太阳能硅片多线切割机张力系统控制机理研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能硅片多线切割机是太阳能光伏产业链硅片生产流程中的关键设备,硅片加工质量的好坏将直接影响到后续的加工效率和成品率。多线切割以其高精度、高效率、低损耗的特点逐渐取代了传统的外圆和内圆切割成为硅棒切割加工的主要方式。多线切割是通过一根钢丝线的高速往复运动把磨料带入硅棒加工区域进行研磨切割,将待切割硅棒一次性同时切割成数百或数千片薄片的新型方法。太阳能硅片多线切割机的张力控制是关系到加上能否顺利进行和加工质量好坏的关键技术。钢丝线在切割过程中不允许断线,否则昂贵的硅棒将报废;钢丝线在切割过程中的抖动幅度和频度直接决定了硅片加工的质量;多线切割的上艺要求对于同一硅棒加工的不同阶段所要求的钢丝线张力也不相同。本文针对太阳能硅片多线切割机产品开发中的张力控制关键技术进行了深入全面的研究。
     (1)研究太阳能硅片多线切割机和工业领域张力控制的国内外研究状况,阐述数控多线切割技术的发展趋势;依据项目要求,介绍太阳能硅片多线切割机张力控制理论基础,指出课题研究重点和攻克的难点;论述课题来源与作者承担的科研任务务以及本文主要研究内容。
     (2)分析多线切割机的张力产生机理,设计多线切割机的总体结构,从机械结构和控制结构两个方面阐述多线切割机的特征;研究多线切割机放线张力、收线张力和切割张力三个子系统之间的关系;应用虎克定律,质量守恒定律以及电机轴的运动方程,建立多线切割机张力系统的数学模型,给出控制系统的原理框图。
     (3)针对多线切割机的张力检测问题,提出基于观测器理论的张力检测新方法。通过多线切割机的数学模型得到张力估计值的误差方程,求出满足稳定性的参数条件,定义李亚普洛夫函数分析误差的收敛速度,通过加入补偿量提高误差的收敛速度,设计实现代数张力观测器,进一步通过引入符号函数提出改进的代数张力观测器,增强了张力估计的稳定性和可靠性,使用粒子群算法对补偿因子进行优化控制。仿真结果证明了该方法的可行性和正确性,该方法具有成本低,抗干扰性强,可靠性高的特点。
     (4)提出基于滑模控制、模糊滑模控制和无模型自适应模糊滑模控制的直接张力控制方法。首先设计滑模控制器,它包括一个速度滑模控制器和两个张力滑模控制器,根据速度和张力误差值定义积分滑模面,采用符号函数趋近律方法,利用李亚普洛夫函数证明算法的稳定性,使用模糊控制优化趋近律系数,利用双曲正切函数代替符号函数,进一步改善系统的动态性能,有效减少滑模控制固有的高频抖动现象,然后再设计无模型自适应模糊滑模控制算法,使得系统具有更好的鲁棒性。对三种算法进行仿真实验,证明了所提方法的正确性。
     (5)通过张力摆杆的受力分析建立运动方程,提出一种基于三轴同步的间接张力控制方法。以收放线电机和主电机为控制对象,定义三轴系统的跟踪误差和同步误差,引入相邻轴速度误差的概念,设计控制转矩满足电机的运动方程,使得相邻轴速度误差及其微分趋于零,实现三轴同步控制,采用李雅普诺夫函数证明算法的收敛性和稳定性,仿真结果表明该控制策略同步性高、稳定性好、收敛速度快。将该三轴算法推广到一般情况下,设计任意轴同步控制算法,通过李雅普诺夫函数证明该算法的收敛性和稳定性,在MATLAB中建立仿真模型,测试六轴的同步运动,检验算法的同步性能。
     (6)根据太阳能硅片多线切割机的技术指标,设计开发张力控制系统,以自主研发的XQ600A多线切割机产品为应用平台,验证本文所提的各种张力控制策略,通过实验结果和数据的对比分析,总结各种张力控制方法的特点。通过实际切割硅棒测试了XQ600A多线切割机,结果表明该机型具有切割精度高,稳定性好的特点。
     本课题成功开发一款XQ600A多线切割机产品,整机性能指标达到预期的设计目标,该机型已作为2011年新产品投入市场应用。本文研究的太阳能硅片多线切割机张力控制方法与核心技术,进一步丰富多线切割机张力控制的设计理论和技术体系,对数控多线切割机系列化装备的研制具有重要的参考价值和借鉴作用。
Multi-wire saw (MWS) for solar silicon wafer is the key equipment in the solar silicon wafer manufacturing process in photovoltaic(PV) industry. The processing quality will directly affect the following the processing efficiency and yield. MWS, which gradually replace the traditional outer circle and inner circle cutting, has become the mainstream of wafer slicing technique for large diameter thin wafer production in PV industry. It has advantages such as high productivity, minimum warp, uniform thickness, and low kerf loss. The principle of MWS is that the abrasive slurry is fed from a plate to the wire and is carried by the wire to the silicon ingot through high-speed reciprocating motion of a steel wire, and the silicon ingot is pushed against the moving wire web and sliced into hundreds of thousands of wafers of a thickness somewhere between180and280μm at the same time. Tension control of MWS for solar silicon wafer is key technology for quality and efficiency in slicing processes. For lower kerf loss of silicon materials, a thin steel wire, which varies in size from0.12to0.16mm in diameter, is used in MWS. If the wire tension is too large, it results in wire breakage. The processing is interrupted. A costly silicon ingot is discarded as useless. If the wire tension is not large enough, it causes wire to vibrate. The amplitude and frequency of wire vibration influence the warp and total thickness variation of a silicon wafer. And the technology of MWS require that the wire tension is not the same in different stages for the same silicon ingot processing. The key technologies on tension control of MWS product development for solar silicon wafer are deeply studied in the dissertation.
