P_(204)-HCl-H_3AOH体系萃取分离轻稀土元素的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素具有特殊的物理与化学性能,因而在冶金、石油化工、玻璃陶瓷领域和各种功能材料中广泛应用。为了从混合稀土原料中获得单一稀土元素或某几种稀土元素,现工业上主要采用氨水或碳酸氢铵皂化的P204[二(2-乙基己基磷酸)]或P507[2-乙基己基膦酸单乙基己基脂]萃取剂分离稀土元素,但该方法产生含有很高浓度NH4+的废水,对环境污染严重。
     针对现有分离稀土的工艺和研究的不足,本论文通过在稀土氯化物溶液中加入配合剂柠檬酸(H3AOH),采用非皂化的P204萃取剂分离轻稀土元素。研究了该体系中P204萃取轻稀土元素的分配比、分离系数、萃取饱和容量与酸度、柠檬酸浓度和稀土浓度的关系,并对萃取轻稀土的机理及动力学进行了系统的研究。
     文中采用单级萃取实验方法研究了不同稀土料液、酸度和柠檬酸浓度条件下,在P204-HCl-H3AOH体系中轻稀土元素的分配比和萃取饱和容量,并采用回归分析法建立了以料液酸度、柠檬酸浓度和稀土浓度为变量的三元一次回归方程,分析了酸度、柠檬酸浓度和稀土浓度三因素对轻稀土的分配比和分离系数的影响。结果表明:当料液酸度pH值为1.0、柠檬酸浓度为0.25mol·L-1、稀土浓度为0.25mol·L-1时,轻稀土元素的分配比最大达到DLa=0.1767、DCe=0.7353.DPr=1.5221和DNd=2.4201,轻稀土元素间最大分离系数分别为βCe/La=4.16、βPr/Ce=2.07和βNd/Pr=1.59。同样工艺参数下,在串级萃取分离轻稀土的生产线上得到有效级平均分离系数分别是βCe/La=3.50、βPr/Ce=2.05和βNd/Pr =1.35,此值均高于该生产线皂化的P204萃体系中βCe/La=2.14、βPr/Ce=1.67和βNd/Pr=1.33。并且随着柠檬酸浓度的升高,P204萃取稀土的容量逐渐增大,最大可以达到29.71 g·L-1比盐酸体系提高近50%。
     通过实验结果得出P204在含有柠檬酸体系中与轻稀土离子的萃取平衡常数分别为:当pH>1时,1gKLa=-1.77、1gKce=-1.63、1gKPr=-1.26、1gKNd=-0.86;当0     采用红外光谱分析方法从萃取剂分子结构的变化研究了P204-HCl-H3AOH体系萃取稀土离子的机理,结果表明:当pH>1时萃取反应是稀土离子与P204分子的P-OH基团H+置换,其属于阳离子交换机制;当0     采用恒界面法研究了P204-HCl-H3AOH体系萃取轻稀土的动力学,实验发现P204萃取轻稀土的速率随着搅拌速度、温度和比界面积的增大而增大,根据阿仑尼乌斯方程计算出P204-HCl-H3AOH体系中正向萃取轻稀土的表观活化能分别为ELa=19.11KJ-mol-1 ECe=13.13 KJ·mol-1、EPr=10.22 KJ·mol-1和ENd=8.39KJ·mol-1,表明此过程具有典型的扩散速度控制特征。通过研究酸度和萃取剂浓度对萃取速率的影响,确定P204-HCl-H3AOH体系中P204萃取轻稀土的正向反应速率方程式为:
Since the rare earth (RE) products have particular physical and chemical properties, they are widely used in metallurgy, petrochemical industry, various functional materials and glass ceramic field etc. In order to obtain individual rare earth element or mixed several rare earth elements from mixed rare earth feed, P204 or P507 as extractant saponified by ammonia liquor or ammonium acid carbonate are used to separate rare earth elements, but this method produces drain water contained high concentration NH4+, which heavily give environment pollution.
     In this thesis, the coordination agent citric acid (H3AOH) is added to rare earth and the unsaponified P204 is used as extractant in order to improve the process of separating light rare earth. The distribution ratio of rare earth elements in rare earth chloride solution and P204 extractant, separation coefficient, saturated extraction capacity and acidity, citric acid concentration, rare earth concentration were studied. The mechanics and the kinetics of the light rare earth extraction were studied.
     Under the conditions of different rare earth feed, acidity and citric acid concentration, the distribution ratio of the light rare earths and extraction saturated capacity in P204-HCl-H3AOH system were studied by single stage extraction experiments. The ternary linear regression equation of feed acidity, citric acid concentration and rare earth concentration was obtained, and the effect of them on the distribution ratio and separation coefficient were analyzed. The results show that, when feed acidity pH 1.0, citric acid concentration 0.25mol·L-1 and rare earth concentration 0.25mol·L-1, the max distribution ratio(D) comes up to DLa=0.1767, DCe=0.7353, DPr=1.5221 and DNd=2.4201 respectively, the max separation coefficient(β) areβCe/La=4.16,βpr/Ce=2.07 andβNd/Pr=1-59 respectively. By continuous stage extraction, the average separation coefficient of areβCe/La=3.50,βpr/Ce=2.05 andβNd/Pr=1-35 respectively at the same experiments conditions as single stage extraction, which are higher compare to the saponified P204 systemβCe/La=2.14,βPr/Ce=1-67 andβNd/Pr=1-33. Moreover, the capacity of unsaponified P204 extracting rare earth increases with citric acid concentration, its maxium is 29.71 g·L-1, which increases nearly 50% compare to soaponified P204.
