硅基梯形微通道内水蒸汽凝结换热特性及等温同向喷射流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种热力系统尺寸日益减小的趋势,微通道越来越广泛的应用于微换热器以及微型燃料电池等器件中。微通道内的流动凝结机理研究,对于这些高新技术产业具有重要的应用前景和学术价值。对微通道流动凝结换热的传热机理和特性认识尚处于起步阶段,有限的研究表明,微通道内流动凝结的主要流型是弥散流、环状流、喷射流和塞/泡状流。表面张力取代重力在微通道中起到主要作用,常规通道中因重力作用而导致的分层流不再出现。几何形状、表面粗糙度以及润湿性等表面特性,在微通道流动冷凝中显得尤为突出。常规通道与微通道在重力、表面张力和剪切力的相对量级上有重大差异,导致微通道内的两相流机理和流型转变与传统管道有很大不同;未考虑表面张力的常规尺度冷凝模型已不能完整描述微通道内的流动凝结过程。而将大直径圆管的结论外推到小直径非圆形管道,会造成压降和换热系数预测的极大误差。
     本文以揭示微通道内流动凝结换热的机理为目标,以流型、压降和换热特性为研究重点,对微通道内蒸汽流动凝结特性进行实验研究和理论分析。本论文首先利用高速CCD可视化成像系统,对微通道内水蒸汽凝结相变过程的流型和喷射流出现频率进行可视化实验。研究结果表明:微通道内存在bubbling和jetting两种形式的凝结喷射流模式。随着水蒸汽的质量流量增大,以及微通道横截面宽高比、冷凝速率和微通道水力直径的减小,凝结喷射流的发生频率会增大;喷射流发生位置作为微通道内环状流和塞状流区域的分界点,随着质量流量增大或冷凝速率减小而向微通道的下游移动,发生点的蒸汽干度也减小。意味着微通道内的环状流区域增大,塞状流区域减小;反之则情形相反。
     其次,对去离子水在不同横截面宽高比光滑梯形硅微通道中的层流压降进行实验研究和数值模拟,将实验结果与文献中的单相流压降关联式以及理论解进行对比;而后对水蒸气凝结相变压降进行了测量,发现凝结压降随着微通道水力直径的减小、质量流量和干度的增大而增大;Chisholm常数C随着微通道水力直径的减小而减小;现有的小通道和常规通道的压降关联式往往高估了本文的实验数据;基于无量纲分析方法,合理选择了Chisholm常数C的控制参数,通过大量的实验数据,修正了Lockhart-Martinelli的两相流压降模型,给出了Chisholm常数C的新实验关联式。
     基于MEMS加工技术,在两根具有相同横截面宽高比的微通道内制作集成Pt热电阻直接测量微通道内壁面温度,有效减小了水蒸气凝结换热系数的实验误差。实验结果表明:凝结换热系数随着微通道的水力直径减小、质量流量和干度的增大而增大;基于湍流边界层分析建立了剪切力驱动的环状流凝结换热半理论模型,该模型与本文实验结果吻合较好;理论分析了因为常规通道压降实验关联式高估了微通道的凝结压降数据,导致了其相应的换热系数关联式必然高估微通道换热系数的原因。这个结论可以用来检验微通道的凝结摩擦压降和换热系数实验结果的一致性和正确性。
     最后为了深入地研究微通道内的凝结喷射流现象,借助高速CCD对无相变微气泡在梯形截面硅微通道中的产生进行可视化实验研究。分析了梯形横截面几何形状,水和空气流量对气泡喷射频率的影响特性以及两相流型的转变曲线及区域划分。发现了bubbling及jetting两种不同的均匀气泡形成模式,针对不同的模式根据实验结果得到了各自的气泡频率和长度的拟合公式。观察气泡在下游T型通道处的分离行为,发现了断裂(breaking)及不断裂(non-breaking)两种气泡分离模式,得到了两种模式的区域划分,且与理论吻合理想。
     本文的研究不仅有利于提高对微通道内蒸汽凝结换热特性及机理的理解,还有助于微冷凝器的开发以及优化设计。
With the growing trend in miniaturization of various thermal systems, the investigation of microscale fluid flow and heat transfer has been a hot research topic during the past decade. In particular, condensation heat transfer in microchannels has important applications to the design of compact and micro-heat exchangers for cooling of thermal devices. Our present understanding of mechanism and characteristics of condensation heat transfer in microchannels, however, is still in its infancy. Since surface tension dominates over gravitational forces in microchannels, condensation flow patterns in microchannels are greatly simplified as compared to those in macrochannels. For example, stratified flow induced by gravity in conventional channels does not occur in microchannels. Recently, it was found that the condensation flow patterns in microchannel include mist flow, annular flow, injection flow, and plug/slug flow. Of particular interest is the occurrence of the injection flow which does not exist in condensation in marcochannels. Furthermore, surface properties such as geometry, surface roughness and wettability become increasing important in condensation in microchannels as its diameter becomes smaller. Because of the significant differences in the relative magnitudes of gravity, shear and surface tension forces in conventional channels and microchannels, flow regime transitions in microchannels are considerably different from those conventional channels. The correlation equations for condensation in macrochannels, which did not take surface tension into consideration, is not applicable to condensation in microchannels. Thus, the extrapolation of correlations for condensation pressure drop and heat transfer obtained for large round tube to smaller diameters of non-circular channels will introduce substantial errors.