     (1) The domestic and foreign study present situation of MWS for solar silicon wafer and tension control for industry field have been studied. The development trend of numerical control multi wire slice technology is described. According to the project requestment, the theory foundation have been deeply researched on tension control of MWS for solar silicon wafer. The research emphases and the conquered difficulties of the project have been pointed out. The project origin and project tasks undertaken by author are discussed. And main contents of this dissertation is given.
     (2) Tension mechanism of MWS is analyzed. The overall structure of MWS is introduced. The characteristics of MWS is described from the mechanical structure and control structure two aspects. The relationship among three tension sub system, including supply spool tension, take-up spool tension and slice tension, are discussed. Mathematical model of MWS tension system is set up through using the principle of Hooke, the principle of mass conservation and motion equation of motor axis. And control block diagram is given.
     (3) Aimed at the problem of tension detect for MWS, a new method of sensorless tension detect, which calculate tension by constructing a tension observer, is proposed. Tension estimation error equation are obtained through mathematical of MWS. And parameter stability conditions are gotten. The convergence speed of error is analyzed by defining Lyapunov function. The convergence speed of error is accelerated by the addition of compensation. So algebra tension observer is realized. Further by introducing the sign function, the improved algebraic tension observer is put forward. The stability and reliability of tension detect is enhanced and compensation factor is optimized by the use of particle swarm algorithm. The results of simulation verify the effectiveness and correctness of the proposed method. This method has characteristics such as low cost, strong anti-interference and high reliability.
     (4) The direct tension control method are proposed based on sliding mode control, fuzzy sliding mode control and model-free adaptive fuzzy sliding mode control. The sliding controller, including a velocity sliding controller and two tension sliding controllers, are designed. Integral sliding surface is defined based on tension error and velocity error respectively. The sgn(x) function reaching law method is adopted. The stability of algorithm is proved through Lyapunov function. Reaching law coefficient is optimized through fuzzy control. And sgn(x) function is replaced by tanh(x) function. It improves the dynamic performance, minishes the chattering bringing by sliding mode control and tracks the desired tension quickly and accurately. Then the model-free adaptive fuzzy sliding mode control algorithm is designed by introduction of model-free adaptive control,which compensate uncertain or part time-varying parameters of system. It make system has better robustness. Simulation is carried out on three algorithms. The results verify effectiveness and correctness of the proposed method.
