乙烯在薄皮甜瓜果实香气物质合成中的作用与调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄皮甜瓜以其特有的香气、优良的口感和独特美观的外形深受广大消费者的欢迎。香气物质是甜瓜果实中最具有价值的部分,是衡量薄皮甜瓜品质的重要指标之一。乙烯作为植物成熟激素,在诱导和促进甜瓜成熟和衰老等生理过程中起着非常重要的作用。香气物质作为甜瓜成熟生理指标之一,与乙烯密切相关,香气物质的合成是一个依赖乙烯的过程。但是,乙烯调节甜瓜果实香气物质生物合成的机理尚不清楚,代谢途径中关键酶对香气物质的诱导效应还需进一步证明。因此,深入研究乙烯对甜瓜香气物质及其合成途径的作用,对调节香气物质的形成,提高薄皮甜瓜果实品质具有理论和实际意义。
     本试验主要以薄皮甜瓜(Cucumis melo var. makuwa Makino)‘彩虹七号’(浓香型)、‘日本甜宝’(清香型)和‘淡香3-5’(淡香型)作为试材,采用顶空固相微萃取技术(HS-SPME)提取这三个品种甜瓜果实正常发育过程中的香气物质,用气相色谱-质谱联用仪(GC-MS)进行测定分析;并研究三个品种种甜瓜果实乙烯的释放、香气物质合成关键酶活性的差异,来分析乙烯变化与薄皮甜瓜果实正常发育过程中香气物质合成的关系;在此基础上,用10ppm的外源乙烯(气相色谱级)和1mg· L-1的乙烯抑制剂—1-MCP处理‘彩虹七号’和‘日本甜宝’甜瓜果实,研究乙烯和1-MCP处理对薄皮甜瓜果实乙烯释放、香气物质种类和含量、香气物质合成脂肪酸和氨基酸代谢途径上主要前体物质、主要合成途径上关键酶活性及其基因表达的影响。明确乙烯在调控薄皮甜瓜果实香气物质,以及在香气物质主要合成途径中的作用,以期为调控薄皮甜瓜果实香气提供理论依据。主要研究结果如下:
     1.通过对果实发育过程中的3个薄皮甜瓜果实成熟特性的相关研究,明确了‘彩虹七号’果实乙烯和呼吸跃变期均比‘日本甜宝’和‘淡香3-5’提前3d,后两者成熟果实可溶性固形物含量显著高于前者,且两者成熟特性相似。
     2.明确了当果实完全成熟时,‘彩虹七号’果皮和果肉中酯类物质,尤其是乙酸酯类含量显著高于其他两个品种,且醇类和醛类含量较低是其果实散发浓香的根本原因;成熟时‘日本甜宝’中较高的醇、醛,尤其C6和C9醇和醛类含量是其果实清香的重要原因;酯类含量及C6、C9醇和醛类含量较低是‘淡香3-5’香气较低且青香气弱于‘甜宝’的关键原因。酯类与各香气成分相互之间构成比例的差异是导致薄皮甜瓜果实整体香气不同的原因,而香气合成关键酶—脂氧合酶(LOX)、醇脱氢酶(ADH)和醇酰基转移酶(AAT)协同作用影响果实的香气类型。
     3.通过用外源乙烯及其抑制剂—1-甲基环丙烯(1-MCP)对‘彩虹七号’和‘日本甜宝’果实处理后的结果表明,1-MCP处理后降低了薄皮甜瓜果实中通过脂肪酸途径合成的直链酯类物质的含量,而外源乙烯处理使果实乙烯释放速率增加的同时,也提高了果实中大多数直链酯类的含量,证明薄皮甜瓜果实中直链酯类的合成明显受乙烯调控,主要的直链酯类包括大部分乙酸酯类、己酸酯类和己酯类物质,如乙酸乙酯、乙酸丁酯、己酸乙酯、己酸丁酯、乙酸己烯酯和丁酸己烯酯等。然而,绝大多数丁酸酯类物质的含量在整个贮藏过程中始终保持升高的趋势,可以看出丁酸酯类合成不完全受乙烯调控。
     4.利用气相色谱仪测定了薄皮甜瓜果皮和果肉中游离脂肪酸:亚麻酸(LeA)、亚油酸(LA)和油酸(OA)含量的变化,结果表明乙烯不仅能调控大部分直链酯类物质的合成,而且也能调控酯类物质生物合成的上游路径中的前体物质—脂肪酸。
     5.通过对香气物质合成的脂肪酸途径上4种关键酶活性的测定,明确了最上游的LOX和香气合成最后一步的关键酶AAT明显受乙烯调控;而施用1-MCP后,两品种果实果肉中氢过氧化物裂解酶(HPL)活性在1-MCP处理和对照之间差异不显著,证明该酶不完全受乙烯调控;ADH活性在贮藏初期各处理之间差异显著,但在贮藏9d后差异不显著,证明ADH也同样不完全受乙烯调控。
     6.通过实时荧光定量PCR,对ADH的两个基因:Cm-ADH1和Cm-ADH2及AAT的4个基因:Cm-AAT1、Cm-AAT2、Cm-AAT3和Cm-AAT4表达进行研究,明确了Cm-ADH1和Cm-ADH2以及Cm-AAT家族的4个基因的表达均受乙烯正向调控,只是相比于Cm-AAT家族的其它三个基因,1-MCP对Cm-AAT3表达的抑制作用较弱,暗示了乙烯对Cm-AAT3的调控作用较弱。
     7.通过测定甜瓜果实中的支链酯类、芳香族酯类和硫酯类物质的结果表明,外源乙烯对支链酯类和芳香族酯类的调控作用显著高于硫酯类物质。主要的支链酯类和芳香族酯类包括3-甲基乙酸丁酯、乙酸异丁酯、2-甲基丁酸乙酯、2-甲基乙酸丁酯、乙酸苯甲酯和乙酸苯乙酯。
     8.利用氨基酸自动分析仪测定了薄皮甜瓜果皮和果肉中游离氨基酸的种类和含量变化。在两个品种甜瓜果实中共检测到17种游离氨基酸,结果表明大部分氨基酸含量的变化明显受乙烯调控。明确了乙烯通过调控主要氨基酸的代谢进而对香气物质合成产生影响,主要的氨基酸包括异亮氨酸、亮氨酸、缬氨酸、苯丙氨酸以及半胱氨酸。
     9.通过对香气物质合成的氨基酸途径上3种关键酶活性的测定,明确了两个品种甜瓜果实中氨基酸转移酶(AT)和丙酮酸脱氢酶(PDH)活性明显受乙烯调控。‘甜宝’果实果皮和果肉中丙酮酸脱羧酶(PDC)活性明显受乙烯影响,而‘彩虹七号’甜瓜果实果皮中PDC活性乙烯处理后与对照间的差异不显著,暗示PDC活性不完全受乙烯调控。
     10.支链氨基酸转移酶(BCAT)在支链氨基酸转化生成香气物质的代谢过程中起着关键作用;芳香族氨基酸转移酶(ArAT)在芳香族氨基酸代谢过程中起着重要作用。通过实时荧光定量PCR,对CmBCAT1和CmArAT1表达进行研究,明确了CmBCAT1和CmArAT1的表达均受乙烯正向调控,1-MCP处理的甜瓜果实中CmBCAT1和CmArAT1转录水平降低,同时伴随氨基酸转移酶活性降低,证明CmBCAT1和CmArAT1在调控氨基酸转移酶活性并影响挥发性香气物质的合成方面起着重要作用。
Oriental sweet melon (Cucumis melo var. makuwa Makino) is favored by consumersmainly due to its special flavor, favorable taste and unique visual appearance. The planthormone ethylene plays an important part in controlling most of the metabolic pathwaysresponsible for ripening and senescence of melon. Aroma as one of mature physiologicalindexes closely related with ethylene and depends upon ethylene. However, until now, littlehas been known about the mechanism for the biosynthesis of aroma volatiles regulated byethylene. The inductive effect of key enzymes in the metabolic pathway on aroma needed tobe proved. Therefore, the objective of the present study is to explore the role of ethylene onaroma volatiles and biosynthetic pathway, which regulates the synthesis of aroma. Moreover,there is theoretical and practical significance for improving fruit quality of oriental sweetmelon.