     The aim of this thesis is to study mechanisms of condensation in microchannels, with particular emphasis on flow regimes, pressure drop and heat transfer. A visualization study, using a high-speed CCD and a microscope, is conducted to observe steam condensation flow patterns and occurrence frequency of injection flow in microchannels. It was found that there are two types of injection flow patterns: bubbling and jetting. The occurrence frequency of injection flow is found to be increasing with mass flux of steam and decreasing with aspect ratio of microchannel section, condensation rate and hydraulic diameter of microchannels. The location of breakup point, which is the dividing point of annular flow and slug flow regimes in microchannels, moves downstream with increase of mass flux or decrease of condensation rate, and quality at this location decreases. This means that annular regime extends and slug flow regime shrinks.
     Experimental and numerical research on frictional pressure drop of deionized water in silicon microchannels with different aspect ratios are first conducted, which is followed by measurements of pressure drop in steam condensing in microchannels. It is found that pressure drop in the condensing flow decreases with hydraulic diameter of microchannels and increases with mass flux and quality. The existing correlations of pressure drop in mini- and macro-channels overestimate experimental data in microchannels. The data of condensation pressure drop in microchannels is correlated in the form of Lockhart-Martinelli correlation. The Chisholm constant C in the correlation is found to be increasing with the hydraulic diameter of microchannels. The controlling parameters of the Chisholm constant C are properly chosen based on a dimensionless analysis. A new correlation of Chisholm constant C is developed in terms of appropriate parameters by fitting the experimental data.
     For condensation heat transfer study, integrated Pt thermoresistors are fabricated by MEMS technologies on the wall of the microchannels. These Pt thermoresistors are used to measure the internal-wall temperature of microchannel directly in our experiments. This would reduce the estimated temperature on the wall in previous condensation experiments in microchannels where temperatures were measured by thermocouples embedded on the bottom of the microchannels. The condensation heat transfer coefficient is found to be decreasing with hydraulic diameter of microchannels and increasing with mass flux and quality. Semi-analytical method, based on thermal boundary layer theory of turbulent flow, is used to derive the condensation heat transfer coefficient of annular condensation flow, which is shown in good agreement with experimental data obtained in this thesis. The overestimation of correlations for pressure drop in conventional channels on that in microchannels results in certain overestimating of its corresponding correlations for heat transfer coefficient on heat transfer coefficient in microchannels are analyzed theoretically. This conclusion can be used to verify the consistency or validity of experimental results on frictional pressure drop and heat transfer coefficient in microchannels.
     Finally, in order to gain a deeper understanding of the occurrence of injection flow in condensing flow in microchannels, the formation of micro air bubble in the co-flowing of air and water in microchannels is investigated with the aid of a high-speed CCD and microscopy. The effects of geometrical parameters and volume flow rate of air/water on bubble formation frequency are investigated experimentally, and the transition curve and flow map of the two phase flow without phase change are illustrated. It was found there are two different bubble formation patterns: bubbling and jetting. Regression analyses were performed on data obtained for bubble formation frequency of these two formation patterns. Two kinds of bubble separation mode, breaking and non-breaking, are observed at T junction downstream. The regions of the two separation modes are distinguished, which are in good agreement with theory.
     The result of the present study not only contributes to the improved understanding of condensation in microchannels, it also provides data base for optimal design of micro-condensers for cooling of micro-devices in emerging technology.
引文
[1]过增元,国际传热研究的前沿——微细尺度传热,力学进展,30 (2000),1-6.
    [2] V. P. Carey, Liquid-Vapor Phase-Change Phenomena. London: Hemesphere, 1992.