     (5) The dynamic equation is established based on force analysis of the tension arm. The reasons of tension fluctuation are analyzed for MWS. A indirect tension control strategy is put forward based on three-axis synchronization. In this strategy, the supply/collect spool motor and main motor are considered the control objects. By defining the tracking error and the synchronization error for three-axis system, and introducing the speed error on the adjacent axis, A torque control scheme is designed based on the dynamic equations of the motor to make speed error and its derivative tend to zero, thus realizing three-axis synchronization. The convergence and stability of algorithm are proved by using Lyapunov function. Simulations show that this strategy provides the high synchronization precision, good stability and high convergence rate. Then the algorithm is extended to any number of axes under general conditions. Multi-axis synchronization control algorithm is designed. The convergence and stability are proved through Lyapunov function. Finally a simulation model is established in MATLAB to test the six-axis synchronization. Synchronization performance of the algorithm is verified.
     (6) According to the technical specification of MWS for solar silicon wafer, the hardware platform of tension control system is designed. The proposed various tension control strategy is used in applied research. The characteristics of various tension control strategies is analyzed through experimental result and data. XQ600A MWS is tested through slicing silicon ingot. The experimental result proved that the MWS product has characteristics such as high slice precision and high stability.
     XQ600A MWS product for solar silicon wafer is successfully developed. The sample machine completely meet the anticipated design requirements. At present as2011's new product, it has been put into market applications. The key technologies study on tension control of MWS for solar silicon wafer enrich the design theory and technology system of MWS tension control. It provides important reference value for developing MWS product.
引文
[1]Factoran M J. Silicon's usefulness in photovoltaics[J]. IEEE Potentials,1995, 14(1):8-12.
    [2]英国石油公司.《BP世界能源统计》2010年鉴全球首发式.http://ny.huchina.cn/show.asp?id=165,2010-10-09.
    [3]Oliver M, Jackson T. Energy and economic evaluation of building-integrated photovoltaics[J]. Energy,2001, (26):431-439.
    [4]Soderstrom T, Haug F J, Terrazzoni-Daudrix V, et al. Optimization of amorphous silicon thin film solar cells for flexible photovoltaics[J]. Journal of Applied Physics,2008,103(11):114-119.
    [5]Cai X S. Renewable energies:present & future[J]. advanced technology of electrical engineering and energy,2005,24:58-64.
    [6]Chiang S J,Yen C Y. Residential photovoltaic energy storage system[J]. IEEE Transactions on Industrial Electronics,1998,45(3):374-383.
    [7]Rohatgi A. Road to cost-effective crystalline silicon photovoltaics. In: Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. Osaka,2003,29-32.
    [8]曹承栋.浅谈国内外太阳能发电技术发展状况及展望[J].通信电源技术,2011,28(1):35-37.
    [9]Begay G, Cordova T, Modisette D, et al. Can silicon photovoltaics be a cottage industry? In:33rd IEEE Photovoltaic Specialists Conference. San Diego,2008, 1-4.
    [10]Gow J A, Manning C D. Photovoltaic converter system suitable for use in small scale stand-alone or grid-connected applications[J]. IEE Proceedings Electric Power Applications,2000,147(6):535-543.
    [11]Rohatgi A, Ristow A, Yelundur V. Cost and technology roadmaps for cost effective silicon photovoltaics[J]. PV News,2003,22(5):1-4.
    [12]Tomita T. Toward giga-watt production of silicon photovoltaic cells, modules and systems. In:IEEE Conference Record of the Thirty-first Photovoltaic Specialists Conference, New Jersey,2005,7-11.
    [13]Moller H J. Basic mechanisms and models of multi-wire sawing[J]. Advanced Engineering Materials,2004,6(7):501-513.
    [14]邱明波,黄因慧,刘志东,等.太阳能硅片制造方法研究现状[J].机械科学与技术,2008,27(8):101 7-1020.
    [15]Hsu C Y,Chen C S,Tsao C C. Free abrasive wire saw machining of ceramics[J]. International Journal of Advanced Manufacturing Technology,2009,40(5-6): 503-511.