     The oriental sweet melons used in the study consisted of three varieties,‘Caihong7’(ahighly aromatic cv.),‘Tianbao’(a less aromatic cv.) and ‘DX3-5’(a light aromatic cv.).Head-space solid phase microextraction (HS-SPME) was used to extract aromatic compoundsin three cultivars of melon during fruits development. Aromatic compounds were determinedand analyzed by gas chromatograph-mass spectrophotometer (GC-MS). The difference ofethylene production and the key aroma-related enzymes was investigated to determine therelation of ethylene and synthesis for aromatic compounds during the development of melon.On the basis, melons ‘Caihong7’ and ‘Tianbao’ were treated with10ppm of exogenousethylene and1mg·L-1of1-MCP, to investigate the effects on endogenous ethylene andaroma-related metabolites, such as species and content of aromatic compounds, mainprecursors in metabolic pathyway, activities of key enzymes and expression patterns of relatedgenes, in order to make clear the roles and regulation of ethylene on aroma volatiles and themetabolic pathway. Meanwhile, the result could provide theory to control aroma volatile inmelon, and this made important sense to improve fruit flavor and fruit quality. The key resultswere listed as follows:
     1. Comparison on ripening characteristics by three cultivars of oriental sweet melonsduring development was conducted. It was comfirmed that climacterics of ethylene andrespiration in ‘Caihong7’ made an advancement of3days relative to ‘Japanese Tianbao’ and‘DX3-5’. The soluble solids content were significantly higher from ripening ‘JapaneseTianbao’ and ‘DX3-5’ than ‘Caihong7’, and there is a similar maturity characteristic for‘Tianbao’ and ‘DX’.
     2. It was revealed that higher level of esters, especially for acetates from peel and fleshof mature ‘Caihong7’ and relatively lower level of alcohols and aldehydes contributing for thehighly aromatic of fruit. Higher content of alcohols and aldehydes, particularly for C6and C9aldehydes and alcohols in mature ‘Tianbao’ considered being important contributors to itscucumber-like flavor. Relatively lower levels of esters, C6and C9aldehydes and alcohols in ‘DX’ were crucial reasons to its light aromatic and cucumber-like flavor weaken than‘Tianbao’. The different components proportion of aroma compounds might be the reason tocause different types of fragrance among cultivars. Lipoxygenase (LOX), alcoholdehydrogenase (ADH) and alcohol acetyltransferase (AAT) as crucial aroma-related enzymes,had interaction effects on fragrance types.
     3. The results observed from ‘Caihong7’ and ‘Tianbao’ treated with exogenous ethyleneand1-methylcyclopropene (1-MCP), showing that the level of straight-chain esters derivedfrom fatty acids reduced in fruit treated with1-MCP. The production of ethylene andstraight-chain esters increased rapidly after the application of ethylene. These results revealedthat the synthesis of straight-chain esters in oriental sweet melon depends on ethylene. Themajor straight-chain esters including the majority of acetate, hexanoate and hexyl esters, suchas ethyl acetate, butyl acetate, hexyl acetate, ethyl hexanoate, butyl hexanoate,2-hexenylacetate, and (E)-2-hexenyl butanoate, etc. However, most levels of butanoate estersmaintained growth trend in ethylene/1-MCP or untreated ‘Caihong7’ and ‘Tianbao’ fruitthroughout the storage period. It seemed that the levels of butanoate esters were not under theregulation by ethylene completely.
     4. Free fatty acids (FA) component in oriental sweet melon fruit consisted of linolenicacid (LeA), linoleic acid (LA) and oleic acid (OA) was conducted by gas chromatograph tosuggest that not only the formation of esters was under ethylene control, but also FA as stepsupstream in the biosynthetic pathway of ester biosynthesis were under ethylene regulation.
     5. The activities of four key enzymes for aromatic compounds derived from FA pathwayinvestigated to clarify that, activities of LOX from upstream and AAT as the crucial enzymefrom the last step for synthesis of aroma volatiles, suggested that these enzymes weredependent on ethylene modulation. The differences of HPL activities in flesh between1-MCP-treated and control ‘Caihong7’ and ‘Tianbao’ were not significant after the applicationof1-MCP, demonstrating this enzyme was not under the regulation of ethylene completely.Indeed, significant differences of ADH activity among treatments were found at the beginningof storage, but not in peel and flesh tissues of ethylene-/1-MCP-treated and untreated fruitafter day9of storage, also indicating ADH activity was not under the regulation of ethyleneentirely.
     6. Real-time quantitative PCR was performed to exam the expression of two genes fromADH, comprising Cm-ADH1and Cm-ADH2, and four genes from AAT, including Cm-AAT1,Cm-AAT2, Cm-AAT3and Cm-AAT4. Results comfirmed that the expression of Cm-ADH1,Cm-ADH2and four genes from Cm-AAT family showing a positive regulation by ethylene.Whereas, compared with Cm-AAT1, Cm-AAT2and Cm-AAT4, the inhibition of Cm-AAT3expression in1-MCP-treated fruit was relatively weak; implying the regulation from ethyleneon Cm-AAT3was relatively weak.
     7. The levels of branched-chain, aromatic and sulfur-containing esters were investigatedin both cultivars. In addition, the effect of ethylene was greater on branched-chain ester and aromatic esters compared with sulfur-containing esters. The major branched-chain andaromatic esters consisted of butyl3-methyl acetate, isobutyl acetate, ethyl2-methyl butanoate,butyl2-methyl acetate, benzyl acetate and phenethyl acetate.
     8. The species and content of free amino acids was conducted by automatic amino acidanalyzer and seventeen kinds of free amino acids were detected in ‘Caihong7’ and ‘Tianbao’melon. Moreover, the variation of most amino acids content was under the regulation ofethylene. It was comfirmed that the metabolism of branched-chain amino acids, includingvaline, leucine and isoleucine besides phenylalanine as aromatic amino acids and cysteine assulfur-containing amino acids was catalyzed by ethylene, and then affected the synthesis ofaromatic compounds.
     9. Activities of three key enzymes for aroma volatiles derived from amino acids pathwaywere investigated and desmonstrated that ethylene had certain influences on activities ofaminotransferase (AT) and pyruvate dehydrogenase (PDH) activities in both cultivars.Activities of pyruvate decarboxylase (PDC) showed a clear pattern consistent with ethylene inpeel and flesh of ‘Tianbao’. While, the difference of PDC activities in peel betweenethylene-treated and control ‘Caihong7’ was not significant, implying that PDC activitieswere not completely under the regulation of ethylene.
     10. Branched-chain amino acid transaminase (BCAT) plays a crucial role in theconversion of branched-chain amino acids to aroma metabolites. Aromatic aminotransferase(ArAT) seems to have a major role in the metabolic pathway of aromatic amino acids. Theexpression patterns of both CmBCAT1and CmArAT1indicated up-regulation by ethyleneduring storage, in both peel and flesh tissues by RT-PCR. The reduction in CmArAT1andCmBCAT1transcript levels in the1-MCP-treated fruit was also concomitant with a reductionin aminotransferase enzyme activity, which indicated a role of CmArAT1and CmBCAT1inthe regulation of aminotransferase enzyme activity and in determining aroma volatilesformation under these conditions.
引文
[1]陈昆松,于梁,周山涛.1991.鸭梨气调贮藏的研究.园艺学报,18(2):131-137.
    [2]陈昆松,徐昌杰,许文平,昊敏,张上隆.2003.猕猴桃和桃果实脂氧合酶活性测定方法的建立.果树学报,20(6):436-438.