    [3] P. Kew, K. Cornwell, Correlations for prediction of boiling heat transfer in small diameter channels. Appl. Thermal Eng. 17 (1997), 705-715.
    [4] S. G.. Kandlikar, Fundamental issues related to flow boiling in minichannels and microchannels. Experimental Thermal and Fluid Science 26 (2002), 389-407.
    [5] J. M. Li and B. X. Wang, Size effect on two-phase regime for condensation in micro/mini tubes. Heat Transfer-Asian Research 32 (2003), 65-71.
    [6] P. Cheng and H. Y. Wu, Mesoscale and Microscale Phase-Change Heat Transfer, Advances in Heat Transfer 39 (2006), 469-573.
    [7] Y. Taitel and A. E. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AICHE J. 22 (1976), 47-55.
    [8] A. E. Dukler and M. G. Hubbard, A model for gas-liquid slug flow in horizontal and near horizontal tubes, Ind. Eng. Chem. Fundam. 14 (1975), 337-346.
    [9] H. M. Soliman, Analytical and experimental studies of flow patterns during condensation inside horizontal tubes, PhD. Dissertation, Kansa state Uni. 1974
    [10] J. W. Coleman and S. Garimella, Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a. International Journal of Refrigeration 26 (2003), 117-128.
    [11] J. W. Coleman and S. Garimella, Visualization of two-phase refrigerant flow during phase change, 34th national heat transfer conference, Nhtc2000-12115,2000
    [12] J. W. Coleman and S. Garimella, Two-phase flow regime transitions in microchannel tubes: the effect of hydraulic diameter, Proceedings of ASME Heat Transfer Division HTD-Vol. 366 (2000), 71-83.
    [13] S. Garimella, Condensation flow mechanisms in microchannels: basis for pressure drop and heat transfer models. Heat Transfer Engineering 25 (2004), 104-166.
    [14] H. Y. Wu and P. Cheng, Condensation flow patterns in silicon microchannels. International Journal of Heat and Mass Transfer 48 (2005), 2186-2197.
    [15] A. Serizawa, Z. Feng, Z. Kawara, Two-phase flow in microchannels. Exp. Thermal Fluid Sci. 26 (2002), 703-714.
    [16] B. Mederic, M. Miscevic, V. Platel, P. Lavieille and J. J. Joly, Complete convection condensation inside small diameter horizontal tubes. Proceedings of 1st International Conference on Microchannels and Minichannels, pp.707-712, Rochester, New York, USA., 2003.
    [17] M. H. Kim, J. S. Shin, C. Huh, T. J. Kim and K. W. Seo, A Study of Condensation Heat Transfer in a Single Mini-Tube and Review of Korean Micro- and Mini-Channel Studies, 1st Int. Conf. on Microchannels and Minichannels, Rochester, New York, pp. 47-58, 2003a.
    [18] P. Wu and W.A. Little, Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule–Thomson refrigerators, Cryogenics 23 (1983), 273–277.
    [19] J. Pfahler, J. Harley, H. H. Bau and J. Zemel, Liquid transport in micron and submicron channels, J. Sens. Actuators 21 (1990), 431–434.
    [20] S. B. Choi, R. F. Zemel and R. O. Warrington, Fluid flow and heat transfer in microtubes, Micromech. Sens. Actuators Syst. 32 (1991), 123–134.
    [21] X. F. Peng, G. P. Peterson and B.X. Wang, Frictional flow characteristics of water flowing through rectangular microchannels, Exp. Heat Transfer 7 (1994), 249–264.
    [22] X. F. Peng, G. P. Peterson and B.X. Wang, Heat transfer characteristics of water flowing through microchannels, Exp. Heat Transfer 7 (1994), 265–283.
    [23] X. F. Peng and G. P. Peterson, Convective heat transfer and flow friction for water flow in microchannel structures, Int. J. Heat Mass Transfer 39 (1996), 2599–2608.
    [24] G. M. Mala and D. Li, Flow characteristics of water in microtubes, Int. J. Heat Fluid Flow 20 (1999), 142–148.
    [25] M. Faghri, S. E. Turner, Gas flow and heat transfer in microchannels, in: Proc. of SAREK Summer Annual Conference, Muju, Korea, (2003), 542–550.
    [26] X. Tu, P. Hrnjak, Experimental investigation of single-phase flow pressure drop through rectangular microchannels, in: 1st International Conference on Microchannels and Minichannels, Rochester, NY, 2003.
