大气降水δ18O的特征及水汽来源[J].地理学报.2008,(1):12-22.
    [198]吕俊梅,张庆云,陶诗言,琚建华.亚洲夏季风的爆发及推进特征[J].科学通报.2006,51(3):332-338.
    [199]马金珠.塔里木盆地南缘地下水脆弱性评价[J].中国沙漠.2001,21(02):170-174.
    [200]马金珠,高前兆.干旱区地下水脆弱性特征及评价方法探讨[J].干旱区地理.2003,26(001):44-49.
    [201]马金珠,李相虎,黄天明,W M.Edmunds.石羊河流域水化学演化与地下水补给特征[J].资源科学.2005,27(3):117-122.
    [202]马金珠,魏红.民勤地下水资源开发引起的生态与环境问题[J].干旱区研究.2003,20(4):261-265.
    [203]马金珠,朱中华,于保静.石羊河流域水环境演化与水资源可持续利用[M].兰州:兰州大学出版社,2005.
    [204]任贾文.祁连山党河南山扎子沟29号冰川区雪降水和地表水化学特征研究[J].冰川冻土.1999,21(2):151-154.
    [205]乔江,裴浩,王永利,梁存柱.腾格里沙漠内湖泊及湖盆绿洲的动态研究[J].内蒙古气象.2006,(2):26-28.
    [206]沈照理,朱宛华,钟佐燊.水文地球化学基础[M].北京:地质出版社,1986.
    [207]沈治安.四川盆地深层卤水形成的水文地球化学机理[J].水文地质工程地质.1980,1:8.
    [208]申献辰.天然水化学[M].北京:中国环境科学出版社,1994.
    [209]施雅风,沈永平,李栋梁等.中国西北气候由暖干向暖湿转型的特征和趋势探讨[J].第四纪研究.2003,23(2):462.
    [210]史基安.石羊河流域地下水化学环境演化特征研究[J].沉积学报.1998,16(2):145-149.
    [211]苏小四,林学钰,董维红,万玉玉.反向地球化学模拟技术在地下水14C年龄校正中应用的进展与思考[J].吉林大学学报(地球科学版),2007,37(2):271-277.
    [212]孙亚乔,钱会,张黎,张钦.基于矩形图的天然水化学分类和水化学规律研究.地球科学与环境学报.2007,29(1):75-79.
    [213]田立德,姚檀栋,J.W.C.White,佘武生,王宁练.喜马拉雅山中段高过量氘与西风带水汽输送有关[J].科学通报.2005,7.
    [214]万军伟,刘存富,晁念英.同位素水文学理论与实践[M].武汉:中国地质大学出版社,2003.
    [215]王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1995.
    [216]王德潜,刘祖植.西北地区水资源若干问题探讨[J].西北地质.2002,35(3):1-6.
    [217]王恒纯.同位素水文地质概论[M].北京:地质出版社,1991.
    [218]王琪,史基安,赵兴东,张中宁,孟自芳.石羊河流域地下水地球化学特征演化的计算机模拟研究[J].中国沙漠.2003,23(2):160-164.
    [219]王涛.中国沙漠与沙漠化[M].石家庄:河北科学技术出版社,2003.
    [220]温小虎.黑河中游张掖盆地地下水盐化特征及盐分运移模拟研究(D).兰州:中国科学院寒区早区环境与工程研究所,2006.
    [221]吴兑,邓雪娇,范绍佳,叶燕翔,毛伟康.南岭大瑶山雾区锋面降水的雨水化学成分研究[J].中山大学学报(自然科学版).2005,44(6):105-109.
    [222]武选民,史生胜.西北黑河下游额济纳盆地地下水系统研究[J].水文地质工程地质.2002,29(1):16-20.
    [223]羊世玲,俞发宏.腾格里西部邓马营湖沙漠地下水动态分析[J].甘肃水利水电技术.1996,(4):29-32.
    [224]羊世玲.石羊河流域东部沙漠边缘地下水水质20a动态分析[J].甘肃水利水电技术.2006,42(2):117-122.
    [225]姚檀栋.内陆河流域系统降水中的稳定同位素:乌鲁木齐河流域降水中δ18O与温度关系[J].冰川冻土.2000,22(1):15-22.
    [226]姚檀栋,邬光剑,蒲建辰,焦克勤,皇翠兰.古里雅冰芯中钙离子与大气粉尘变化关系[J].科学通报.2004,49(9):888-892.
    [227]尹观.同位素水文地球化学[M].成都:成都科技大学出版社,1988.
    [228]张长江,张平川,杨俊仓.甘肃民勤邓马营湖滩地地质环境条件分析[J].甘肃科学学报.2003,15:209~213.
    [229]张光辉,陈宗宇,聂振龙,刘少玉,张翠云,申建梅.黑河流域地下水同位素特征及其对古气候变化的响应[J].地球学报.2006,27(4):341-348.
    [230]张虎才,马玉贞,李吉均.腾格里沙漠南缘全新世古气候变化初步研究[J].科学通报.1998,43(12):1252-1258.
    [231]张虎才,彭金兰.距今42—18ka腾格里沙漠古湖泊及古环境[J].科学通报,2002,47(24),1847-1857.
    [232]张惠昌.沙丘水非平衡运移机理及开发利用研究[M].北京:地震出版社,1998.
    [233]张惠昌.干旱区地下水生态平衡埋深[J].勘察科学技术.1992,(6):9-13.
    [234]张惠昌,武秀珍.绿洲地带非均质土层分界面处土壤水分布特征[J].兰州大学学报(自然科学版).1994,30(2):106-110.
    [235]张惠昌,武秀珍.解决石羊河水资源危机的途径:节水型农业[J].水文地质工程地质,1995,22(3):25-27.
    [236]张人权.同位素方法在水文地质中的应用[M].北京:地质出版社,1983.
    [237]张应华,仵彦卿,温小虎,苏建平.环境同位素在水循环研究中的应用[J].水科学进展,2006,17(5):738-747.
    [238]章新平,田立德,刘晶淼,姚檀栋.沿三条水汽输送路径的降水中δ18O变化特征[J].地理科学.2005,25(2):190-196.
    [239]章新平,姚檀栋.影响降水中δ18O的因素及其相对重要性平[J].冰川冻土.1995,17(1):65-72.
    [240]郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000.
    [241]郑淑蕙,侯发高,倪葆龄.我国大气降水的氢氧稳定同位素研究[J].科学通报.1983,28(13):801-806.
    [242]朱震达,刘恕,邸醒民.中国的沙漠化及其治理[M].北京:科学出版社,1989.