    [3]陈美霞,陈学森,周杰,刘扬岷,慈志娟,吴燕.2005.杏果实不同发育阶段的香味组分及其变化.中国农业科学,38(6):1244-1249.
    [4]高红岩.2006.乙烯对番茄风味、香气调控作用的机理研究.博士论文.北京:中国农业大学.
    [5]郝金凤,哈斯阿古拉.2010.富含多糖的甜瓜果肉中提取总RNA方法的比较研究.北方园艺,(5):15-18.
    [6]蒋玉梅,李轩,毕阳.2007.采前苯丙噻重氮处理抑制厚皮甜瓜采后挥发性物质的释放.农业工程学报,23(3):243-247.
    [7]金宏,惠伟,丁雅荣,张鸿,牛瑞雪.2009.1-MCP对‘粉红女士’苹果冷藏期间品质变化和香气形成的影响.西北植物学报,29(4):754-761.
    [8]刘春香,何启伟,艾希珍.2006.黄瓜果实发育过程中特征香气物质及相关因素的变化.中国蔬菜,(3):9-12.
    [9]刘勇,齐红岩,王博,张多娇,衣宁宁.2009.不同类群薄皮甜瓜感官检验与主要风味物质的关系.西北农业学报,18(4):355-358.
    [10]刘愚,焦新之,邱鹃宾.1979.苹果采后生理变化及采后顶处理对长期贮藏的影响,植物生理学报,5:151-159.
    [11]刘圆,齐红岩,王宝驹,郭亮,苏欣.2008.不同品种甜瓜果实成熟过程中香气物质动态分析.华北农学报,23(2):49-54.
    [12]陆春贵,徐鹤林,周立新.1995. PG、ACC、乙烯对番茄果实成熟的影响.园艺学报,22(1):57-60.
    [13]罗云波.1994.脂氧合酶与番茄采后成熟的关系.园艺学报,21(4):357-360.
    [14]马德伟,刘云惠.2001.中国甜瓜今夕考.中国西瓜甜瓜,(3):42-44.
    [15]马永昆,周珊,陈计峦.2004.用SPME方法分析不同成熟度哈密瓜香气的研究.食品科学,25(7):136-139.
    [16]毛志泉,王丽琴,沈向,束怀瑞,邹岩梅.2004.有机物料对平邑甜茶实生苗根系呼吸强度的影响.植物营养与肥料学报,10(2):171-175.
    [17]乜兰春,孙建设,黃瑞虹.2004.果实香气形成及其影响因素.植物学通报,21(5):631-637.
    [18]乜兰春,孙建设,邸葆.2005.苹果果实香气产生过程中氨基酸和脂肪酸含量及一些相关酶活性的变化.植物生理与分子生物学学报,31(6):663-667.
    [19]齐红岩,关小川,李岩,李金燃,邱丽妍.2010.嫁接对薄皮甜瓜果皮和果肉中主要酯类、游离氨基酸及酯类合成相关酶活性的影响.中国农业科学,43(9):1895-1903.
    [20]齐红岩,李岩,关小川,李金燃,邱丽妍,郝晶.2011.两个不同类型薄皮甜瓜品种成熟特性、香气成分及其相关酶活性分析.中国农业科学,44(4):771-780.
    [21]齐红岩,刘勇,刘轶飞.2011.不同薄皮甜瓜品种成熟果实中芳香物质的分析.中国瓜菜,24(6):1-6.
    [22]齐红岩,刘勇,衣宁宁,张建红.2010.薄皮甜瓜组织结构、纤维素及果胶含量与果实感官品质的关系.中国蔬菜,(8):36-40.
    [23]潜宗伟,唐晓伟,吴震,杨明惠,刘明池.2009.甜瓜不同品种类型芳香物质和营养品质的比较分析.中国农学通报,25(12):165-171.
    [24]隋静,姜远茂,彭福田,国颖,刘丙花,赵凤霞,王海云.2007.草莓果实发育过程中芳香物质含量和醇酰基转移酶活性的变化.园艺学报,34(6):1411-1415.
    [25]孙希生,王文辉,王志华,李志强,张志云.2003.1-MCP对苹果采后生理的影响.果树学报,20(1):12-17.
    [26]唐贵敏,于喜艳,赵登超,王利平.2007.不同品种厚皮甜瓜果实成熟过程中挥发性物质成分分析.中国蔬菜,4:7-11.
    [27]唐贵敏.2008.厚皮甜瓜果实挥发性物质含量及代谢途径研究.硕士论文.山东农业大学.
    [28]田长平,王延玲,刘遵春,王传增,孙家正,王娜,陈学森.2010.1-MCP和NO处理对黄金梨主要贮藏品质指标及脂肪酸代谢酶活性的影响.中国农业科学,43(14):2962-2972.
    [29]宛晓春,汤坚,汤逢.1997.哈密瓜中游离态和键合态风味化合物.南京农业大学学报,20(4):93-98.
    [30]王宝驹,齐红岩,刘圆,王佳辉.2008.薄皮甜瓜果实不同部位中的挥发性酯类物质与氨基酸的关系.植物生理学通迅,44(2):215-219.
    [31]王颉,徐继忠,陈海江,张慧娟,李树林.2002.鸭梨果实挥发性物质和氨基酸含量测定.食品科技,9:71-73
    [32]王胜男,任艳,任小林.2010.1-MCP处理对猕猴桃果实货架期品质的影响.西北农业学报,19(8):137-14.
    [33]魏建梅,马锋旺.2009.苹果果实β-Gal和LOX活性变化特性及其与果实软化的关系.园艺学报,36(5):631-638.
    [34]徐怀德,孟祥敏,李银萍,马方方.2007.木瓜果实贮藏期间香气物质成分的变化研究.西北植物学报,27(3):537-542.
    [35]阎振立,张顺妮,张全军.2005.华冠果实香气物质成分的GC/MS分析.果树学报,22(3):198-201.
    [36]张春雨,李亚东,张志东,刘海广,吴林,王晶莹.2009.高丛越橘果实香气成分不同发育阶段的变化.中国农业科学,42(9):3216-3223.
    [37]张东晓.2002.日本关于厚皮甜瓜若干品种香气成分的研究.中国西瓜甜瓜,2:45-46.
    [38]张辉,耿守东,艾克拜尔,古丽娜孜,胡瑞兰,冯作山.2005.外源乙烯对甜瓜采后贮运性的影响.新疆农业科学,31(1):236-239.
    [39]张上隆,陈昆松.2007.果实品质形成与调控的分子生理.北京:中国农业出版社,184-191.
    [40]张晓萌.2005.桃果实成熟过程中香气成分形成及其生理机制研究.杭州:浙江大学.
    [41]张序,姜远茂,彭福田.2007.‘红灯’甜樱桃果实发育进程中香气成分的组成及其变化.中国农业科学,40(6):1222-1228.
    [42]赵聪.2011.甜瓜果实醇酰基转移酶基因表达分析与功能鉴定.硕士论文.山东农业大学.
    [43]赵凌,沈文飚,翟虎渠,万建民.2004.植物的脂氢过氧化物裂解酶.植物生理学通讯,40(2):135-140.
    [44]赵迎丽,李建华,石建新,王春生.2005.1-MCP处理对猕猴桃果实采后生理的影响.山西农业科学,33(1):56-58.
    [45]郑孝华,翁雪香,邓春晖.2004.中华猕猴桃果实香气物质成分的气相色谱/质谱分析.分析化学,32(6):834.
    [46] Abdi, N., McGlasson, W. B., Holford, P., Williams, M., Mizrahi, Y.1998. Responses ofclimacteric and suppressed-climacteric plums to treatment with propylene and1-methylcyclopropene. Postharvest Biology and Technology,14(9):29-39.
    [47] Aharoni, A., Keizer, L. C., Bouwmeester, H. J., Sun, Z., Alvarez-Huerta, M., Verhoeven, H.A., Blaas, J., van Houwelingen, A. M., De Vos, R. C., van der Voet, H., Jansen, R. C., Guis,M., Mol, J., Davis, R. W., Schena, M., van Tunen, A. J., O'Connell, A. P.2000. Identificationof the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays.Plant Cell,12:647-662.