     The extraction equilibrium constants(K) of unsaponified P204 in the citric acid system are 1gKLa=-1.77, 1gKCe=-1.63, 1gKPr=-1.26, 1gKNd=-0.86 when pH>1; and 1gKLa=-0.61,1gKCe =0.13,1gKpr=0.40,1gKNd=0.80 when 0     The mechanics of extracting rare earth ion in P204-HCl-H3 AOH system were determined by infrared spectrum analysis. The results show that, extraction reaction are the replacement of H+of P-OH with rare earth ions according to cation exchange mechanics when pH>1. When 0     The kinetics of extracting the light rare earth in P204-HCl-H3AOH system was investigated by constant interfacial area method. The results show that, the rate of P204 extracting light rare earths increases with stirring speed, temperature, specific interfacial area. According to Arrhennius equation, the apparent activation energy of extracting light rare earths are ELa=19.11KJ·mol-1, ECe=13.13 KJ·mol-1, EPr=10.22 KJ·mol-1 and ENd= 8.39 KJ·mol-1 respectively, which illustrates that this process has obvious diffusion velocity control characteristic. By studying the effect of acidity and extractant concentration on extraction rate, the positive reaction rate equations of extracting light rare earths in P204-HCl-H3AOH system are determined as fellows:
引文
综合国内外有关的研究可知,协同萃取和配合交换萃取分离方法均有替代现行的皂化萃取工艺,实现清洁冶金工艺的可能性。两种方法相比,后者可在现有的酸性磷型萃取萃体系工艺中仅添加少量的配合剂,而无需对原生产线进行改动,生产操作简单,易于生产控制和生产环境好的特点,更便于将我国已形成的皂化P507(或P204)体系改造成非皂化体系。这符合又好又快的解决目前稀土萃取分离生产废水污染环境问题的国策方针。但是至今为止的配合交换萃取的研究尚存在两个制约其在大规模生产中应用的问题:
    ①仅限于特定稀土组成的溶液,缺乏从轻稀土矿物组成的溶液中分离稀土元素的萃取工艺及基础研究,这对于迫在眉睫的从稀土分离生产源头解决铵氮废水污染环境的社会需要而言无疑是个缺憾;
    ②配合交换分离稀土元素方法中以DTPA、EDTA效果最好,但回收DTPA、EDTA主要采用蒸发水分-调整酸度-结晶析出方法,其工艺过程复杂、能耗高,回收利用率低,再加上配合剂的售价较高,导致生产成本大幅度升高,因此限制了该方法在大规模生产中的应用。
    针对现有研究的不足,本文通过在稀土氯化物溶液中加入配合剂柠檬酸(H3AOH),采用非皂化的P204萃取剂分离轻稀土元素,研究轻稀土元素的分配比和分离系数与酸度、柠檬酸浓度的关系问题。其目的是为开发一种生产成本低,无氨氮污染的清洁分离工艺提供理论依据。
    本文的主要研究内容如下:
    (1)研究HCl-H3AOH溶液中不同稀土料液酸度、柠檬酸浓度和稀土浓度对轻稀土元素分配比、分离系数和饱和萃取容量的影响,并建立相应的数学关系式。
    (2)通过红外光谱分析负载La、Ce, Pr、Nd的元素的萃取剂分子结构变化,确定HCl-H3AOH溶液中轻稀土离子分别与P204萃取剂的萃合机理。
    (3)得出HCl-H3AOH溶液中轻稀土离子与分别P204萃取剂的有效萃合反应常数。
    (4)研究HCl-H3AOH溶液中轻稀土离子分别与P204萃取剂动力学反应的机理,推导得出反应的反应速率方程式,求出萃取反应的动力学参数以及反应活化能确定控制步骤并得出动力学反应方程。
    参考文献
    [1]吴文远.稀土冶金学[M],北京:化学工业出版社,2005,13-165.
    [2]Yasuo Kanazawa, Masaharu Kamitani. Rare earth minerals and resources in the world [J], Journal of Alloys and Compounds,2006,408-412:1339-1343.
    [3]吕松涛.稀土冶金学[M],北京:冶金工业出版社,1981,257-291.
    [4]许崇海,艾兴,邓建新等.稀土元素在氧、碳、硼化物陶瓷材料中的应用研究[J],硅酸盐通报,1998,3:64-68.
    [5]Pretorius G. Stabilization mechanism of M2O3 c-type rare earth tetragonal stabilized ZrO2 via co-decomposition [J], Jouranl of Materials Science,1995, (30):720-723.
    [6]Gall M Le, Huntz A M, Lesage B, et al. Self-diffusion in a-Al2O3 and growth rate of alumina scales formed by oxidation:effect of Y2O3 doping [J], Jouranl of Materials Science,1995,30(1):201-211.
    [7]Ki-Woong CHae, Doh-Yeon Kim, Byung-Chan Kim, et al. Effect of Y2O3 additions on the densification of an Al2O3-TiC composite [J], Journal of the American Ceramic Society, 1993,76(7):1857-1860.
    [8]Scherzer J, Riter R E. Ion-exchanged ultrastable Y zeolites, gas oil cracking over rare earth-exchanged ultrastable Y zeolites [J], Ind. Eng. Chem. Prod. Res. Dev.,1978, 17(3):219-221.
    [9]Magee J S, Cormier W E, Woltermann G M. Octane catalysts contain special sieves [J], Oil & Gas J.,1985,83(21):59-63.
    [10]郭耘,卢冠忠.稀土催化材料的应用及研究进展[J],中国稀土学报,2007,25(1):1-15.
    [11]孙书红,庞新梅,郑淑琴等.稀土超稳Y性分子筛催化裂化催化剂的研究[J],石油炼制与化工,2001,32(6):25-28.
    [12]耿谦,张育兵.稀土元素在玻璃陶瓷中的应用[J],陶瓷,2004,(1):40-43.
