聚能移动调驱挖潜剩余油机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对大庆油田厚油层高含水后期剩余油挖潜技术现状,提出了聚能移动调驱挖潜剩余油新理念。该技术以驱替流体转向分流做为剩余油主要驱替模式,这种驱替模式可以更有效地集中驱动能量,具有波及体积大,消耗能量低,驱油效率高等特点,拓展了高含水后期剩余油挖潜空间和能力。
     一是以岩心可视化实验为基础,建立了流体转向分流理论。在两层非均质油层岩心模型上重点研究了聚驱和聚能移动调驱的流场特征,从封堵与分流角度阐述了分流转向基本原理;二是通过长方体非均质岩心实验,研究了聚能移动调驱宏观特征和内部压力场特征,揭示了岩心内部聚能移动压力场和流体转向分流的存在;三是应用数值模拟技术再现了可视化和长方体岩心实验主要结果,从流场和压力场角度研究了转向分流与聚能移动压力场伴生关系;四是研究了聚能移动调驱扩大波及体积和提高驱油效率机理,并应用正交实验分析法和数值模拟结合进行了聚合物聚能移动调驱敏感因素分析;五是围绕矿场应用,给出了选井选层方法和段塞设计原则,尤其提出了以动静态数据为基础分析地下流场非均质状况的方法和措施效果评价方法—驱替强度,为该技术的应用增添了活力。
     通过上述研究,形成了一套完整的以流体转向驱动为主的高含水后期厚油层剩余油挖潜理论与技术,取得了驱油理念、流场认识、非均质识别方法、矿场设计等诸多方面的发展与创新。为大庆油田厚油层高含水后期剩余油挖潜提供了先进的理论支持和更有效实用技术,对维持大庆油田4000万吨产量有着极其重要的意义。
Considering the technology of tapping remaining oil at later stage of high water cut in Daqing oil field, a new idea of tapping remaining oil with gathered-energy moving controlled- profile flood(GEMCPF) has been proposed. This technology regards the diversion of flood fluid as the main model of displacing remaining oil, which can make the injecting energy effectively and then has the characteristics of less energy required, lager swept volume, and higher displacing efficiency to develop the capacity of tapping remaining oil at the later stage of high water cut.
     Firstly, the theory of turning and diverting role of fluid has been established by visual experiment. That is, flowing field features of flooding with polymer or with GEMCPF have been researched mainly on the model of two-layer heterogeneous glass core, and the fundamental principle of flooding fluid diverting has been presented on the basis of sides of plugging and diversion. Secondly, according to laboratory experiments of cuboids heterogeneous core, the macro-feature and characteristics of inner pressure field of GEMCPF have been studied, and it is confirmed that gathered eneger moving pressure field and phenomenon of diverting are existing in the process of displacement. Thirdly, numerical simulation is used to show the results of visual and laboratory experiments again. And then, the association of diverting and gathered eneger moving pressure field is researched from the angle of flow field and pressure field. Fourthly, stimulating mechanisms of GEMCPF is researched. Moreover, the analyzing of the sensibility factors of GEMCPF for polymer by the means of orthogonal experiment combining with numerical simulation is presented. Fifthly, based on field application, the method of selecting wells, layers, and the principle of designing slug are given, especially a new analytical means about heterogeneity condition of subsurface flowing field with dynamic and steady data and the valuation method of the treatment. It enlivens the application of this technology.
     Through the above research, a complete set of theory and technology to tap remaining oil of thick oil layer by diverted fluid at later stage of high water-cut has been established, and many innovative and developing achievements have been made such as displacement philosophy, knowledge of flow field, recognition method of heterogeneity, field design, and so on. It offers advanced theories and practical methods for displacing remaining oil for Daqing oil field, and has significant impacts on keeping the production level of 40000000tons in Daqing oil field.
引文
[1]魏纪德,杜庆龙,林春明等.大庆油田剩余油的影响因素及分布[J].石油与天然气地质, 2001, 22(1): 57-59.
    [2]薛国勤,苗润航,陈小瑜.非均质厚油层特高含水期剩余油分布研究[J].河南石油, 2000, (4): 21-23.
    [3]大庆油田开发技术座谈会报告集. 2005, 14-15.
    [4]冈秦麟.论我国的三次采油技术[J].油气采收率技术, 1998, 5(4): 1-7.
    [5]胡博仲.聚合物驱采油工程[M].北京:石油工业出版社. 1997.