    [48] Alexander, L., Grierson, D.2002. Ethylene biosynthesis and action in tomato: A model forclimacteric fruit ripening. J. Exp Bot, vol.53, pp.2039-2055.
    [49] Amaro, A. L., Beaulieu, J. C., Grimm, C. C., Stein, R. E., Almeida, D. P. F.2011. Effect ofoxygen on aroma volatiles and quality of fresh-cut cantaloupe and honeydew melons. FoodChemistry,130(1):49-57.
    [50] Angela, R. D., Penelope, P. V., Richard, H., Amnon, L., Stephen, K., Zhang, X. P.2008.Grafting effects on vegetable quality. HorScience,43(6):1670-1672.
    [51] Ardo, Y.2006. Flavour formation by amino acid catabolism. Biotechnology Advances,24:238-242.
    [52] Aubert, C., Bourger, N.2004. Investigation of volatiles in Charentais Cantaloupe melons(Cucumis melo L. var. cantalupensis). Characterization of aroma constituents in somecultivars. Journal of Agricultural and Food Chemistry,52:4522-4528.
    [53] Aubert, C., Baumann, S., Arguel, H.2005. Optimization of the analysis of flavor volatilecompounds by liquid–liquid microextraction (LLME). Application to the aroma analysis ofmelons, peaches, grapes, strawberries, and tomatoes. J. Agric. Food Chem,53,8881-8895.
    [54] Aubert, C., Pitral, M.2006. Volatile compounds in the skin and pulp of Queen Anne’s pocketmelon. J Agri Food Chem,54(21):8177-8182.
    [55] Aubert, C., Milhet, C.2007. Distribution of the volatile compounds in the different parts of awhite-fleshed peach (Prunus persica L. Batsch). Food Chem,102,375-384.
    [56] Ayub, R., Guis, M., Ben, Amor, M., Gillot, L., Roustan, J. P., Latché, A., Bouzayen, M., Pech,J. C.1996. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melonfruits. Nature Biotechnology,14:862-866.
    [57] Balbontín, C., Eastman, C. G., Vergara, M.2007. Treatment with1-MCP and the role ofethylene in aroma development of mountain papaya fruit. Postharvest Biology andTechnology,43(1):67-77.
    [58] Baldwin, E. A., Scott, J. W., Shewmaker, C. K., Schuch, W.2000. Flavor trivia and tomatoaroma: biochemistry and possible mechanisms for control of important aroma components.HortScience,35:1013-1022.
    [59] Bate, N. J., Sivasankar, S., Moxon, C., Riley, M. C., Thompson, J. E., Rothstein, S. J.1998.Molecular characterization of an Arabidopsis gene encoding hydroperoxide lyase, acytochrome P-450that is wound inducible. Plant Physiology,117:1393-1400.
    [60] Bauchot, A. D., Mottram, D. S., Dodson, A. T., John, P.1998. Effect ofaminocyclopropane-1-carboxylic acid oxidase antisense gene on the formation of volatileesters in Cantaloupe Charentais melon (Cv. Vedrandais). Journal of Agricultural and FoodChemistry,46:4787-4792.
    [61] Beaulieu, J. C., Grimm, C. C.2001. Identification of volatile compounds in cantaloupe atvarious developmental stages using solid phase microextraction. Journal of Agricultural andFood Chemistry,49,1345-1352.
    [62] Beaulieu, J.2006. Volatile changes in cantaloupe during growth, maturation, and in storedfresh-cuts prepared from fruit harvested at various maturities. J Am Soc Hort Sci,131:127-139.
    [63] Beekwilder, J., Alvarez-Huerta, M., Neef, E., Verstappen, F. W., Bouwmeester, H. J., Aharoni,A.2004. Functional characterization of enzymes forming volatile esters from strawberryand banana. Plant Physiol,135,1865-1878.
    [64] Brackmann, A., Streif, J., Bangerth, F.1993. Relationship between a reduced aromaproduction and lipid metabolism of apples after long-term controlled-atmosphere storage. JAmer Soc Hort Sci,118:243-247.
    [65] Bureau, S. M., Razungles, A. J., Baumes, R. L.2000. The aroma of ‘Muscat of Frontignan’grapes: effect of the light environment of vine or bunch on volatiles and glycoconjugates. JSci Food Agric,80:2012-2020.
    [66] Burger, Y., Sa’ar, U., Paris, H. S., Lewinsohn, E., Katzir, N., Tadmor, Y., Schaffer, A. A.2006. Genetic variability for valuable fruit quality traits in Cucumis melo. Israel Journal ofPlant Science54,233-242.
    [67] Buttery, R. G.1993. In flavor science: Sensible principles and techniques (Acree, T. E., andTeranshi, R., eds) American Chemical Society, Washington, D. C.
    [68] Chen, J. L., Yan, S. J., Feng, Z. S., Xiao, L. X., Hu, X. S.2006. Changes in the volatilecompounds and chemical and physical properties of Yali pear (Pyrus bertschneideri Reld)during storage. Food Chemistry,97:248-255.
    [69] Dandekar, A. M., Teo, G., Defilippi, B., Uratsu, S. L., Passey, A. J., Kader, A. A.2004. Effectof down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. TransgenicResearch,13(4):373-384.
    [70] Defilppi, B. G., Dandekar, A. M., Kader, A. A.2004. Impact of suppression of ethylene actionor biosynthesis on flavor metabolites in apple (Malus domestica Borkh) fruits. Agric FoodChem,52:5694-5701.
    [71] Defilippi, B. G., Dandekar, A. M., Kader, A. A.2005. Relationship of ethylene biosynthesis tovolatile production,related enzymes,and precursor availability in apple peel and flesh tissues.Journal of Agricultural and Food Chemistry,53:3133-3141.
    [72] Defilippi, B. G., Kader, A. A., Dandekar, A. M.2005. Apple aroma: Alcohol acyltransferase, arate limiting step for ester biosynthesis, is regulated by ethylene. Plant Science,168(5):1199-1210.
    [73] Dickinson, J. R., Salgado, L. E. J., Hewlins, M. J. E.2003. The catabolism of amino acids tolong chain and complex alcohols in Saccharomyces cerevisiae. Journal of BiologicalChemistry,278:8028-8034.
    [74] Dixon, J., Hewett, E. W.2000. Factors affecting apple Aroma/flavour volatile concentration:A review. New Zealand J of Crop and Hort Sci,28:155-173.
    [75] Echeverría, G., Graell, J., López, M. L., Lara, I.2004. Volatile production, quality andaroma-related enzyme activities during maturation of ‘Fuji’ apples. Postharvest Biology andTechnology,31:217-227.
    [76] El-Sharkawy, I., Manriquez, D., Flores, F. B., Regad, F., Bouzayen, M., Latche, A., Pech, J. C.2005. Functional characterization of a melon alcohol acyl-transferase gene family involved inthe biosynthesis of ester volatiles. Identification of the crucial role of a threonine residue forenzyme activity. Plant Molecular Biology,59:345-362.
    [77] Engel, K. H., Heidlas, J., Albrecht, W.1989. In flavor chemistry: trends and development.(Eds.), Teranishi R., Buttery R. G., Shahidi F. ACS Symposium Series388, New York, pp:8-22.
    [78] Ergun, M., Jeong, J., Huber, D. J., Cantliffe, D. J.2005. Suppression of ripening andsoftening of ‘Galia’ melons by1-methylcyclopropene applied at preripe or ripe stages ofdevelopment. HortScience,40,170-175.
    [79] Fallik, E., Tuvia-Alkalai, S., Horev, B., Copel, A., Rodov, V., Aharoni, Y., Ulrich, D., Schulz,H.2001. Characterization of ‘Galia’ melon aroma by GC and mass spectrometric sensormeasurements after prolonged storage. Postharvest Biology and Technology,22,85-91.