    [13]金贵铸.稀土湿法冶炼工艺学[M],北京:冶金工业出版社,1986,191-198.
    [14]刘光华,孙洪志,李红英.稀土材料与应用技术[M],北京:化学工业出版社,2005,150-156.
    [15]F. H. Spedding.A. H. Daane,The rare earth[M], New York:John Wiley&Sons,1961, 59-72.
    [16]Wang Z C, Yu J, Yu Y L, et al. Comparative study of the mutual separation characteristics for neighboring rare earth elements from quaternary system LaCl3 CeCl3 PrCl3 NdCl3 viavapor complexes LaAlnCl3n+3[J], Alloys and Comp.,1998,264(1):147-151.
    [17]Murase K, Machida K, Adachi G. Vapour phase extraction and mutual separation of rare earths from monazite using chemical vapour transport mediated by vapour complexes[J], Chem.Lett.,1994,249(9):1297-1299.
    [18]Adachi G, Murase K, Shinozaki K, et al. Mutual separation characteristics for lanthonoid elements via gas phase complexe with alkaline chloride[J].Chem. Lett.,1992,244(4): 511-516.
    [19]Murase K, Machida K, Adachi G. Recovery of rare metals from scrap of rare earth intermetallic material by chemical vapour transport[J], Alloys and Comp.,1995,17(1): 218-219.
    [20]Murase K, Ozaki T, Machida K, et al. Extraction and mutual separation of rare earths from concentrates and crude oxides using chemical vapour transport[J], Alloys and Comp.,1996,233(15):968-972.
    [21]Morais C A, Ciminelli V S T. Recovery of europium by chemical reduction of a commercial solution of europium and gadolinium chlorides [J], Hydrometallurgy,2001, 60:247-253.
    [22]Morais C A, Ciminelli V S T. A study on recovery of europium by photochemical reduction [J], Sep Sci Technol,2002,37 (14):3305-3321.
    [23]于锦,姚思童,迟松江等.发展中的稀土分离技术[J],沈阳工业大学学报,1999,21(1):83-85.
    [24]Hideyuki Matsunaga, Adel Ali Ismail, Yoshito Wakui, et al. Extraction of rare earth elements with 2-ethylhexyl hydrogen 2-ethylhexyl phosphonate impregnated resins having different morphology and reagent content [J], Reactive & Functional Polymers, 2001,49:189-195.
    [25]张桂菊,徐宝财.反胶团技术应用研究进展[J],精细化工,2005,(S1),5-6.
    [26]徐宝财,王媛,肖阳等.反胶团萃取分离技术研究进展[J],日用化学工业,2004,(06):390-393.
    [27]吴金川,俞志民.反胶团萃取蛋白质技术[J],化学工业与工程,1997,(3):50-54.
    [28]黄光荣,活泼,戴德慧等.反胶团萃取嗜热芽孢杆菌HS08发酵液中胞外蛋白酶研究[J],中国计量学院学报,2007,(02):95-98.
    [29]Jihonn Tony, Shintarv Furusaki. Extraction behavior of proteins using reversed micellar systems formed by kerosene and s ilicone, Sep.Sci.Tech.,1998, (6),899-907.
    [30]贾金平,何朔.超临界流体的应用现状[J],化学世界,1998,(1):3-6.
    [31]侯彩霞,李淑芬.挥发油的超临界流体萃取与分离进展[J],化工进展,2007,42-46.
    [32]Braga Mare E M, Ehlert Polyana A D, Ming Lin C, et al. Supercritical fluid extraction from Lippia alba:Global yields, kinetic data, and extract chemical composition [J], J.Superit.Fluids,2005,34 (2):149-156.
    [33]陈岚,满瑞林.超临界萃取技术及其应用研究[J],现代食品科技,2006,(01):200-202.
    [34]林郑和.超临界流体萃取技术在茶叶研究中的应用[J],茶叶科学技术,2007,(02):4-5.
    [35]蒋盛岩,陈立德,赵良忠等.枇杷叶熊果酸超临界流体萃取工艺的研究[J],食品科学,2007,(28):186-188.
    [36]卜玉兰,郭振库.微波萃取技术[J],色谱,1997,(16):499-500.
    [37]Garcia Nyusol E. et al. Focused microwave-assisted soxhlet:an a dvantageous tool for sample extraction[J], An al. Chem,1998, (11):2426-2431.
    [38]Dagnac T, et al. Optimization of the extraction of arsenic species from mussels with low power focused microwaves by applying a doehlert design [J], Anal. Chem. A cta.,1998, (1-3):19-30.
    [39]周含英,黄益鸿,王盛才等.微波萃取-气相色谱法测定土壤中六六六、滴滴涕[J],光谱实验室,2007,(02):236-238.
    [40]刘雯.微波萃取气相色谱法测定土壤中六六六、滴滴涕[J],环境科学与技术,2005,(S1):35-36.
    [41]李攻科,何小青,杨云等.微波皂化萃取气相色谱法测定生物样品中的多氯联苯[J],分析化学,2000,(09):25-28.
    [42]M. A. Marando, et al. Two-phase electrophoresis of proteins [J], Sep.Sci.Tech.,1993, (8): 1561-1577.
    [43]G. S. Luo, et al. Eletroextraction separation of dyestuffs [J], Sep.Sci.Tech,1999, (5): 181-791.
    [44]骆广生,江伟斌,朱慎村等.电泳技术用于蔡酚绿B的回收[J],化学工程,1999,27(6):31-34.
    [45]骆广生,吕阳成,江伟斌等.萃取-电泳萃取复合过程用于回收染料[J],化学工程,2000,(05):45-49.
    [46]马荣骏,罗电宏.溶剂萃取的新进展及其在新世纪中的发展方向[J],矿冶工程,2001,(03):13-18.