    [6]郭万奎,程杰成,廖广志.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发, 2002, 21(3): 1-6.
    [7]夏惠芬,王德民,王刚等.聚合物驱油过程中对盲端类残余油的弹性作用[J].石油学报, 2006, 27(2): 72-76.
    [8]李振泉.梳形抗盐聚合物在聚合物驱油中的应用[J].化学研究与应用, 2004, 16(3): 433-434.
    [9]程杰成,罗健辉,李振干等.梳形聚合物抗盐聚合物的应用与研究进展[J].精细与专用化学品, 2004, 12(6): 10-12.
    [10]罗健辉,卜若颖,朱怀江等.梳型聚丙烯酰胺的特性与应用[J].石油学报, 2004, 25(2): 65-73.
    [11]丁伟,朱洪庆,于涛.新型结构两性梳形聚丙烯酰胺的合成[J].大庆石油学院, 2007, 31(1): 55-57.
    [12]王玉普,罗健辉,朴若颖.梳形KYPAM抗盐聚合在油田中的应用[J].化工进展, 2003, 23(5): 509-511.
    [13]唐善法,罗亚平.疏水缔合水溶性聚合物的研究进展[J].现代工业, 2002, 22(3).
    [14]张帆,郭川梅,胡星琪.一种新型共聚物溶液性质的研究[J].西南石油学院学报2001, 23(5): 64-66.
    [15]熊开,郑焰.粘土颗粒对疏水聚合物水溶液性能的影响[J].石油与天然气化工, 33(1).
    [16]郭拥军,李富生,李林辉等.水溶性疏水缔合聚合物在高岭土/水界面的吸附[J].应用化学, 2002, 19(1): 27-28.
    [17]罗平亚,李华斌,郑焰等.大庆油田疏水缔合聚合物-碱-表面活性剂三元复合驱[J].大庆石油地质与开发, 2001, 20(6): 1-4.
    [18]孙尚如,何先华,邬侠等.聚合物驱后剩余油分布核磁成像实验研究[J].大庆石油地质与开发, 2003, 22(4): 61-63.
    [19]苗建生,赵福麟,李爽等.地层中残留聚合物的存在形式和分布状态探讨[J].特种油气田, 2005, 12(3): 88-90.
    [20]郭尚平,田根林,王芳等.聚合物驱后进一步提高采收率的四次采油问题[J].石油学报, 1997, 18(4): 49-53.
    [21]石梅.聚合物驱后利用微生物进一步提高采收率的可行性[J].大庆石油地质与开发, 2004, 23(2): 56-58.
    [22]徐婷,李秀生,张学洪等.聚合物驱后双液法固定技术实验研究[J].西南石油学院学报, 2004, 26(1): 54-57.
    [23]赵福麟,王亚飞,戴彩丽等.聚驱后提高采收率技术研究[J].石油大学学报(自然科学版), 2006, 30(1): 86-89.
    [24]付继彤,彭苏萍,李爱芬等.高含水期阳离子聚合物驱油调剖实验研究[J].石油钻探技术, 2002, 30(6): 5-6.
    [25]石步乾.下二门油田注聚后地层残留聚合物再利用技术探索[J].油田化学, 2004, 21(3): 255-257..
    [26]石步乾,王瑞军,赵福麟等.聚驱后地层残留聚合物再利用剂YG340-1的选择应用[J].河南石油, 2005, 19(3): 64-66.
    [27]范森,侯吉瑞,李宜强等.聚合物驱后热化学沉淀调剖提高采收率技术研究[J].油气地质与采收率, 2005, 12(2): 66-68.
    [28]杨清彦,廖广志,宫文超等.正韵律模型三元复合体系驱油实验研究[J].石油勘探与开发, 2004, 31(增): 63-65.
    [29]李华斌,吴文祥. ASP三元复合驱油层适应性研究[J].西南石油学院学报, 2000, 22(4): 48-51.
    [30]刘建军,宋义敏,潘一山. ASP三元复合体系驱油微观机理研究[J].辽宁工程技术大学学报, 2003, 22(3): 326-328.
    [31]侯吉瑞,刘中春,岳湘安等.低碱ASP三元复合驱技术的适用界限分析[J].石油大学学报(自然科学版).2003, 27(3): 46-49.