    [80] Fan, X., Mattheis, J. P., Buchanan, D.1998. Continuous requirement of ethylene for applefruit volatile synthsis. J Agric Food Chem,46:1959-1963.
    [81] Fellman, J. K., Miller, T. W., Mattinson, D. S., Mattheis, J. P.2000. Factors that influencebiosynthesis of volatile flavor compounds in apple fruits. HortScience,35:1026-1033.
    [82] Ferenczi, A., Song, J., Tian, M., Vlachonasios, K., Dilley, D., Beaudry, R.2006. Volatile estersuppression and recovery following1-methylcyclopropene application to apple fruit. Journalof American Society Horticultural and Science,131(5):691-701.
    [83] Ferrie, B. J., Beaudoin, N., Burkhart, W., Bowsher, C. G., Rothstein, S. J.1994. The cloningof two tomato lipoxygenase genes and their differential expression during fruit ripening.Plant Physiol, vol.106, pp.109-118.
    [84] Ferreira, L., Perestrelo, R., Caldeira, M., Camara, J. S.2009. Characterization of volatilesubstances in apples from Rosaceae family by headspace solid-phase microextractionfollowed by GC–MS. J. Separation Sci,32,1875-1888.
    [85] Flores, F., Yahyaoui, F. E., Billerbeck, G., Romojaro, F., Latche, A., Bouzayen, M., Pech, J.C., Ambid, C.2001. Role of ethylene in the biosynthetic pathway of aliphatic ester aromavolatiles in Charentais Cantaloupe melons. Journal of Experimental Botany,53:201-206.
    [86] Flores, F., Yahyaoui, F. E., Billerbeck, G.2002. Role of ethylene in the biosynthetic pathwayof aliphatic ester aroma volatiles in Charentais Cantaloupe melons. Journal of ExperimentalBotany,53:201-206.
    [87] Flores, F. B., Martinez-Madrid, M. C., Romojaro, F.2008. Influence of fruit developmentstage on the physiological response to ethylene in Cantaloupe Charentais melon. Food SciTech Int,14(1):87-94.
    [88] Freire, M. A., Tourneur, C., Granier, F., Camonis, J., Amrani, A. E., Browning, K. S.,Robaglia, C.2000. Plant lipoxygenase2is a translation initiation factor-4E-binding protein.Plant Mol. Biol., vol.44, pp.129-140.
    [89] Gal, S., Alkalai-Tuvia, S., Perzelan, Y., Elkind, Y., Ravid, U., Fallik, E.2006. Influence ofdifferent concentration of1-methylcyclopropene and times of exposure on the quality of‘Galia’-type melon harvested at different stages of maturity. J. Hortic. Sci. Biotechnol,81,975-982.
    [90] Gal, S., Alkalai-Tuvia, S., Perzelan, Y., Elkind, Y., Ravid, U., Fallik, E.2008. Sensoryevaluation of ‘Galia’-type melons treated with1-methylcyclopropene after prolonged storage.J. Hortic. Sci. Biotechnol,83,589-594.
    [91] Garcia, E., Chacon, J. L., Martinez, J., and Izquierdo, P. M.2003. Food Sci.Technol. Int.9,33-41
    [92] Giovannoni, J. J.2004. Genetic regulation of fruit development and ripening. Plant CellSupplement.16,170-180.
    [93] Goff, S. A., Klee, Harry, J.2006. Plant Volatile Compounds: Sensory Cues for Health andNutritional Value,311(5762):815-819.
    [94] Golding, J. B., Sheaer, D., Mc Glasson, W. B.1999. Relaitonships between respiration,ethylene, and aroma production in ripening banana. J Agric Food Chem,47:1646-1651.
    [95] Gómez, E., Ledbetter, C. A., Hartsell, P. L.1993. Volatile compounds in apricot, plum, andtheir interspecific hybrids. J. Agric. Food Chem,41:1669-1678.
    [96] Gonda, I., Bar, E., Portnoy, V., Lev, S., Burger, J., Schaffer, A. A., Tadmor, Y., Gepstein, S.,Gopvannoni, J. J., Katzir, N. Lewinsohn, E.2010. Branched-chain and aromatic amino acidcatabolism into aroma volatiles in Cucumis melo L. fruit. J.Exp. Bot,61:1111-1123.
    [97] González-Agüero, M., Troncoso, S., Gudenschwager, O., Campos-Vargas, R., Moya-León,M., Defilippi, B. G.2009. Differentia l expression levels of aroma-related genes duringripening of apricot (Prunus armeniaca L.). Plant Physiology and Biochemistry,47:435-440.
    [98] Gonzalo, M. J., Oliver, M., Garcia-Mas, J., Monfort, A., Dolcet-Sanjuan, R., Katzir, N., Arus,P., Monforte, A. J.2005. Simple-sequence repeat markers used in merging linkage maps ofmelon (Cucumis melo L.). Theoretical and Applied Genetics,110:802-811.
    [99] Grechkin, A. N., Bruhlman, F., Mukhtarova, L. S., Gogole, Y. V., Hamberg, M.2006.Hydroperoxide lyases (CYP74C and CYP74B) catalyze the homolytic isomerization of fattyacid hydroperoxides into hemiacetals. Biochin Biophys Acta Mol Cell Biol Lipids,1761:1419-1428.
    [100] Hansen, K., Poll, L.1993. Conversion of L-isoleucine into2-methylbut2-enyl esters in apples.Lebensmittel Wissenschaft and Technologie,26:178-180.
    [101] Harb, J., Streif, J., Bangerth, F.2000. Response of controlled atmosphere (CA) stored“Golden Delicious” apples to the treatments with alcohols and aldehydes as aroma precursors.Gartenbauwissenschaft,65(4):154-161.
    [102] Hatanaka, A.1993. The biogenerati on of green odour by green leaves. Phytochemistry,34:1201-1218.
    [103] Heath, H. B., Reineccius, G.1986. Flavour chemistry and technology. Westport, Connecticut,AVI Publishing.442p.
    [104] Heitz, T., Bergey, D. R., Ryan, C. A.1997. A gene encoding a chloroplast-targetedlipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyljasmonate. Plant Physiol, vol.114, pp.1085-1093.
    [105] Holden, M. A., Holden, P. R., Yeoman, M. M.1988. Elicitation of cell cultures in:Manipulating Secondary Metabolism in Culture, eds Robins R J&Rhodes M J C. CambridgeUniversity Press, Cambridge,57-65.
    [106] Holland, D., Larkov, O., Bar-Yáakov, I., Bar, E., Zax, A., Brandeis, E., Ravid, U., Lewinsohn,E.2005. Developmental and varietal differences in volatile ester formation and acetyl-CoA:alcohol acetyl transferase activities in apple (Malus domestica Borkh.) fruit. J. Agric. FoodChem,53,7198-7203.
    [107] Huang, S. Z., Sawaki, T., Takahashi, A., Mizuno, S., Takezawa, K., Matsumura, A.,Yokotsuka, M., Hirasawa, Y., Sonoda, M., Nakagawa, H., Sato, T.2010. Melon EIN3-liketranscription factors (CmEIL1and CmEIL2) are positive regulators of an ethylene-andripening-induced1-aminocyclopropane-1-carboxylic acid oxidase gene (CM-ACO1). PlantScience,178:251-257.
    [108] Jia, H. J.2002. Studies on peach quality affected by orchard practices. Doctor Thesis ofOkayama University.
    [109] Jia, H. J., Arika, A., Okamoto, G.2005. Influence of fruit bagging on aroma volatiles andskin coloration of'‘Hakuho' peach (Prunus persica Batsch). Postharvest Biology andTechnology,35(35):61-68.
    [110] Jones, M. G., Hughes, J., Tregova, A., Milne, J., Tomsett, A. B. Collin, H. A.2004.Biosynthesis of the flavor precursors of onion and garlic. J. Exp. Bot,55,1903-1918.