    [27] D. Liu and S.V. Garimella, Investigation of liquid flow in microchannels, AIAA J. Thermophys. Heat Transfer 18 (2004), 65–72.
    [28] D. Yu, R. Warrington, R. Barron and T. Ameel, An experimental and theoretical investigation of fluid flow and heat transfer in microtubes, ASME/JSME Therm. Eng. Conf. 1 (1995), 523–530.
    [29] H. J. Lee and S. Y. Lee, Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights, Int. J. Multiphase Flow 27 (2001), 783–796.
    [30] H. Y. Wu and Ping Cheng, Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios, Int. J. Heat Mass Transfer 46 (2003), 2519–2525.
    [31] R. Revellin and J. R. Thome, Adiabatic two-phase frictional pressure drops in microchannels, Experimental Thermal and Fluid Science 31 (2007), 673-685.
    [32] D. Chisholm, A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow, Int. J. Heat Mass Transfer 10 (1967), 1767-1778.
    [33] Y. W. Hwang and M. S. Kim, The pressure drop in microtubes and the correlation development, Int. J. Heat Mass Transfer 49 (2006), 1804-1812.
    [34] K. Mishima, T. Hibiki, Some characteristics of air-water two-phase flow in small diametervertical tubes, Int. J. Multiphase Flow 22 (1996), 703-712.
    [35] J. Lee and I. Mudawar, Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I-pressure drop characteristics, Int. J. Heat Mass Transfer 48 (2005), 928-940.
    [36] M. Zhang, R. L. Webb, Correlation of two-phase friction for refrigerants in small-diameter tubes, Experimental Thermal and Fluid Science 25 (2001), 131-139.
    [37] J. R. Baird, D. F. Fletcher and B. S. Haynes, Local condensation heat transfer rates in fine passages, Int. J. Heat and Mass Transfer 46 (2003), 4453-4466.
    [38] W. W. W. Wang, T. D. Radcliff and R. N. Christensen, A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition, Experimental Thermal and Fluid Science 26 (2002), 473-485.
    [39] H. M. Soliman, On the annular-to-wavy flow pattern transition during condensation inside horizontal tubes, The Canadian Journal of Chemical Engineering 60 (1982), 475-481.
    [40] T. M. Bandhauer, A. Agarwal, S. Garimella, Measurement and modeling of condensation heat transfer coefficients in circular microchannels, Journal of Heat Transfer 128 (2006), 1050-1059.
    [41] J. S. Shin and M. H. Kim, An experimental study of flow condensation heat transfer inside circular and rectangular mini-channels, Heat Transfer Engineering 26 (2005), 36-44.
    [42] H. S. Wang, J. W. Rose and H. Honda, A theoretical model of film condensation in square section horizontal microchannels, Trans. IchemE, Chem. Eng. Reaesrch and Design, 82 (2004), 430-434.
    [43] H. S. Wang and J. W. Rose, A theory of film condensation in horizontal noncircular section microchannesls, Trans. ASME J. Heat Transfer 127 (2005), 1093-1105.
    [44] H. S. Wang and J. W. Rose, Film condensation in horizontal microchannels: Effect of channel shape, Int. J. Thermal Sciences 45 (2006), 1205-1212.
    [45] S. W. Churchill, Friction-factor equation spans all fluid-flow regimes, Chem. Eng. 84 (1977), 91-92.
    [46] T. S. Zhao and Q. Liao, 2002, Theoretical analysis of film condensation heat transfer inside vertical mini triangular channels, International Journal of Heat and Mass Transfer 45 (2002), 2829-2842.
    [1] H. A. Waggener, R. C. Kragness, and A. L. Taylor, KOH Etching of Si, Elect.,vol.40, pp.274, 1967.
    [2] G. L. Morini, Laminar liquid flow through silicon microchannels, Trans. ASME J. Fluids Eng. 126(2004), 485-489
    [3] V. P. Carey, Liquid-vapor phase change phenomena. New York: Hemisphere (1992), 411-420.
    [4] C.I. Baroczy, Correlation of liquid fraction in two phase flow with applications to liquid metals. Chem. Eng. Prog. Symp. Ser. 61 (1965), 179-191.
    [5] G.F. Hewitt., D. Butterworth, Two phase flow and heat transfer. UK: Oxford University Press (1977), 58-89.
    [6] S. J. Kline, The purposes of uncertainty analysis, J. of Fluids Engineering 107 (1985), 153-160.