    [32]李建路,何先华,高峰等.三元复合驱注入段塞组合物理模拟实验研究[J].石油勘探与开发, 2004, 31(4): 126-128.
    [33]李世军,杨振宇,宋考平等.三元复合驱中乳化作用对提高采收率的影响[J].石油学报, 2003, 4(5): 71-73.
    [34]叶仲斌.提高采收率原理[M].北京:石油工业出版社.2000, P53.
    [35]赵立艳,樊西惊.表面活性剂驱油体系新进展[J].西安石油学院学报, 2000, 15(2): 55-58.
    [36]王亚飞,赵福麟.醚羧酸盐及其与石油黄酸盐和碱的复配研究[J]油田化学, 1998, 15(4): 340-343.
    [37] Chevron Research Co. Enhanced oil recovery for subterranean for mation[P]. US4819729-A, 1989, 4. 11.
    [38] As Sibe Oil-Che m Inst. Compsn. increasing lil yield for strata[P]. SU. 1136522-A1, 1995, 5. 27.
    [39] Turk menipineft Oil Ind Res Des Inst. Compsn. For pressing out oil from stratum[P]. SU. 1668642 A, 1991, 8. 7.
    [40] Kazan Che m Techn Inst. Compsn. For forcing oil out of stratum[P]. RU 1773100-C, 1995, 4. 20.
    [41] Baviere M. Alpha sulfonated fatty acid ester for surfactant at high salinity[J]. Preprints Div. Pet. Che m. ACS, 1988, 33(1):158-165.
    [42]张烈辉,胡勇,涂中等.泡沫驱经验模型及其应用[J].西南石油学院学报.2000, 22(3): 50-52.
    [43]赵福麟.EOR原理.东营:石油大学出版社.2001, 59.
    [44]吴文祥,姜海峰.多元泡沫分流作用及其驱油效果影响因素研究[J].油田化学, 2002, 19(2): 173-177.
    [45]钱昱,张思富,吴军政等.泡沫复合驱泡沫稳定性及影响因素研究[J].大庆石油地质与开发, 2001, 20(2): 33-35.
    [46]叶仲斌,魏发林,罗平亚等.泡沫增效三元复合驱油体系渗流行为研究[J].西南石油学院学报, 2002, 24(4): 49-52.
    [47]刘中春,侯吉瑞,岳湘安等.泡沫复合驱微观驱油特性分析[J].石油大学学报(自然科学版), 2003, 27(1): 49-53.
    [48]赵长久,么世椿,鹿守亮等.泡沫复合驱研究.油田化学.2004年, 21(4): 357-360.
    [49]于会宇,万新德,刘琴等.从泡沫复合驱先导性矿场试验中取得的认识[J].大庆石油地质与开发, 2001, 20(2): 108-110.
    [50]王岚.微生物采油及其作用机理[J].世界地质, 2002, 21(2): 138-140.
    [51]窦启龙,陈践发,王杰等.微生物采油技术的研究进展及展望[J].天然气地球科学, ..
    [52]汪卫东,宋永亭,陈勇.微生物采油技术与油田化学剂[J].油田化学, 2002, 19(3): 293-296.
    [53]何光中,张新民,刘玉等.厚油层深部调剖机理探讨及其实践[J].石油钻采工艺, 2002, 24(3): .
    [54]李良雄,白宝君,李宇乡.油田深部调剖剂的研究与应用[J].石油钻采工艺, 1999, 21(6): 51-55.
    [55]郑延成.高吸水性聚合物的合成及其堵水性能评价[J].钻采工艺, 1999, 22(5): 69-71.
    [56] Seright R. S. Placement of Gels to Modify Injection Profiles. Paper SPE/DOE 17 332, 1988.
    [57] Seright R. S. Improved Techniques for Fluid diversion in Oil Recovery . US. DOE Contract DE-AC22-92BC 14 880, 1993, 10.
    [58] Han Ming, Shi Lianghe. An experimental Study on the Sol/Gel Phase Transition of Linear Polymer in the Presence of Cross-linkers. Chinese Journal of Polymer Science, 1996, 14(1).
    [59]王平美,罗健辉,李宇乡等.弱凝胶调驱体系在岩心实验中的行为特性研究钻采工艺2000, Vol. 22, No. 5.
    [60]赵秀娟,王传军.弱凝胶调驱微观渗流机理研究油田化学2004, Vol. 21, No. 1.