    [111] Jordán, M. J., Shaw, P. E., Goodner, K. L.2001. Volatile components in aqueous essence andfresh fruit of Cucumis melo cv. Athena (muskmelon) by GC-MS and GC-O. Journal ofAgricultural and Food Chemistry,49:5929-5933.
    [112] Kaminaga, Y., Schnepp, J., Peel, G.2006. Plant phenylacetaldehyde synthase is a bifunctionalhomotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. Journalof Biological Chemistry,281,23357-23366.
    [113] Kays, S. J., Paull, R. E.2004. Metabolic processes in harvested products. In: PostharvestBiology. Exon Press, Athens, GA, pp.79-136.
    [114] Kemp, T. R., Knavel, D. E., Stoltz, L. P.1974.3,6-Nonadien-1-ol Citrnllus vulgaris andCucumis melon. Phytochemistry,13:1167-1170.
    [115] Khanom, M. M., Ueda, Y.2008. Bioconversion of aliphatic and aromatic alcohols to theircorresponding esters in melons (Cucumis melo L. cv. Prince melon and cv. Earl’s favoritemelon). Postharvest Biol. Technol,50,18-24.
    [116] Komthong, P., Hayakawa, S., Katoh, T., Igura, N., Shimoda, M.2006. Determination ofpotent odorants in apple by headspace gas dilution analysis. Lebensm-Wiss. Technol,39,472-478.
    [117] Kourkoutas, D., Elmore, J. S., Mottram, D. S.2006. Comparison of volatile compositions andflavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chem,97:95-102.
    [118] Lambert, Demazeau, Largetcau.1999. Changes in aromatic volatile composition ofstrawberry after high pressure treatment. Food Chemistry,67:7-16.
    [119] Lamikanra, O., Bett-Garber, K. L., Ingram, D. A. and Watson, M. A.2005. Use of mild heatpre-treatment for quality retention of fresh-cut cantaloupemelon. Journal of Food and Science,70:53-57.
    [120] Lara. I., Miró, R. M., Fuentes, T., Sayez, G., Graell, J., López, M. L.2003. Biosynthesis ofvolatile aroma compounds in pear fruit stored under long-term controlled-atmosphereconditions. Postharvest Biology and Technology,29(1):29-39.
    [121] Lara, I., Echeverría, G., Graell, J., López, M. L.2007. Volatile emission after controlledatmosphere storage of Mondial Gala apples (Malus domestica): Relationship to someinvolved enzyme activities. J. Agric. Food Chem,55,6087-6095.
    [122] Latza, S., Dietmar, G., Berger, R. G.1996. Identification and accumulation of1-o-trans-cinnamoyl-beta-D-glucopyranose in developing strawberry fruits (Fragariaananassa Duch. cv. kent). J Agric Food Chem,44:1367-1370.
    [123] Li, B., Jia, H. J., Okamoto, G.2007. Effects of post-harvest light conditions on quality andaromatic volatile formation in ‘Hakuho’ Peach (Prunus persica Batsch) fruits. Journal ofPlant Physiology and Molecular Biology,33(3):205-212.
    [124] Li, D., Lurie, S., Hong, W. Z.2002. Effect of1-methylcyclopropene on ripening of ‘Canino’rpricots and ‘Royal Zee’ plums. Postharvest Biology and Technology,24:135-145
    [125] Li, D. P., Xu, Y. F., Sun, L. P., Liu, L. X., Hu, X.. L. Li, D. Q., Shu, H. R.2006. Salicylic acid,ethephon, and methyl jasmonate enhance ester regeneration in1-MCP-treated apple fruitafter long-term cold storage. Journal of Agricultural and Food Chemistry,54,3887-3895.
    [126] Li, Y., Qi, H. Y., Liu, Y. F., Guan, X. C., Liu, Y. F.2011. Effects of ethephon and1-methylcyclopropene on fruit ripening and the biosynthesis of volatiles in oriental sweetmelon (Cucumis melo var. makuwa Makino). J. Hortic. Sci. Biotechnol,86,517-526.
    [127] Liu, Y., Qi, H. Y., Wang, B., Zhang, D. J., Yi, N. N.2009. Correlation between sensoryanalysis and major flavor compounds in melon of five groups. Acta. Agric,Boreali-Occidentalis Sinica.18,355-358.
    [128] Longhurst, T. J., Tung, J. F., Brady, C. J.1990. Developmental regulation of the expressionof alcohol dehydorgenase in ripening tomato fruit. Journal of Food Biochemistry,14:421-423.
    [129] Lucchetta, L., Manriquez, D., EI-Sharkawy, I.2007. Biochemical and catalytic properties ofthree recombinant alcohol acyltransferases of melon. Sulfur-containing ester formation,regulatory, role of CoA-SH activity, and sequence elements conferring substrate preference.Journal of Agricultural and Food Chemistry,55(13):5213-5220.
    [130] Lurie, S., Klein, J. D.1989. Cyanide metabolism in relation to ethylene production andcyanide insensitive respiration in climacteric and non-climacteric fruits. J. Plant Physiol.,135:518-521.
    [131] Lurie, S., Pre-Aymard, C., Ravid, U., Larkov, O. Fallik, E.2002. Effect of1-methylcyclopropene on volatile emission and aroma in cv. Anna apples. Journal ofAgricultural and Food Chemistry,50:4251-4256.
    [132] Manríquez, D., El-Sharkawy, I., Flores, F. B., El Yahyaoui, F., Regad, F., Bouzayen, M.,Latché, A., Pech, J. C.2006. Two highly divergent alcohol dehydrogenases of melon exhibitfruit ripening-specific expression and distinct biochemical characteristics. Plant Mol. Biol,61,675-685.
    [133] Marti, M. P., Mestres, M., Sala, C., Busto, O., Guasch, J.2003. Solid-phase microextractionand gas chromatography olfactometry analysis of successively diluted samples. A newapproach of the aroma extract dilution analysis applied to the characterization of wine aroma.J Agric Food Chem,51:7861-7865.
    [134] Matich, A., Rowan, D.2007. Pathway analysis of branched-chain ester biosynthesis in appleusing deuterium labeling and enantioselective gas chromatography–mass spectrometry.Journal of Agricultural and Food Chemistry,55,2727-2735.
    [135] Mattheis, J. P., Fan, X. T., Argenta, L. C.2005. Interactive responses of Gala apple fruitvolatile production to controlled atmosphere storage and chemical inhibition of ethyleneaction. Journal of Agricultural and Food Chemistry,53(11):4510-4516.
    [136] Miller, T. W., Fellman, J. K. Mettinson, D. S.1998. Factors that influence volatile esterbiosynthesis in ‘delicious’ apples. Acta Hort,464:195-200.
    [137] Mitchell, J. M., Cantliffe, D. J., Klee, H. J., Sargent, S. A., Stoffella, P. J. Tieman, D.2008.Fruit quality and aroma characteristics of a specialty red-fleshed melon (Cucumis melo L.),‘Red Moon’. Proc. Fla. State Hort. Soc.,121:274-280.
    [138] Mpelasoka, B. S., Behboundian, M. H.2002. Production of aroma volatiles in response todeficit irrigation and to crop load in relation to fruit maturity for ‘Braeburn’ apple.Postharvest Biology and technology,24:1-11.
    [139] Myers, M. J., Issenberg, P., Wick, E. L.1970. L-Leucine as a precursor of isoamyl alcoholand isoamyl acetate, volatile aroma constituents of banana fruit discs. Phytochemistry,9:1693-1700.
    [140] Nijssen, C. A., Visscher, H., Maarse, L. C.1996. Volatile compounds in food-qualitative andquantitative data (7th ed.). TNO Nutrition and Food Research Institute, Zeist, TheNetherlands.
    [141] Nishiyama, K., Guis, M., Rose, J. K. Kubo, Y., Bennett, K. A., Wangjin, L.2007. Ethyleneregulation of fruit softening and cell wall disassembly in Charentais melon. Journal ofExperimental Botany,58:128-9.