    [47]Arifal G, Hwang J, Qnuki K. Electro-electrodialysis of hydriodic acid using the cation exchange, membrane cross-linked by accelerated electro radiation [J], Membr Sci,2002, 210(1):39-44.
    [48]汪雨,张玲金.常压微波技术萃取土壤中有机氯农药[J],岩矿测试,2006,(01):15-18.
    [49]Simpson, N.J.K. Solid phase extraction:principles, techniques, and applications[M]. New York and Basel:Marcel Dekker,2000,110(2):19-38.
    [50]Thurman, E.M, Mills, M.S. Solid phase extraction:principles and practice [M]. New York:John Wiley&Sons,1998,146 (02):200-210.
    [51]吕金海,舒孝顺,高中洪等.菝葜总皂苷元超声萃取研究[J],中国中药杂志,2007,(02):155-156.
    [52]王力,王琳玲,赵天珍等.超声萃取沉积物中六氯苯的研究[J],分析科学学报,2006,(06):663-666.
    [53]吕玄文,梁敏思,党志等.鱼塘沉积物中氯霉素的超声萃取、净化与测定[J],农业环境科学学报,2007,(03):1196-1200.
    [54]许绍权,李素清,洪海玲.氟硅酸体系中D_2EHPA对铟和锡的非平衡萃取[J],稀有金属,1995,(01):1-5.
    [55]Ma Rongjun, et al., The recovery of indium by nonequilibrate solvent extraction,Proc first interconfon new direction in separation technology,Switzerland, davos, 1984,(02):16-21.
    [56]N.F. Ph. K izim. The dynamic separation of substances by liquid-liquid extraction, Russian Chemical Reviews,1992(8):830-849.
    [57]翟永青,吴文远,孙金治.稀土溶剂萃取故障监测与诊断专家系统知识库的建立[J],有色矿冶,2001,(06):55-60.
    [58]马荣骏,罗电宏.溶剂萃取的新进展及其在新世纪中的发展方向[J],矿冶工程,2001,(03):24-27.
    [59]江龙中,倪海勇,邓佐国等.非平衡体系配合交换分离钇铒的研究[J],江西有色金属,2001,(04):20-22.
    [60]卜秉康.应用液膜萃取法处理含酚工业废水[J],江苏化工,2002,(06):51-52.
    [61]赵汝松,徐晓白,刘秀芬.液相微萃取技术的研究进展[J],分析化学,2004,(09):1246-1251.
    [62]梁霞,刘景富,江桂斌等.连续流动液膜萃取中液膜有机溶剂的选择[J],分析测试 学报,2003,(02):19-21.
    [63]Kedari CS, Pandit SS, Ramanujam A. Studies on the in situ electro oxidation and selective permeation of cerium (IV) across a bulk liquid membrane containing tributyl phosphate as the ion transporter [J], Sep Sci Technol,1999,34 (9):1907-1923.
    [64]Takahiko Kakoi, Tatsuya Oshima, Takayuki Nishiyori, et al. Effect of sodium ions on the extraction of rare earth metals by liquid surfactant membranes containing a calix[4]arene carboxyl derivative [J], Journal of Membrane Science,1998,143:125-135.
    [65]张瑞华.液态膜技术的新发展[J],化学通报,1981,(5):39-46.
    [66]车丽萍.乳状液膜技术回收处理白云鄂博稀土矿中钍的研究[D],武汉:武汉理工大学,2006.
    [67]张磊.双水相体系提取废弃印刷线路板中的金[D],上海:东华大学,2007.
    [68]邓凡政,石影,王海生.双水相体系中镧与钛的分离及光谱性能[J],光谱学与光谱分析,2002,(03):441-443.
    [69]苏永祥,孙跃枝.双水相萃取技术的研究现状及应用[J],焦作师范高等专科学校学报,2007,(03):63-65.
    [70]张成强,张锦柱.双水相体系在金属离子分离中的应用现状[J],湿法冶金,2004,(04):182-187.
    [71]卢友中.萃取新技术在有色冶金中的应用[J],上海有色金属,2007,(03):137-138.
    [72]Thurman, E.M, Mills, M.S. Solid phase extraction:principles and practice[M]. New York: John Wiley&Sons,1998,200-210.
    [73]练萍,李蕾,薛珺.PEG-PVP组合表面活性剂-(NH4)2SO4-H2O双水相体系萃取Eu3+的研究[J],稀土,2003,03:71-73.
    [74]胡之德,关祖京.分析化学中的溶剂萃取[M],北京:科学出版社,2001,31-158.
    [75]徐光宪,袁承业.稀土的溶剂萃取[M],北京:科学出版社,1987,3-210.
    [76]Cecconie T., Freiser H. Extraction of tervalent lanthanides as hydroxide complexes with tri-n-octylphosphine oxide[J], Anal. Chem.1990,62 (6):622-625.
    [77]张安运.H2A与TBP协同萃取RE (III)的性能和机理研究[J],稀有金属,2001,(1):32-36.
    [78]Hongfei Li, Fuqiang Guo, Zhifeng Zhang, et al. A new hydrometallurgical process for extracting rare earths from apatite using solvent extraction with P350 [J], Journal of Alloys and Compounds,2006,408-412:995-998.
    [79]Syouhei Nishihama, Takayuki Hirai, Isao Komasawa. Advanced liquid-liquid extraction systems for the separation of rare earth ions by combination of the metal species with chemical reaction [J], Journal of Solid State Chemistry,2003,171:101-108.
    [80]刘峙嵘,周利民,李传茂等.烷基酰亚胺萃取稀土的研究[J],有色金属(冶炼部分),2006,(5):34-38.