    [61]曹敏,陈德斌等. HPAM/有机钛弱凝胶调驱剂研制吴应川油田化学2001Vol. 18, No. 4.
    [62] Mack J C, Smith J E. In-Depth Drive Fluid Diversion Using an Evaluation of Colloidal Dispersion Gels and New Bulk Gels: An Operational Case History In North Rainbow Ranch Unit. SPE 27773, 1994.
    [63]卢祥国,姚玉明,杨凤华.交联聚合物溶液流动特性及其评价方法重庆大学学报2000, 32: 107-110.
    [64]彭勃,李明远.聚丙烯酰胺胶态分散凝胶微观形态研究[J]油田化学, 1998, 15(4): 358-361.
    [65]林梅钦,李建阁. HPAM/柠檬酸铝胶态分散凝胶形成条件研究[J]1998, 15(2): 160-163.
    [66]林梅钦,李明远.胶态分散凝胶在多孔介质流动阻力[J]石油大学学报(自然科学版)1998, 2(4): 93-95.
    [67]纪淑玲,彭勃.粘度法研究胶态分散凝胶交联过程高分子学报, 2000, (1): 65-68.
    [68]冯锡兰,曹文华.胶态分散凝胶吸附滞留行为的研究[J]石油学报, 2000, 21(1): 97-100.
    [69]李明远,郑哓宇,林梅钦等.胶联聚合物溶液深部调剖先导试验石油学报2002, 23(6): 72-76.
    [70]白宝君,刘伟,李良雄等.影响预胶联颗粒性能特点的内因分析石油勘探与开发2002, 29(2): 103-105.
    [71]朱怀江,朱颖,孙尚如等.预胶联合物微凝胶调剖剂的应用性能,石油勘探与开发2004, 31(2): 115-118.
    [72]王利美.预胶联颗粒凝胶调驱技术应用及认识[J].内蒙古石油化工, 2002, 29 2002, 141.
    [73]马丽梅,刘凤珍.萨南开发区预交联体膨颗粒深部调剖效果分析[J].大庆石油地质与开发, 2004, 23(4): 66-67.
    [74] LiuHe, Han Hongxue, Wang Qunyi, Methodology and Applications of A Multi-disciplinary Reservoir Engineering Study for the Mature Oilfield SPE. 87015.
    [75] Liu He, Yan Jianwen, Wang Qunyi, Sun Xishou, Challenges in Oil Production Technologies Affecting the Sustainable Development of Daqing Oilfield SPE. 87054.
    [76] E. J. Lefbvre, Factors Affecting Liguid–Liqui d Relative Permeability of a consolidated Porous Medium. Soc. Pet. Eng. J. , 1973, 13(39).
    [77]孙长明,崔龙命.化学驱动态方程[J].石油勘探与开发, 1986, 5(2).
    [78]孙长明,姜言里,崔龙命.低浓度低张力水驱油的一个统一的数学模型[J].石油勘探与开发, 1986, 13(6): 39-47.
    [79] Yuan Shiyi, Yang Puhua, DaoZhongqiu and Shen Kuiyou. Numerical Simulation of alkali sufanctant/polymer flooding[J]. SPE. 29904, 1995.
    [80] Naji Saad. Field Scale Simulation of Chemical Flooding[D]. UT at austin, 1989.
    [81]大庆石油管理局科学研究设计院开发所流体室.大庆及外围油田高压物性参数资料统计汇编, 1982, 10.
    [82] Larson, R. G. , H. T. , and Scriven, L. E. Displacment of Residual Nonwetting Fluid from Porous Media[J]. Chem. Eng. Sci. 1981, 36(1), 75.
    [83] Mohanty, K. K. , Davis, H. T. , Scriven L. E. :”Physics of Oil Entrapemnt in Water-Wet Rock[J]. SPE, February 1987.
    [84] Abrams, A. The Influence of Fluid Viscosity , Interfacial Tension and Flow Velocity on Residual Oil Saturation Left by Water flood[J]. SPEJ, Sept. 1975, 437-47.
    [85] Melrose, J. C. and Brandner. C. F. Role of Capillary Forces in determining Microscopic Displacement Efficiency for Oil Recovery by Waterflooding[J], J. Cdn. Pet. Tech. Oct. 1974, 13, 54-62.
    [86] Taber, J. J. Dynamic and Static Forces Required to Remove a Discontinuous Oil Phase from Porous Media Containing Both Oil and Water[J]. SPEJ , March 1969, 3-12.