    [16]Kao I. Technology and research of slurry wiresaw manufacturing systems in wafer slicing with free abrasive machining[J]. International Journal of Advanced Manufacturing Systems,2004,7(2),7-20.
    [17]陈治光.10个国家科技重大专项稳步推进[J].科技潮,2009,(11):13-18.
    [18]王琮.半导体材料加工设备的新秀--多线切割机[J].电子工业专用设备,2004,33(4):63-65.
    [19]万志峰.太阳能硅片线切割设备国产化的现状和趋势[J],太阳能发电,2010,(3):20-22.
    [20]工广峰.多线切割机对硬脆材料加工的发展方向[J].电子工业专用设备,2010,(1):31-33,40.
    [21]湖南宇晶机器实业有限公司.XQ120、XQ300和XQ600多线切割机.www.yj-cn.com,2010-12-2.
    [22]兰州瑞德实业集团有限公司.X07250-1型多线切割机.www.lzrapid.com,2010-9-10.
    [23]中国电子科技集团公司第四十五研究所.DXQ-601型多线切割机.www.45inst.com,2010-7-4.
    [24]陕西汉江机床有限公司.GK4620数控多线硅片切割机床.www.hjmtc.cn,2010-12-16.
    [25]无锡开源太阳能设备科技有限公司.WX-7211硅晶多线切片机.www.wxkytyn.com,2010-10-21.
    [26]Moller H J,Funke C,Rinio M, et al. Multicrystalline silicon for solar cells [J]. Thin Solid Films,2005,487:179-187.
    [27]Yang F Q,Kao I. Free abrasive machining in slicing brittle materials with wiresaw [J].Transactions of the ASME,Journal of Electronic Packaging,2001,123:254-259.
    [28]靳永吉.线锯切割失效机理的研究[J].电子工业专用设备,2006,142:24-27.
    [29]Ishikawa K I,Suwabe H,Itoh S I,et al.A basic study on the behavior of slurry action at multi-wire saw[J]. Key Engineering Materials,2003,(238-239):89-92.
    [30]Watanabe T. Optimization quartz crystal slicing conditions using multi-wire-saw.In:IEEE International Frequency Control Symposium and PDA Exhibition,New Orleans LA,2002,386-393.
    [31]Cheng Z H, Xu C K, Pei R Q. The vibration and control of multi-wire saw. In: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics,Hong Kong,2007,735-738.
    [32]李保军,冯涛.多线切割工艺中切割线直径对翘曲度影响的研究[J].电子工业专用设备,2009,38(8):16-19.
    [33]郭帅.机电张力系统关键控制技术的研究及实践:[上海大学博士学位论文].上海:上海大学机械制造及其自动化学院,2006.
    [34]何金保.卷绕张力系统鲁棒控制策略的研究:[上海大学博士学位论文].上海:上海大学机械制造及其自动化学院,2009.
    [35]张义兵.高精度多线切割机数控系统关键技术及其应用研究:[湖南大学博士学位论文]:湖南大学电气与信息工程学院,2009.
    [36]王琮.多线切割机的现状及发展趋势[J1.电子工业专用设备,2008,37(11):11-13.
    [37]戴瑜兴,汤睿,张义兵,等.数控多线切割技术及发展趋势[J1.电子工业专用设备,2007,36(11):1-4.
    [38]Bhagavat M,Prasad V, Kao I. Elasto-Hydrodynamic interaction in the free abrasive wafer slicing using a wiresaw:modeling and finite element analysis[J]. Journal of Tribology,2000,122(2):394-404.
    [39]Li J, Kao I, Prasad V. Modeling stresses of contacts in wire saw slicing of polycrystalline and crystalline ingots:application to silicon wafer production[J]. Journal of Electronic Packaging,1998,120(2):123-128.
    [40]靳永吉.DXQ-601型多线切割机关键技术研究[J].电子工业专用设备,2008,37(4):14-18.
    [41]禹恒洲,鲁五一,郭爱红.卷绕张力控制系统的建模及张力观测器的设计[J].计算机测量与控制,2007,15(9):1176-1179.