    [81]张秀英,薄其兵.稀土元素的环烷酸萃取研究进展[J],稀土,1999,(5):49-53.
    [82]P. Miranda Jr., L. B. Zinner. Separation of samarium and gadolinium solutions by solvent extraction [J], Journal of Alloys and Compounds,1997,249:116-118.
    [83]S.L. Mishra, H. Singh, C.K. Gupta. Simultaneous purification of dysprosium and terbium from dysprosium concentrate using 2-ethylhexyl phosphonic acid mono-2-ethyl hexyl ester asan extractant [J], Hydrometallurgy,2000,56:33-40.
    [84]侯利生.P507和P204在稀土分离中的应用[J],包钢科技,2005,31(S1):26-29.
    [85]李德谦.稀土湿法冶金中的化工问题[J],化学进展,1995,7(3):209-213.
    [86]张晓风,李德谦.二(2,4,4-三甲基戊基)膦酸萃取稀土离子应用化学[J],1993,10(4):72-75.
    [87]柴金岭.HDEHP萃取稀土过程的溶剂效应[J],稀有金属,1998,22(2):85-89.
    [88]杨华.稀土萃取分离中的配位化合物[J],稀土,1995,24(6):74-80.
    [89]J. KREJZLER1, J. NARBUTT1, M. R. St J. FOREMAN2, et al. Solvent extraction of Am(III) and Eu(III) from nitrate solution using synergistic mixtures of N-tridentate heterocycles and chlorinated cobalt dicarbollide [J],2006, (56):D459-D468
    [90]Komasawa Isao, Hisada Keisuke, Miyamura Makoto. Extraction and separation of rare earth elements by tri-n-octylmethylammonium nitrate [J], Journal of Chemical Engineering of Japan,1990,3(23):308-315.
    [91]贾琼,李德谦,牛春吉.1-苯基-3-甲基-4-苯甲酰基-吡唑酮-5与中性磷(膦)萃取剂协同萃取镧B[J],分析化学,2004,11(32):1421-1425.
    [92]Wei Li, Xianglan Wang, Shulan Meng, et al. Extraction and separation of yttrium from the rare earths with sec-octylphenoxy acetic acid in chloride media[J], Separation and Purification Technology,2007, (54):164-169.
    [93]徐光宪.稀土[M],北京:冶金工业出版社,1995,605-608.
    [94]Syouhei Nishihama, Takayuki Hirai, Isao Komasawa. Selective Extraction of Y from a Ho/Y/Er Mixture by Liquid-Liquid Extraction in the Presence of a Water-Soluble Complexing Agent [J], Ind. Eng. Chem. Res.,2000,39:3907-3911.
    [95]孔薇,王春,李德谦.HPMBP与伯胺N1923对稀土元素(Ⅲ)的协同萃取[J],高等学校化学学报,1997,2(18):177-181.
    [96]Xiaobo Sun, Jinping Wang, Dequan Li. Synergistic extraction of rare earths by mixeture of bis(2,4,4-trimethylpentyl) phosphinic acid and Sec-nonylphenoxy acetic acid [J], Separation and Purification Technology,2006,50:30-34.
    [97]黄小卫,李建宁,彭新林等.一种非皂化有机萃取剂萃取分离稀土元素的工艺:中国,200510098261.2[P].2006-02-08.
    [98]黄小卫,顾保江,张国成等.P204-NdCl3体系萃取除钐工艺研究[J],稀有金属,1996,(4):250-253.
    [99]韩维和,余晖,孙炜伟.H2BPMPBD和TOPO协同萃取Ln3+的研究[J],稀土,2005,4(26):33-35.
    [100]Elias Bou-Maroun, Anne Boos, Genevieve J. Goetz-Grandmont. Synergistic extraction of lanthanoids with heterocyclic β-ketoenols and 2,4,6-tri(2-pyridyl)-1,3,5-triazine, TPTZ Part Ⅱ. Extraction of La(Ⅲ), Eu(Ⅲ) and Lu(Ⅲ) with a bis(4-acyl-5-hydroxypyrazole) and TPTZ [J], Separation and Purification Technology, 2007,53:250-258.
    [101]Komasawa Isao, Hisada Keisuke, Miyamura Makoto. Extraction and separation of rare earth elements by tri-n-octylmethylammonium nitrate[J], Journal of Chemical Engineering of Japan,1990,3(23):308-315.
    [102]Xiaobo Sun, Yige Wang, Deqian Li. Selective separation of yttrium by CA-100 in the presence of a complexing agent[J], Journal of Alloys and Compounds,2006,408-412: 999-1002.
    [103]Y.GWang, Y. Xiong, S.L. Meng, et al. Separation of yttrium from heavy lanthanide by CA-100 using the complexing agent[J], Journal of Talanta,2004,A102:239-243.
    [104]L. Di Palma, P. Ferrantelli, C. Merli, et al. Recovery of EDTA and metal precipitation from soil flushing solutions [J], Journal of Talanta,2003, B103:153-168.
    [105]徐光宪.稀土[M],北京:冶金工业出版社,1995,595-603.
    [106]倪海勇,邓佐国,江龙中等.配合交换法萃取分离钇铒的研究[J],广东有色金属学报,2003,1(13):64-67.
    [107]陈励权,尹新民.排代剂DTPA循环使用分离稀土的研究,稀土,1992,(03): 13-16.
    [108]沈庆峰,杨显万,谢克强等.一种提高二-(2-乙基己基)磷酸酯萃取金属效率的方法:中国,200610010690.4[P].2006-08-09.
    [109]Abbas-Ali Zamani, Mohammad Reza Yaftian. Solvent extraction of thorium, lanthanum and europium ions by bis(2-ethylhexyl)phosphoric acid using 2-nitrobenzo-18-crown-6 as ion size selective masking agent[J], Separation and purification Technology,2004, 40:115-121.