    [87] Larson, R. G. , Scriven, L. E. , and Davis, H. T. percolation Theory of Residual Phases in Porous Media[J]. Nature Aug. 1977, 268. 409-13.
    [88] Moore, T. F. and Slobod, R. L. The Effect of Viscosity and Capillarity on the Displacement of Oil by Water[J]. Producers Monthly , Oct. 1956, 20, 20-30.
    [89] Ng, K. , Davis, H. T and Scriven, L. E. Visualization of Blob Mechanics in Flow Through porous Material[J]. Chem. Eng. Sci. 1978, 33, 1009-17.
    [90] Norrow, N. R. Interplay of Capillary, Viscous and Buoyancy Forces in the Mobilization of Residual Oil[J] . paper presented at the 1978 Annual Meeting of Pet. Soc. of CIM, Calgary, June 13-16.
    [91] Frisch, H. L. , Hammersley, J. M. , and Welsh, D. J. A. :”Monet Carlo Estimates of Percolation Probabilities for Various Lattices,”Phys. Rev. (May 1962)126, 946-48.
    [92] Winterfeld, P. H. , Scriven, L. E. , and Davis, H. T.”Percolation and Conductivity of Random Two-Dimensional Composites,”J. Phys. C:Solid St. Phys. (1980)14, 2361-75 .
    [93] Pathak, P. et al. :”Rock Structure and Transport Therein: Unifying with Voronoi Models and Percolation Concepts,”paper SPE 8846 presented at the 1980 SPE/DOE symposium on Improved Oil Recovery, Tulsa, April 20-23.
    [94] Payatakes, A. C. , Ng, K. M. , and Flumerfelt, R. W.”Oil Ganglion Dynamics During Immiscible Displacement: Model formulation,”AIChE’J. (May 1980)26, 430-43.
    [95] Reed, R. L. and Healy, R. N. :”Some Physicochemical Aspects of Microemulsion Flooding–A Review,”Improved Oil Recovery by Surfactant Flooding , D. O. Shah and R. S. Schechter (eds. ), Academic Press, New York City (1977).
    [96] Fatt, L”The Network Model of Porous Media,”Trans. , AIME (1956)207, 144-81.
    [97] Tompson, A. B. and Gelhar, L. W. :1990, Numerical simulation of solute transport in three dimensional, randomly heterogeneous porous media. Water Resour. Res 26, 2541-2562.
    [98] Fiori, A. :1998 On the influence of pore-scale dispersion in nonergodic transport in heterogeneous formations, Transport in Porous Media 20, 57-73.
    [99] Russell, D. G. :”The Practical Aspects of Interlayer Crossflow”SPE. 369 1962.
    [100]邓聚龙.灰色预测与决策[M],武汉:华中理工大学出版社, 1988, 6.
    [101]匡建超,徐国盛,王玉兰.灰色关联度分析在油藏动态描述中的应用[J].矿物岩石, 2006, 20(2).
    [102]曾流芳,陈柏平,王忠学.疏松砂岩油藏大孔道定量描述初步研究[J].油气地质与采收率, 2002, 9(4).
    [103]王祥,夏竹君.利用注水剖面测井资料识别大孔道的方法研究[J].测井技术, 2002, 26(2): .
    [104]金山.“大孔道”测试方法的优化[J].国外测井技术, 2004, 19(5).
    [105]胡伯仲.聚合物驱采油工程[M].北京:石油工业出版社, 1997, 1.
    [106]肖伟,石成方,王凤兰等.聚合物驱油计算理论方法[M].北京:石油工业出版社, 2004, 6.
    [107]夏惠芬.弹性聚合物溶液的渗流理论及其应用[M].北京:石油工业出版社, 2002, 7.
    [108]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面[M].北京:中国轻工业出版社, 2001, 9.
    [109]鲜成钢,朗兆新,程浩.三元复合驱数学模型及其应用[J].石油大学学报2000, 24(2):61-63.
    [110]王如义.大庆及外围油田高压物性参数资料汇编.大庆石油管理局科学研究设计院开发所流体室, 1982, 10.
    [111]小罗伯特C.厄洛赫.试井分析方法[M].北京:石油工业出版社, 1985. 10.
    [112]闫建文.厚油层高渗透带化学封堵技术研究.大庆石油学院, CNKI CDMD: 2. 2006. 172402.