    [1] Y. Taitel, A. E. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AICHE J. 22 (1976), 47-55.
    [2] A. E. Dukler and M. G. Hubbard, A model for gas-liquid slug flow in horizontal and near horizontal tubes, Ind. Eng. Chem. Fundam. 14 (1975), 337-346.
    [3] H. M. Soliman, Analytical and experimental studies of flow patterns during condensation inside horizontal tubes, Ph.D. Dissertation, Kansas State Univ., 1974.
    [4] Beatrice Mederic, Marc Miscevic, Vincent Platel, Pascal Lavieille, Jean-Louis Joly, Experimental study of flow characteristics during condensation in narrow channels: theinfluence of the diameter channel on structure patterns, Superlattices and Microstuctures, 35 (2004), 573-586.
    [5] S. Garimella, J. D. Killion and J. W. Coleman, An experimentally validated model for two-phase pressure drop in the intermittent flow regime for circular microchannels, Journal of Fluids Engineering 124 (2002), 205-213.
    [6] A. Tabatabai and A. Faghri, A new two-phase flow map and transition boundary accounting for surface tension effects in horizontal minature and microtubes, Transactions of the ASME 123 (2001), 958-968.
    [7] H.Y. Wu and P. Cheng, Condensation flow patterns in silicon micro channels, International Journal of Heat and Mass Transfer 48 (2005), 2186–2197.
    [8] A. Sevilla, J. M. Gordillo, and C. Martinez-Bazan, Bubble formation in a coflowing air-water stream, J. of Fluid Mechanics 530 (2005), 181-195.
    [9] J. F. Zhao and W. R. Hu, Slug to annular flow transition of microgravity two-phase flow, Int. J. Multiphase Flow 26 (2000), 1295-1304.
    [10] M. Lee, Y. Y. Wong, M. Wong and Y. Zohar, Size and shape effects on two-phase flow patterns inmicrochannel forced convection boiling, Journal of Micromechanics and Microengineering 13 (2003), 155-164.
    [11] Y. P. Chen and P. Cheng, Condensation of steam in a silicon microchannels, Int. Commun. Heat Mass Transfer 32 (2005), 175-183.
    [12] S. H. Chan, Y. S. Wang and C. C. Tan, The effect of mass transfer transfer on Kelvin- Helmholtz instability at the gas-liquid interface of a sonic reacting and non-reacting gas jet submerged in a liquid, Int. J. Heat and Mass Transfer 37 (1994), 1123-1132.
    [13] B. Dollet, W. V. Hoeve, J-P, Raven, P. Marmottant and M. Versluis, Role of the channel geometry on the bubble pinch-off in flow-focusing devices, Physical Review Letters 100 (2008), 034504.
    [1] V. P. Carey, Liquid-vapor phase change phenomena, Taylor & Francis Series in Mechanical Engineering, Hemisphere Publishing, New York, 1992.
    [2] P. Wu, W. A. Little, Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule–Thomson refrigerators, Cryogenics 23 (1983), 273-277.
    [3] X. N. Jiang, Z. Y. Zhou, X. Y. Huang, C. Y. Liu, Laminar flow through microchannels used for microscale cooling systems, in: Proceedings of the 1997 IEEE/CPMT Electronic Packaging Technology Conference 1997, 119-122.
    [4] X. F. Peng, G. P. Peterson, B. X. Wang, Frictional flow characteristics of water flowing through rectangular microchannels, Exp. Heat Transfer 7 (1994), 249-265.
    [5] B. Xu, K. T. Ooi, N. T. Wong, C. Y. Liu, Liquid flow in microchannels, in: Proceedings of the 5th ASME/JSME Thermal Engineering Conference, 1999, 6214-6220.
    [6] J. M. Cuta, C. E. McDonald, A. Shekarriz, Forced convection heat transfer in parallel channel array microchannel heat exchanger, in: ASME Proceedings, PID-Vol. 338, Advances in Energy Efficiency, Heat/Mass Transfer Enhancement, 1996, 17-23.
    [7] D. Pfund, D. Rector, A. Shekarriz, A. Popescu, J. Welty, Pressure drop measurements in a microchannel, AICHE J. 46 (2000), 1496-1507.
    [8] H. B. Ma, G. P. Peterson, Laminar friction factor in microscale ducts of irregular cross section, Microscale Thermophys. Eng. 1 (1997), 253-265.
    [9] H. Y. Wu, P. Cheng, Friction factors in smooth trapezoidal silicon microchannels with different aspect ratios, Int. J. Heat Mass Transfer 46 (2003), 2519-2525.