    [142] Nogueira, J. M. F., Fernandes, P. J. P., Nascimento, A. M. D.2003. Composition of volatilesof banana cultivars from Madeira island. Phytochem. Anal,14,87-90.
    [143] Obando, J., Miranda, C., Jowkar, M. M., Moreno, E., Souri, M. K., Martínez, J. A., Arús, P.,García-Mas, J., Monforte, A. J., Fernández-Trujillo, J. P.2007. Creating climacteric melonfruit from nonclimacteric parentals: Postharvest quality implications. In: Ramina,A.,Chang J.,Giovannoni J., Klee H., Perata P., Woltering E.(Eds.), Advances in Plant Ethylene Research.Proc.7th Int. Symp. Plant Hormone Ethylene. Kluwer Academic Publishers Group,Dordrecht, The Netherlands, pp.197-205.
    [144] Obando-Ulloaa, J. M., Moreno, E., García-Mas, J., Nicolai, B., Lammertyn, J., Monforte, A. J.J., Fernández-Trujillo, P.2008. Climacteric or non-climacteric behavior in melon fruit1.Aroma volatiles. Postharvest Biology and Technology,49:27-37.
    [145] Obando-Ulloaa, J. M., Nicolai, B., Lammertyn, J., Bueso, M. C., Monforte, A. J.,Fernández-Trujillo, J. P.2009. Aroma volatiles associated with the senescence of climactericor non-climacteric melon fruit. Postharvest Biology and Technology,52,146-155.
    [146] Oeller, P. W., Wong, L. M., Taylor, L. P.1991. Reversible inhibition of tomato fruitsenescence by antisense1-aminocyclopropane-l-carboxylate synthase. Science,25:433-437.
    [147] Okamoto, G., Liao, K., Fushimi, T.2001. Aromatic substances evolved from the whole berry,skin and flesh of Muscat of Alexandria grapes. Scientific Reports of the Faculty ofAgriculture, Olcayama University,90:21-25.
    [148] Olías, J. M., Pérez, A. G., Rios, J. J.1992. Aroma components and free aroma acids instrawberry variety Chandler during ripening. Journal of Agricultural Food Chemistry,40:2232-2235.
    [149] Ortiz, A., Graell, J., López, M. L., Echeverría, G., Lara, I.2010. Voaltile ester-synthesisingcapacity in ‘Tardibelle’ peach fruit in response to controlled atmosphere and1-MCPtreatment. Food Chenmistry,123:698-704.
    [150] Pérez, A. G., Sanz, C., Rios, J. J., Olias, J. M.1992. Aroma components and free amino acidsin strawberry variety Chandler during ripening. Journal of Agricultural and Food Chemistry,40:2232-2235.
    [151] Perez, A. G., Rios, J. J., Sanz, C., Olias, J. M.1993. Aroma components and free amino acidsin the strawberry variety Chanlder during ripening.Journal of Agricultural and FoodChemistry,40:2232-2235.
    [152] Pérez, A. G., Olias, R., Luaces, P., Sanz, C.2002. Biosynthesis of strawberry aromacompounds through amino acid metabolism. Journal of Agricultural and Food Chemistry,50(14):4037-4042.
    [153] Polesello, Lovati, Rizzolo.1993. Supercritical fluid extraction as a preparative tool forstrawberry aroma analysis. High.Res Chrom,16:555-559.
    [154] Porta, H., Rocha-Sosa, M.2002. Plant lipoxygenases. Physiological and molecular features.Plant Physiol,130,15-21.
    [155] Portnoy, V., Benyamini, Y., Bar, E., Harel-Beja, R., Gepstein, S., Giovannoni, J. J., Schaffer,A. A., Burger, J., Tadmor, Y., Lewinsohn, E., Katzir, N.2008. The molecular and biochemicalbasis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. PlantMolecular Biology,66,647-661.
    [156] Prestage, S., Linforth, R. S., Taylor, A. J.1999. Volatile production in tomato fruit withmodified alcohol dehydrogenase activity. Journal of Science and Food Agriculture,79:131-136.
    [157] Preston, C., Richung, E., Elss, S.2003. On-line gas chromatography colnbus-tionpyrolysisisotope ratio mass spectrometry (HRGC-C/P-IRMS) of pineapple (Ananas COl'nosus L.Merr.) volatiles. Journal of Agricultural and Food Chemistry,51(27):8027-8031.
    [158] Rizzolo, A., Eccher Zerbini, P., Grassi, M., Cambiaghi, P., Bianchi, G.2006. Effect of1-methylcyclopropene on aroma compounds in ‘‘Big Top” nectarines after shelf life. J. FoodQuality,29,184-202.
    [159] Roberts, D. D., Pollien, P., Milo, C.2000. Solid-phase microextraction method developmentfor headspace analysis of volatile flavor compounds. J Agric Food Chem,48:2430-2437.
    [160] Saftner, R., Abbott, J. A., Lester, G., Vinyard, B.2006. Sensory and analytical comparison oforange-fleshed honeydew to cantaloupe and green-fleshed honeydew for fresh-cut chunks.Postharvest Biol. Technol.,42:150-160.
    [161] Salas, J. J., Sánchez, J.1999. Hydroperoxide lyase from olive (Olea europaea) fruits. PlantScience,143:19-26.
    [162] Salles, C., Jallageas, J., Crouzet, J.1990. Chromatographic separation and partialidentification of glycosidically bound volatile components of fruit.Journal ofChromatography A,522:255-265.
    [163] Sanz, C., Olías, J. M., Pérez, A. G.1997. Aroma biochemistry of fruits and vegetables. In:Tomás Barberán, F.A., Robins, R.J.(Eds.), Phytochemistry of fruits and vegetables.Clarendon Press, Oxford, UK, pp:125-155.
    [164] Schaffer, Robert, J., Friel Ellen, N.2007. A genomics approach reveals that aromaproduction in apple is controlled by ethylene predominantly at the final step in eachbiosynthetic pathway. Plant Physiology, Vol.144, pp.1899-1912.
    [165] Schieberle, P., Ofner, S., Grosch, W.1990. Evaluation of potent odorants in cucumbers(Cucumis satirus) and muskmelons (Cucumis melo) by aroma extract dilution analysis. J.Food Sci.55,193-195.
    [166] Schwab, W., Davidovich-Rikanati, R., Lewinsohn, E.2008. Biosynthesis of plant-derivedflavor compounds. The Plant Journal,54,712-732.
    [167] Senesi, E., Lo Scalzo, R., Prinzivalli, C., Testoni, A.2002. Relationships between volatilecomposition and sensory evaluation in eight varieties of netted muskmelon (Cucumis melo L.var. reticulates Naud.). Journal of the Science of Food and Agriculture,82:655-662.
    [168] Senesi, E., Di Cesare, L. F., Prinzivalli, C., Lo Sclazo R.2005. Influence of ripening stage onvolatiles composition, physicochemical indexes and sensory evaluation in two varieties ofmuskmelon (Cucumis melo L. var reticulates Naud). Journal of the Science of Food andAgriculture,85,1241-2151.
    [169] Shalit, M., Katzir, N., Larkov, O., Burger, Y., Shalekhet, F., Lastochkin, E., Ravid, U., Awar,O., Edelstein, M., Lewinsohn, E.1994. Aroma formation in muskmelon volatile acetates inripening fruits. Acta Hort,510:455-461.
    [170] Shalit, M., Katzir, N., Tadmor, Y.2001. Acetyl-CoA: alcohol acetyltransferase acitivity andaroma formation in ripening melon fruits. Journal of Agricultural and Food Chemistry,49,794-799.
    [171] Singh, R. K., Sane, V. A., Misra, A., Ali, S. A., Nath, P.2010. Differential expression of themango alcohol dehydrogenase gene family during ripening. Phytochemistry,71:1485-1494.