    [110]M. H. Chhatre, V. M. Shinde. Analytical separation of scandium(III) from yttrium(III) and lanthanum(III) by tributyl phosphine oxide(TBPO) [J], Separation and purification technology,1999,17:117-124.
    [111]黄桂文.我国稀土萃取分离技术的现状及发展趋势[J],江西冶金,2003,23(6):62-68.
    [112]黄小卫,李红卫,薛向欣等.我国稀土湿法冶金发展状况及研究进展[J],中国稀土学报,2006,24(2):129-133.
    [113]余晓皎,姚秉华,永长幸雄.二(2-乙基己基)膦酸萃取镧系元素研究[J],稀土,2006,(6):59-61.
    [114]乔军,柳召刚,郝先库.HDEHP在硫酸溶液中萃取分离轻稀土性能研究[J],稀土,2002,23(4):29-32.
    [115]田彦文,翟玉春,翟秀静等.P204盐酸体系萃取钪的基础研究[J],东北大学学报(自然科学版),1998,19(2):162-165.
    [116]王军,武国琴,刘铃声等.D2EHPA在硫酸体系中萃取分离非稀土杂质的研究[J],2002,稀土,23(6):69-70.
    [117]李建宁,黄小卫,朱兆武等.P204-P507-H2SO4体系萃取稀土元素的研究[J],中国稀土学报,2007,(1):55-58. 可求出a0。
    2.5.2多元线性回归方程的方差分析表示Y与X1X2X3…Xm线性关系的密切程度。表2.2三元线性回归方程方差分析表Table 2.2 variance analysis of ternary linear regression equation
    查F分布表F(3,59)α,若F>F(3,59)α,则认为回归方程在α水平上显著,若α=0.01,则称方程为高度显著;若α=0.05则称方程为显著;若F<(3,59)α,则方程不显著。
    参考文献
    [1]吴文远.稀土冶金学[M],北京:化学工业出版社,2005,13-165.
    [2]徐光宪.稀土[M],北京:冶金工业出版社,1995,590-603.
    [3]包钢稀土研究院分析室编写组.稀土冶金分析手册[M],中国稀土学会、包头钢铁公司,1994,62-206.
    [4]张小蒂.应用回归分析[M],江苏:浙江大学出版社,1991,22-275. 溶液酸度的作用,从而减小酸度对分配比的影响。且随着柠檬酸加入量的增加,柠檬酸根的缓冲作用增强,使得轻稀土分配比随柠檬酸浓度增加而增加。在相同件下,柠檬酸的加入P204-HCl-H3AOH体系轻稀土分配比和轻稀土间分离系数均大于P204-HCl体系。
    4.在P204-HCl-H3AOH体系中随着柠檬酸浓度的升高,P204萃取稀土的饱和容量逐渐增大,最大可以达到29.71 g·L-1,比不含柠檬酸的P204-HCl的有机相萃取饱和容量20g·L-1提高近50%。
    5.串萃取实验得出稀土元素有效级的平均分离系数分别是βCe/La=3.5、βPr/Ce= 2.05、βNd/Pr=1.35,此值均高于皂化的P204萃体系中βCe/La=2.14、βPr/Ce=1.67、β Nd/Pr=1.33。这些结果说明串级萃取的各级中,柠檬酸有效的发挥了同稀土元素的配合作用,促进了萃取剂负载的稀土元素与水溶液稀土元素的交换作用。因此采用非皂化P204-HCl-H3AOH体系串级萃取分离轻稀土元素是可行的。
    参考文献
    [1]谷晋川,刘亚川.柠檬酸助浸效果研究[J],矿冶工程,2001,21(4):49-51.
    [2]管国锋,马晓龙,蔡锐等.柠檬酸稀溶液的配合萃取研究[J],高校化学工程学报,2001,15(4):378-382.
    [3]李昕,左霞,孙虹雁等.柠檬酸稀土合成方法的研究[J],黑龙江大学自然科学学报,1997,14(3):112-114.
    [4]王孝镕.柠檬酸铁(Ⅲ)配合物的光致变色现象及柠檬酸的测定[J],分析化学1997,25(2):165-167.
    [5]周新木.柠檬酸络盐沉淀法制备超细氧化铈[J],中国稀土学报,2002,20(S1):67-69.
    [6]F. H. Spedding. A. H. Daane. The rare earth [M], New York:John Wiley&Sons,1961,59.
    [7]钱鸿滔,阮慎康,康振川,苏勉曾.复合稀土氧化物和硫氧化物超细粉的制备和结构[J],高等学校化学学报,1995,16(05):661-665.
    [8]徐光宪,袁承业.稀土的溶剂萃取[M],北京:科学出版社,1987,3-210.
    [9]申令生.化学分析手册[M],北京:水利出版社,1989:118.
    [10]Adachi QMurase K, Shinozaki k, et al. Mutual separation characteristics for lanthonoid elements via gas phase complexe with alkaline chloride Chem. Lett[J],.1992,244(4):511-516.
    [11]曾平,雷昱,王桂庆.NH3·H2O皂化P204/煤油体系微乳液溶水性能及其对V(Ⅳ)的萃取研究[J],膜科学与技术,1998,18(5):19-23.
    [12]徐光宪.稀土[M],北京:冶金工业出版社,1995:445-450.