    [10] M. Bahrami, M. M. Yovanovich, J. R. Culham, A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section, Int. J. Heat Mass Transfer 50 (2007), 2492-2502.
    [11] L. Friedel, Improved friction pressure drop correlations for horizontal and vertical two phase pipe flow, European Two-Phase Flow Group Meeting, Paper E2, Ispra, Italy, 1979.
    [12] H. J. Lee, S. Y. Lee, Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights. Int. J. Multiphas. Flow 27 (2001), 783-796.
    [13] W. W. Akers, H. A. Deans, O. K. Crosser, Condensation heat transfer within horizontal tubes, Chem. Eng. Prog. Symposium Ser. 55 (1959), 171-176.
    [14] W. H. McAdams, W. K. Woods and R. L. Bryan, Vaporization inside horizontal tubes II-benzene-oil mixtures, Trans. ASME 64 (1942), 193.
    [15] A. E. Dukler, M. Wicks, R. G. Cleveland, Pressure drop and hold-up in two-phase flow part A-a comparison of existing correlations and part B—an approach through similarity analysis,AIChE J. 10 (1964), 38-51.
    [16] S. Lin, C. C. K. Kwok, R. Y. Li, Z. H. Chen, Z. Y. Chen, Local frictional pressure drop during vaporization for R-12 through capillary tubes, Int. J. Multiphase Flow 17 (1991), 95-102
    [17] R. W. Lockhart, R. C. Martinelli, Proposed correlation of data for isothermal two-phase. Two-component flow in pipes, chemical Engineering Progress 45 (1949), 39-48.
    [18] R. C. Martinelli, B. Nelson, Prediction of pressure drop during forced-circulation boiling water, Transactions ASME 70 (1948), 695-702.
    [19] D. Chisholm, A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow, Int. J. Heat Mass Transfer 10 (1967), 1767-1778.
    [20] K. Mishima and T. Hibiki, Some characteristics of air–water two-phase flow in small diameter vertical tubes, Int. J. Multiphase Flow 22 (1996), 703–712.
    [21] W. Qu and I. Mudawar, Transport phenomena in two-phase micro-channel heat sinks, J. Electron. Pack. 126 (2004), 213-224.
    [22] P. S. Lee, S. V. Garimella, Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays, Int. J. Heat Mass Transfer 51 (2008), 789-806.
    [23] W. Yu, D. M. France, M. W. Wambsganss, J. R. Hull, Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube. Int. J. Multiphas. Flow 28 (2002), 927-941.
    [24] Y. W. Hwang and M. S. Kim, The pressure drop in microtubes and the correlation development, Int. J. Heat Mass Transfer 49 (2006), 1804-1812.
    [25] D. D. Joseph, Y. Y. Renardy, 1993. Fundamentals of Two-Fluid Dynamics. New York: Springer-Verlag.
    [1] F. G. Carpenter, and A. P. Colburn, The effect of vapor velocity on condensation inside tubes, general discussion of heat transfer, The Institute of Mechanical Engineers and ASME (1951), 20-26.
    [2] H. M. Soliman, Correlation of mist-to-annular transition during condensation, The Cnadian journal of Chemical Engineering 61 (1983), 178-182.
    [3] S. L. Chen, F. M. Gemer and C. L. Tien, General film condensation correlations, Exp. Heat Transfer 1 (1987), 93-107.
    [4] W. W. Akers, H. F. Rosson, Condensation inside a horizontal tube, Chemical Engineering Progress Symposium 30 (1960), 145-149.
    [5] L. D. Boyko, G. N. Kruzhilin, Heat transfer and hydraulic resistance during condensation of steam in a horizontal tube and in a bundle of tubes, International Journal of Heat and Mass Transfer 10 (1967), 361-373.
    [6] A. Cavallini, R. Zecchin, A dimensionless correlation for heat transfer in forced convective condensation, Proceedings of the Fifth International Heat Transfer Conference, Japan Society of Mechanical Engineering 3 (1974), 309-313.
    [7] M. M. Shah, A general correlation for heat transfer during film condensation inside pipes, Int. J. Heat Mass Transfer 22 (1979), 547-556.
    [8] M. K. Dobson, J. C. Chato, Condensation in smooth horizontal tubes, Journal of Heat Transfer, Transactions ASME 120 (1998), 193-213.
    [9] N. Z. Azer, L. V. Abis and H. M. Soliman, local heat transfer coefficients during annular flow condensation, ASHRAE Transactions 78 (1972), 135-143.