    [172] Smit, G., Smit, B. A., Engels, W. J. M.2005. Flavour formation by lactic acid bacteria andbiochemical flavour profiling of cheese products. FEMS Microbiol. Rev,29:591-610.
    [173] Song, J., Bangerth, F.1994. Production and development of volatile aroma compounds ofapple fruits at different times of maturity. Acta Horticulturae,368:150-159.
    [174] Song, J., Bangerth, F.2003. Fatty acids as precursors for aroma volatile biosynthesis inpre-climacteric and climacteric apple fruit. Postharvest Biol. Technol,30,113-121.
    [175] Souleyre, E. J., Greenwood, D. R., Friel, E. N., Karunairetnam, S., Newcomb, R. D.2005. Analcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved inapple fruit flavor. FEBS J,272,3132-3144.
    [176] Speirs, J., Lee, E., Holt, K., Kim, Y. D., Scott, N. S., Loveys, B., Schuch, W.1998. Geneticmanipulation of alcohol deshydrogenase levels in ripening tomato fruit affects the balance ofsome flavour aldehydes and alcohols. Plant Physiol,117:1047-1058.
    [177] Speirs, J., Corel, R., Cain, P.2002. Relationship between ADH activity, ripeness and softnessin six tomato cultivars. Sci. Hortic., vol.93, pp.137-142.
    [178] Surburg, H., Panten, J.(eds)2005. Common Fragrance and Flavor Materials: Preparation,Properties and Uses. Weinheim, Germany: Wiley-VCH.
    [179] Susan, L., Claire, P. A., Uzi, R., Olda, L., Elazar, F.2002. Effect of1-methylcyclopropene onvolatile emission and aroma in cv.Anna apples. Journal of Agricultural and Food Chemistry,50:4251-4256.
    [180] Tadmor, Y., Lewinsohn, E.2007. Frontiers in transgenic medicinal plants research. InMedicinal Plant Biotechnology: From Basic Research to Industrial Applications, Vol.2(Kayser, O. and Quax, W. eds).Weinheim, Germany: Wiley-VCH, pp.375-395.
    [181] Tandon, K. S., Baldwin, E. A., Shewfelt, R. L.2000. Aroma perception of individual volatilecompounds in fresh tomatoes as affected by the medium of evaluation. Postharv Biol Technol,20:261-268.
    [182] Tamura, H.2000. Characterization and evaluation of aroma quality of citrus fruits by meansof odor thresgold. Aroma Res,20:261-268.
    [183] Teai, T., Claude-Lafontaine, A.2001. Volatile Compunds in Fresh Pulp of Pineapple(Ananas comosus L. Merr.) from French SPolynesia,13(5):314-318.
    [184] Theologis, A.1992. One rotten apple spoils the whole bushel: The role of ethylene in fruitripening. Cell, vol.70, pp.181-184.
    [185] Tieman, D., Taylor, M., Schauer, N., Fernie, A. R., Hanson, A. D., Klee, H. J.2006. Tomatoaromatic amino acid decarboxylases participate in synthesis of the flavor volatiles2-phenylethanol and2-phenylacetaldehyde. Proceedings of the National Academy ofSciences, USA,103,8287-8292.
    [186] Tokitomo, Y., Steinhaus, M., Botner A.2005. Odoractive constituents in fresh pineapple(Ananas comosus Merr.) by quantitative and sensory evaluation. Biosci Biotechnol Biochem,69(7):1323-1330.
    [187] Tonutti, P., Bonghi, C., Ramina, A.1996. Fruit firmness and ethylene biosynthesis in threecultivars of peach. J Hort Sci,71(1):141-147.
    [188] Tonutti, P., Casson, P., Ramina, A.1991. Ethylene biosynthesis during peach fruitdevelopment. J Am Soc Hortic Sci,116:274-27.
    [189] Tressl, R., Drawert, F.1973. Biogenesis of banana volatiles. J Agric Food Chem,21:560-565.
    [190] Ueda, Y., Tsuda Bai, J. H., Fujishita, N., Hachin, K.1992. Characteristic pattern of aromaester formation from banana, melon and strawberry with reference to the substrate specificityof ester synthetase and alcohol contents in pulp. Journal of the Japanese Society for FoodScience and Technology,39:183-187.
    [191] Vancanneyt, G., Sanz, C., Farmaki, T., Paneque, M., Ortego, F., Casta era, P.2001.Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphidperformance. Proceedings of the National Academy of Science of the United States ofAmerica,98,8139-8144.
    [192] Vick, B. A.1991. A spectrophotometric assay for hydroperoxide lyase. Lipids,26,315-320.
    [193] Visai, C., Vanoli, M.1997. Volatile compound production during growth and ripening ofpeaches and nectarines. Scientia Horticul,70:15-24.
    [194] Vuralhan, Z., Morais, M. A., Tai, S., Piper, M. D. W., Pronk, J. T.2003. Identification andcharacterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae.Applied and Environmental Microbiology,69:4534-4541.
    [195] Wang, Y., Wyllie, S.G., Leach, D. N.1996. Chemical changes during the development andripening of the furit of Cucumis melo (Cv. Makdimon). J. Agric. Food Chem,40:210-216.
    [196] Weckerle, B., Bastl-Borrmann, R., Richling, E., Hor, K., Ruff, C., Schreier, P.2001. Cactuspear (Opuntia ficus indica) flavor constituents-chiral evaluation (MDGC–MS) and isotoperatio (HRGC–IRMS) analysis. Flav. Frag. J,16,360-363.
    [197] Wehdakoon, S. K., Ueda, Y., Imahori, Y., Ishimaru, M.2004. Inhibition of acetate esterbiosynthesis in banana (Musa sapientum L.) fruit pulp under anaerobic conditions.Journal ofAgricultural and Food Chemistry,52(6):1615-1620.
    [198] Wyllie, S. G., Leach, D. N.1992. Sulfur-containing compounds in the aroma volatiles ofmelons (Cucumis melo). Journal of Agricultural and Food Chemistry,40,253-256.
    [199] Wyllie, S. G., Leach, D. N., Wang, Y. M., Shewfelt, R L.1995. Key aroma compoundsinmelons. their development and cultivar dependence. Fruit Flavors,596:248-257.
    [200] Wyllie, S. G., Fellman, J. K.2000. Formation of volatile branched chain esters in bananas(Musa sapientum L.). J. Agric. Food Chem,48,3493-3496.
    [201] Yabumoto, K., Yamaguchi, M., Jennings, W. G.1977. Biosynthesis of some volatileconstituents of muskmelon, Cucumis melo. Chemie Mikrobiologie Technologie derLebensmittel,5:53-56.
    [202] Yahyaouil, F. E. L., Wongs-Aree, C., Latche, A., Hackett, R., Grierson, D., Pech, J. C.2002.Molecular and biochemical characteristics of a gene encoding an alcohol acyltransferaseinvolved in the generation of aroma volatile esters during melon ripening. European Journalof Biochemistry,269,2359-2366.
    [203] Yvon, M., Chambellon, E., Bolotin, A., Roudot-Algaron, F.2000. Characterization and roleof the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp.Cremoris NCDO763. Applied and Environmental Microbiology,66:571-577.
    [204] Yvon, M., Rijnen, L.2001. Cheese flavour formation by amino acid catabolism. InternationalDairy Journal,11:185-201.
    [205] Zhang, X. M., Jia, H. J.2005. Changes in aroma volatile compounds and ethylene productionduring “Hujingmilu” peach (Prunus persica L.) fruit development. Journal of PlantPhysiology and Molecular Biology,31(1):41-46.
    [206] Zhu, H.2004. Ester variability in apple varieties as determined by solidphasemicroextractionand gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry,52:8086-8093.
    [207] Zhu, Y. M., Rudell, D. R., Mattheis, J. P.2008. Characterization of cultivar differences inalcohol acyltransferase and1-aminocyclopropane-1-carboxylate synthase gene expressionand volatile ester emission during apple fruit maturation and ripening. Postharvest Biologyand Technology,49:330-339.