    4.5本章小结
    1.采用红外光谱分析方法对柠檬酸在水溶液中和P204-HCl与P204-HCl-H3AOH体系萃取稀土离子后的有机相的研究表明,柠檬酸在萃取体系中仅存在于水相中,稀土以未配合的形式萃入有机相,即柠檬酸不参加萃取反应。
    2.采用外光谱分析方法确定P204-HCl-H3AOH体系萃取稀土离子的机理,当pH>1时萃取反应是稀土离子与P-OH置换,按照阳离子交换机制进行的;当0    3.通过研究P204从含柠檬酸的稀土氯化物溶液萃取稀土的机理的表明,当0    4.计算得出P204在含有柠檬酸体系中与轻稀土离子的萃取平衡常数分别为:当pH>1时:1gKLa=-1.77、1gKCe=-1.63、1gKP=-1.26、1gKNd=-0.86。当0    La、Ce、Pr、Nd的萃取平衡常数表明,它们的萃取平衡常数随着原子序数的增加而增大,说明在P204-HCl-H3AOH体系中P204萃取轻稀土为“正序萃取”。P204分别萃取各轻稀土元素的萃取平衡常数间的差值比水相中柠檬酸与各轻稀土元素间配合稳定常数的差值大的现象,解释了P204-HCl-H3AOH体系中轻稀土间的分离系数增大的原因。
    5.配合不同稀土元素的P204红外光谱图表明从La→Nd轻稀土离子与P204的结合能力增强,并且P204-HCl-H3AOH体系中P204萃取相同稀土离子时P=O基团的变化比P204-HCl体系的大,这进一步解释了柠檬酸作用稀增大分离系数的原因。
    参考文献
    [1]乔军,柳召刚,郝先库.HDEHP在硫酸溶液中萃取分离轻稀土性能研究[J],稀土,2002,21(4):30-32.
    [2]王军,武国琴,刘铃声等.D2EHPA在硫酸体系中萃取分离非稀土杂质的研究[J],2002,稀土,23(6):69-70.
    [3]赵治华,李冬,王军.串级萃取理论在生产中的应用[J],包头钢铁学院学报,2002,21(01):42-45.
    [4]艾拜都拉,高红艳.稀土元素的溶剂萃取分离[J],伊犁师范学院学报,2002,(4):89-91.
    [5]Luu Minh Daia, Dang Vu Minha, Pham Van Haib, et al. Solvent extraction of lanthanideswith triisoamylphosphate and di-(2-ethylhexyl)phosphoric acid from trichloroacetic acid and nitric acid solutions[J], Journal of Alloys and Compounds,2000, 311:46-52.
    [6]Syouhei Nishihama, Nobuya Sakaguchi, Takayuki Hirai, et al. Extraction and separation of rare earth metals using microcapsules containing bis(2-ethylhexyl)phosphinic acid[J], Hydrometallurgy,2002,64:35-42.
    [7]闫英桃,刘建.HDEHP-乙酸丁酯有机相萃取硫脲金的研究[J],湿法冶金,1997,(63):8-11.
    [8]谢安建,沈玉华.不同状态HDEHP和DMHPA的FTIR光谱研究[J],光谱学与光谱分析,1997,17(5):64-66.
    [9]姚淑心,王笃金,翁诗甫等.皂化酸性磷酸酯萃取稀土离子过程中有机相的FTIR光谱表征[J],高等学校化学学报,1995,16:1664-1668.
    [10]周乃扶,吴瑾光,俞致健等.稀土与酸性萃取剂形成的溶液聚集态结构[J],中国科学(B辑),1997,27(3):235-240.
    [11]田彦文,翟玉春,翟秀静等.P204盐酸体系萃取钪的基础研究[J],东北大学学报(自然科学版),1998,19(2):162-164.
    [12]徐光宪.稀土[M],北京:冶金工业出版社,1995,595-603.
    [13]Xiaobo Sun, Jinping Wang, Dequan Li. Synergistic extraction of rare earths by mixeture of bis(2,4,4-trimethylpentyl) phosphinic acid and Sec-nonylphenoxy acetic acid [J], Separation and Purification Technology,2006,50:30-34.
    [14]L. Di Palma, P. Ferrantelli, C. Merli, et al. Recovery of EDTA and metal precipitation from soil flushing solutions [J], Journal of Talanta,2003, B103:153-168.
    [15]Xiaobo Sun, Yige Wang, Deqian Li. Selective separation of yttrium by CA-100 in the presence of a complexing agent [J], Journal of Alloys and Compounds,2006,408-412: 999-1002.
    [16]Y.G.Wang, Y. Xiong, S.L. Meng, et al. Separation of yttrium from heavy lanthanide by CA-100 using the complexing agent[J], Journal of Talanta,2004,A102:239-243.
    [17]申令生.化学分析手册[M].北京:水利出版社,1989:220,223.
    [18]K. Nakanishi. Infrared Absorption Spectroscopy[M],2nd Ed. Holden-Day,1997,499.
    [19]Maria Kaliva, Catherine Gabriel, Catherine P. Raptopoulou, et al. pH-specific synthesis, isolation, spectroscopic and structural characterization of a new dimeric assembly of binuclear vanadium(Ⅴ)-citrate-peroxo species from aqueous solutions[J], Inorganica Chimica Acta,2007,11:1-10.
    [20]M. Kaliva, E. Kyriakakis, C. Gabriel, et al. Syntheis, isolation, spectroscopic and structural characterization of a new pH complex structural variant from the aqueous vanadium(Ⅴ)-peroxo-citrate ternary system[J], Inorganica Chimica Acta,2006, 359:4535-4548.
    [21]宁永成.有机化合物结构鉴定与有机波谱学[M],北京:科学出版社,2000.329-332.
    [22]谢安建,沈玉华.不同状态HDEHP和DMHPA的FTIR光谱研究[J],光谱学与光谱分析,1997,17(05):64-66.
    [23]沈玉华,王笃金,吴瑾光等.萃取有机相中凝胶态的形成与FT-IR光谱[J],科学通报,1997,42(01):37-40.