    [10] D. P. Traviss, W. M. Rohsenow and A. B. Baron, Forced convective condensation in tubes: A heat transfer correlation for condenser design, ASHRAE Transactions 79 (1973), 157-165.
    [11] W. W. Akers, H. A. Deans and O. K. Crosser, Condensation heat transfer within horizontal tubes, Chemical Engineering Progress Symposium Series 55 (1959), 171-176.
    [12] K. Moser, R. L. Webb and B. Na, A new equivalent reynolds number model for condensation in smooth tubes, Journal of Heat Transfer 120 (1998), 410-417.
    [13] W. W. Wang, T. D. Radcliff, R. N. Christensen, A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition, Experimental Thermal and Fluid Science 26 (2002), 473-485.
    [14] T. Dong, Z. Yang, Measurement and modeling of R141b condensation heat transfer in silicon rectangular microchannels, J. Micromech. Microeng. 18 (2008), 085012.
    [15] J. R. Baird, D. F. Fletcher and B. S. Haynes, Local condensation heat transfer rates in fine passages, International Journal of Heat and Mass Transfer 46(2003), 4453-4466.
    [16] T. M. Bandhauer, A. Agarwal and S. Garimella, Measurement and modeling of condensation heat transfer coefficients in circular microchannels, Journal of Heat Transfer, Transactions of ASME 128(2006), 1050-1059.
    [17] S. Garimella, A. Agarwal and J. D. Killion, Condensation pressure drop in circular microchannels, Heat Transfer Engineering 26(2005), 1-8.
    [18] H. Schlichting and K. Gersten, Laminar-turbulent transition, in Boundary Layer Theory, Springer, New York (2000), 415-490.
    [19] H. S. Wang, J. W. Rose and H. Honda, A theoretical model of film condensation in square section horizontal microchannels, Chemical Engineering Research and Design 82 (2004), 430-434.
    [20] H. S. Wang and J. W. Rose,―Film Condensation in Horizontal Microchannels: Effect of Channel Shape,‖International Journal of Thermal Sciences, 45 (2006), pp.1205-1212.
    [21] E. W. Jassim, T. A. Newell, Prediction of two-phase pressure drop and void fraction in microchannels using probabilistic flow regime mapping, Int. J. Heat Mass Transfer 49 (2006), 2446-2457.
    [22] M. S. Chitti and N. K. Anand, An analytical model for local heat transfer coefficients for forced convective condensation inside smooth horizontal tubes, Int. J. Heat Mass Transfer 38 (1995), 615-627.
    [23] W. W. Wang, T. D. Radcliff, R. N. Christensen, A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition, Experimental Thermal and Fluid Science26 (2002), 473-485.
    [24] S. Koyama, K. Kuwahara, K. Nakashita and K. Yamamoto, An experimental study on condensation of refrigerant R134a in a multi-port extruded tube, Int. J. Refrigeration 24 (2003), 425-432.
    [1] A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold and S. R. Quake, A microfabricated fluorescence-activated cell sorter, Nat. Biotechnol 17 (2007), 1109-11.
    [2] H. Song, J. D. Tice and R. F. Ismagilov, A microfluidic system for controlling reaction networks in time Angew. Chem. Int. Ed. 42 (2003), 768-72.
    [3] B. Zheng, J. D. Tice and R. F. Ismagilov, Formation of arrayed droplets of soft lithography and two-phase fluid flow and application in protein crystallization, Adv. Mater., 16 (2004 ), 1365-1368.
    [4] P. Garstecki, A. M. Ganan-Calvo, G. M. Whitesides, Formation of bubbles and droplets in microfluidic systems, Bull. Pol. Acad. Sci., Technical Science 53 (2005), 361-372.
    [5] M. Richter, P. Woias, and D. Weiss, Microchannels for applications in liquid dosing and flow-rate measurement, Sens. Actuators A: Phys. A62 (1997), 480–483.
    [6] S. H. Bloch, P. A. Dayton, Ferrara KW Targeted imaging using ultrasound contrast agents: progress and opportunities for clinical and research applications, IEEE Eng Med Biol,Mag 23 (2004), 18-29.
    [7] Editorial. Physics News in 2000. APS News 10, 2001, No.2, Suppl. 7.
    [8] W. T. S. Huck, J. Tien and G. M. Whitesides, Three-dimensional mesoscale self-assembly, J. Am. Chem. Soc. 120 (1998), 8267-8268.