    [42]Cheng C W, Hsiao C H, Chuang C C, et al. Observer-based tension feedback control of direct drive web transport system. In:IEEE International Conference on Mechatronics. Taipei,2005,745-750.
    [43]Lin K C. Observer-based tension feedback control with friction and inertia compensation[J]. IEEE Transactions on Control Systems Technology, 2003,11 (1):109-118.
    [44]Gassmann V, Knittel D. Tension observers in elastic web unwinder-winder systems. In:2007 ASME International Mechanical Engineering Congress and Exposition. Washington,2007,1-9.
    [45]Valenzuela M A, Bentley J M, Lorenz R D. Sensorless tension control in paper machines[J]. IEEE Transactions on Industry Applications,2003,39(2): 294-304.
    [46]王拮,张进之.热轧张力观测器模型的研究与构建[J],冶金自动化,2005,(3):29-32.
    [47]Carrasco R, Valenzuela M A. Tension control of a two-drum winder using paper tension estimation[J]. IEEE Transactions on Industry Applications,2006,42(2): 618-628.
    [48]Vincent Gassmann,Dominique Knittel. H∞-based PI-observers for web tension estimations in industrial unwinding-winding systems.In:Proceedings of the 17th International Federation of Automatic Control World Congress, Seoul,2008,1018-1023.
    [49]Baumgart M D, Pao L Y. A tension observer for nonlinear web-winding systems with air entrainment.In:Proceedings of the 2003 American Control Conference. Denver,2003,4149-4154.
    [50]吴飞青,马修水,关宏伟,等.基于模糊专家控制的织机经纱恒张力控制研究[J].中国机械工程,2008,19(4):384-387.
    [51]杨娅君,陈德传.收卷中的张力及其控制[J].仪器仪表学报,2004,25(5):691-701.
    [52]刘瑞霞,王永新.铜箔生产的收卷张力控制[J].电机与控制学报,2005,9(1):96-98.
    [53]何金保,郭帅,何永义,等.基于遗传优化的张力模糊控制[J].控制理论与应用,2009,26(3):243-248.
    [54]姜永成,任福君.基于多轴运动控制器的电极丝恒张力控制系统[J].中国机械工程,2008,19(16):1920-1924.
    [55]王春香.微机数控纤维缠绕机精密张力控制系统研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学机电学院,1999.
    [56]Wolfermann W. Tension Control of Webs-A Review of The Problems and Solutions In The Present and Future. In:Proceedings of the Third International Conference on Web Handling, Oklahoma,1995,198-228.
    [57]Cheol Jae Park, Duk Man Lee. Development of fuzzy PID control system for hot strip finishing mill. In:The 27th annual conference of the IEEE industrial electronics society. Denver,2001,787-791.
    [58]Knittel D, Laroche E, Koc H. Tension control for winding systems with two-degrees-of-freedom H∞ controllers[J]. IEEE Transactions on Industry Applications.2001,39(1):113-120.
    [59]Janabi-sharifi F. A neuro-fuzzy system for looper tension control in rolling mills[J]. Control Engineering Practice,2005,13 (1):1-13.
    [60]Wang C X, Yang R Q, Wang Y Z, et al. Research on a precision tension control system with a magnetic particle clutch as the actuator[J]. International Journal of Advanced Manufacturing Technology,2005,27(1-2):7-13.
    [61]Ren S L, Lu H, Wang Y Z,et al. Development of PLC-based Tension Control System[J].Chinese Journal of Aeronautics,2007,20(3),266-271.
    [62]Furlan R,Cuzzola F A, Parisini T. Friction compensation in the interstand looper of hot strip mills:A sliding-mode control approach[J]. Control Engineering Practice,2008,16(2),214-224.
    [63]Song S H, Sul S K. A new tension controller for continuous strip processing line[J]. IEEE Transaction on Industry Applications,2000,36(2):633-639.
    [64]Yan M T, Huang P H. Accuracy improvement of wire-EDM by real-time wire tension control[J]. International Journal of Machine Tools and Manufacture, 2004,44(7-8),807-814.
    [65]孙林.开卷机间接恒张力控制系统简介[J],昆钢科技.2006,(1):30-33.