    [24]周乃扶,吴瑾光,王笃金等.萃取体系中钴与二(2-乙基己基)磷酸的配合物结构和聚集行为[J],中国科学B辑,1998,28(01):1-7.
    [25]马爱增,崔效杰,曾广赋,崔鑫,田磊,徐华,李来明.二(2-乙基己基)磷酸稀土配合物的红外和拉曼光谱[J],光谱实验室,2006,23(05):893-897.
    [26]荣国斌译.波谱数据表—有机化合物的结构解析[M],上海:华东理工大学出版社.
    [27]孙晓朵,张秀英.甲醇-水混合溶液中HPMBP对RE3+的萃取机理研究[J],2007,35(1):118-121.
    [28]龙志奇,黄小卫,黄文梅等.二(2-乙基己基)磷酸从含氟稀土硫酸溶液中萃取铈的机制[J],2000,18(1):18-20.
    [29]刘久苗,谈定生,江建军等.硫酸介质中2-乙基己基膦酸单(2-乙基己基)酯萃取镁的机理[J],2003,13(6):1574-1577.
    [30]徐光宪,袁承业.稀土的溶剂萃取[M],北京:科学出版社,1987,195-210.
    4.通过对萃取机理推导所得轻稀土萃取的速率方程与实验所得轻稀土萃取的速率方程式比较,从而验证萃取速率方程和萃取机理的推测是正确的。
    参考文献
    [1]N.F.Ph.Kizim, The dynamic separation of substances by liquid-liquid extraction [J], Russian Chemical Reviews,1992, (8):830-849.
    [2]A.W Titley. The determination of gold by extractive titration [J], Analyst,1962, (1034): 349-355.
    [3]W.Nitsch, M. Weigl. Action of A mphiphilic Layerson the Kinetics of interfacial reaction at liquid/liquid interfaces [J], Langmuir,1998, (14):6709-6716.
    [4]M.Weig, A.Geist, K.Gompper, et al. Kinetics of lanthanide/actinide co-extraction with N,N-dimethyl-N,N'-dibutyltetradecylmalonic diamide (DMDBTDMA)[J], Solvent Extr.Ion Exch,2001, (2):215-229.
    [5]F.Kneip1, A.Geist, W. Nitsch, Europium extraction into D2EHPA:kinetics of massrransfer in a stirred cell[J], Solvent Extr.Ion Exch.,1999,(3):475-493.
    [6]郑重,李德谦.层流型恒界面池:中国,ZL94220491.3[P].1995-13-31.
    [7]Zhong Zheng, Jun Lu, Degian Li, Genxiang Ma. The kinetics study in liquid-liquid systems with constant interfacial area cell with laminar flow[J], Chem, Eng. Sci.,1998, (13):2327-2333.[8]罗芳,李德谦,吴庸烈.利用中空纤维膜器从销中分离杂质锌[J],分析化学,2001,(10):1163-1166.
    [9]Genxiang Ma, H.Fresier, S. Muralidharan. Interfacial catalysis of formation and dissociation of tervalent lanthanide complexes in two phase systems[J], Anal. Chem., 1997, (69):2827-2834.
    [10]H.Alkiko, M.Jilska, F.G Perera, et al. A Study of nickel ion extraction by Kelex 100 at the liquid-liquid in terface[J], Solvent Extr. Ion Exch,1998, (2):619-636.
    [11]D.Homer. Interphase transfer kinetics of uranium using the drop method, Lewis cell and kinetics mixer[J], Ind.Eng.Chem.Fundam,1980, (1):103-109.
    [12]H.Wataral. Automated system for solben extraction[J], Anal. Chem.,1982, (54): 2390-2392.
    [13]R.J.Whewell. The kinetics of the solbent extraction of copper(Ⅱ) with LIX reagents-I:single drope experiments [J], JINC,1975, (37):2303-2307.
    [14]孙都成,古丽,李德谦.P_(350)从硝酸介质中萃取Nd(Ⅲ)的动力学研究[J],应用化学,1993,(06):76-79.
    [15]储德清,马根祥,李德谦.Cyanex 923对稀土元素硝酸盐的萃取[J],分析化学,1998,(11):1346-1349.
    [16]闫咏梅,王建涛,孔哲等.1-苯基-3-甲基-4-苯甲酰基吡唑酮-5萃取Pr(Ⅲ)的热动力学研究[J],曲阜师范大学学报(自然科学版),2007,(01):83-86.
    [17]童辉,雷家珩,李德谦.Cyanex923萃取稀土(Ⅲ)的传质动力学[J],武汉理工大学学报,2003,25(06):7-9.
    [18]乐善堂,马根祥,李德谦等.铒在HBTMPTP-正庚烷/水溶液间的传质动力学[J],高等学校化学学报,2000,(06).26-29.
    [19]钱东,蔡春林,王开毅等.P204萃取Co(Ⅲ)动力学的研究[J],稀有金属,2002,(01):73-75.
    [20]刘军深,何争光,贾淑华等.CL-P204萃淋树脂吸萃铟(Ⅲ)的离子交换动力学[J],稀有金属,2003,(01):104-107.
    [21]王弋戈.CA-100萃取稀土及二价金属的热力学和动力学研究[D],长春:中国科学院研究生院长春应用化学研究所,2003.
    [22]乐善堂,李德谦.稀土溶剂萃取动力学及研究方法[J].稀土,1992,13(01):28-52.
    [23]P. R. D anesi, R. Chiarizia. The kinetics of metal solvent extraction[J], CRC Critical Rev. Anal. Chem,1980, (10):1-126.
    [24]於静芬,吉晨.有机磷酸混合萃取体系的界面化学反应及动力学控制机制研究[J],高等学校化学学报,1992,(2):224-22.