    [9] A. Terfort and G. M. Whitesides, Self-assembly of an operating electrical circuit based on shape complementarity and the hydrophobic effect, Adv. Mater. 10 (1998), 470-473.
    [10] B. Zheng, L. S. Roach and R. F. Ismagilov, Screening of protein crystallization conditions ona microfluidic chip using nanoliter-size droplets, J. Am. Chem. Soc. 125 (2003),11170-11171.
    [11] M. W. Losey, R. J. Jackman, S. L. Firebaugh, M. A. Schmidt and K. F. Jensen, Design and fabrication of microfluidic devices for multiphase mixing and reaction, J. Microelectromech. Syst. 11 (2002), 709-717.
    [12] M. Prakash, N. Gershenfeld, Microfluidic bubble logic, Science 315 (2007), 775-776.
    [13] G. F. Christopher and S. L. Anna, Microfluidic methods for generating continuous droplet streams, J. of Physics D: Applied Physics 40 (2007), R319-R336.
    [14] A. Sevilla, J. M. Gordillo, and C. Martinez-Bazan, 2002. The effect of the diameter ratio on the absolute and convective instability of free coflowing jets. Phys. Fluids 14, 3028.
    [15] A. Sevilla, J. M. Gordillo, and C. Martinez-Bazan, Bubble formation in a coflowing air-water stream, J. Fluid Mech. 530 (2005), 181-195.
    [16] J. M. Gordillo, A. Sevilla, C. Martinez-Bazan, Bubbling in a co-flow at high Reynolds numbers, Physics of Fluids 19 (2007), 077102.
    [17] A. Günther, K. F. Jensen (2006) Multiphase microfluidics: from flow characteristics to chemical and materials synthesis, Lab Chip 6:1487-1503.
    [18] P. Garstecki, M. J. Fuerstman, H. A. Stone and G. M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up, Lab Chip 6 (2006), 437-446.
    [19] V. van Steijn, M. T. Kreutzer, C. R. Kleijn, ??PIV study of the formation of segmented flow in microfluidic T-junctions, Chemical Engineering Science 62 (2007), 7505-7514.
    [20] J.H. Xu, S.W. Li, G.G. Chen, and G. S. Luo, 2006. Formation of monodisperse microbubbles in a microfluidic device. AIChE Journal 52(6), 2254-2259
    [21] M. W. Weber and R. Shandas, Computational fluid dynamics analysis of microbubble formation in microfluidic flow-focusing devices, Microfluid. Nanofluid. 3 (2007), 195-206.
    [22] M. J. Jensen, H. A. Stone and H. Bruus, A numerical study of two-phase Stokes flow in an axisymmetric flow-focusing device, Phys. Fluids 18 (2006), 077103.
    [23] C. F. Zhou, P. T. Yue and J. J. Feng, Formation of simple and compound drops in microfluidic devices, Phys. Fluids. 18 (2006), 092105.
    [24] B. Dollet, W. V. Hoeve, J-P, Raven, P. Marmottant and M. Versluis, Role of the channel geometry on the bubble pinch-off in flow-focusing devices, Physical Review Letters 100 (2008), 034504.
    [25] A. Bhunia, S-C. Pais, Y. Kamotani and I-H, Kim, Bubble formation in a coflow configuration in normal and reduced gravity, AICHE J. 44 (1998), 1499-1509.
    [26] N. Zuber and J. A. Findlay, Average volumetric concentration in two-phase flow systems, ASME J. Heat Trans. 87 (1965), 453-468.
    [27] K. Mishima and T. Hibiki, Some characteristics of air-water two-phase flow in small diameter vertical tubes, Int. J. Multiphase Flow 22 (1996), 703-712.
    [28] T. Fukano, A. Kariyasaki and M. Kagawa, Flow patterns and pressure drop in isothermal gas-liquid concurrent flow in a horizontal capillary tube, Trans. JSME (Ser. B) 56 (1990),2318-2326.
    [29] L. Cheng, D. Mewes, A. Luke, Boiling phenomena with surfactants and polymeric additive: a state-of-the-art review, Int J Heat Mass Transf. 50 (2007), 2744-2771.
    [30] D. R. Link, S. L. Anna, D. A. Weitz and H. A. Stone, Geometrically mediated breakup of drops in microfluidic devices, Phys Rev Lett 92 (2004), 054503.
    [31] Y. Navot, Critical behavior of drop breakup in axisymmetric viscous flow, Phys. Fluids 11 (1999), 990.