    [66]周建洪,杨玉杰.浆纱机织轴的恒张力控制[J].电机与控制学报,2004,8(2):145-147.
    [67]张义兵,戴瑜兴,袁巨龙,等.多线切割机线张力控制系统设计实现[J].机械工程学报,2009,45(5):295-300.
    [68]Chuang C W, Haung C L, Lee C D. Synchronization and tension control of dual motor systems via MIMO discrete pseudo model following integral variable structure control. Mechanism and Machine Theory,2009,44(2),499-510.
    [69]Song S H, Sul S K. Design and control of multispan tension simulator[J]. IEEE Transactions on Industry Applications,2000,36(2):640-648.
    [70]张义兵,戴瑜兴,汤睿.多线切割机速度同步系统的自适应逆控制及实现[J].控制理论与应用,2008,25(6):1007-1010,1015.
    [71]Lin K C, Tsai M C, Chen K Y. Web tension control of a start-up process using observer techniques with friction and inertia compensation. In:The 27th Annual Conference of the IEEE Industrial Electronics Society. Denver,2001,529-534.
    [72]Baumgart M D, Pao L Y. Robust control of nonlinear tape transport systems with and without tension sensors[J]. Journal of Dynamic Systems, Measurement, and Control.2007,129(1):41-55.
    [73]Emelyanov S V. Variable structure automatic control systems. Moscow,1967.
    [74]工丰尧.滑模变结构控制[M].北京:机械工业出版社,1995:41-43.
    [75]刘金琨.滑模变结构控制Matlab仿真[M].北京:清华大学出版社,2005.
    [76]Sira R H, Llanes S O. Adaptive dynamical sliding mode control via backstepping. In:Proceeding of the 32nd IEEE Conference on Decision and Control, San Antonio, USA:IEEE Press,1993,12:1422-1427.
    [77]Sapturk S Z, Istefabopulos Y, Kaynak O. On the stability of discrete-time sliding mode control systems. IEEE Trans. Automatic Control,1987,32: 930-932.
    [78]Chung S C,Lin C L. A transformed lure problem for sliding mode control and chattering reduction[J].IEEE Transactions on Automatic Control,1999,44(3): 563-568.
    [79]Yu X H. Discrete variable structure control systems[J]. International Journal of Systems Science,1993,24(2):373-386.
    [80]Yongsoon E,Dong I D C. Robustness of multivariable discrete time variable structure control[J]. International Journal of Control,1999,72(12):1106-1115.
    [81]Slotine J J.Sastry S S. Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator[J]. International Journal of Control.1983,38(2):465-492.
    [82]高为炳.变结构控制的理论及设计方法[M].北京:中国科学出版社,1990:134-141.
    [83]Parma G,Menezes B R,Braga A P,Costa M A. Sliding mode neural network control of an induction motor drive[J]. International Journal of Adaptive Control and Signal Processing.2003,17(6):501-508.
    [84]Young K D,Utkin V I,Ozguner U. A control engineer's guide to sliding mode control. IEEE Transactions on Control Systsms Technology,1999,7(3): 328-342.
    [85]Bayindira M I,Cana H,Akpolata Z H, et al. Robust quasi-time-optimal discrete-time sliding mode control of a servomechanism. Electric Power Components and Systems,2007,35(8):885-905.
    [86]Yeh F K, Chien H H, Fu L C. Design of optimal midcourse guidance sliding-mode control for missiles with TVC. IEEE Transactions on Aerospace and Electronic Systems,2003,39(3):824-837.
    [87]Yang J M,Kim J H.Sliding mode motion control of nonholonomic mobile robots[J]. Control Systems Magazine,1999,19(1):15-23.
    [88]Wang S M,Yu H J,Liao H W. A new high-efficiency error compensation system for CNC multi-axis machine tools. International Journal of Advanced Manufacturing Technology,2006,28(5-6):518-526.
    [89]文方,姜孝华.多电机同步驱动控制系统.电气传动,2000,(5):3-6.
    [90]刘福才,张学莲,刘立伟.多级电机传动系统同步控制理论与应用研究.控制工程,2002,9(4):87-90.
    [91]Srinivasan K,Kulkarni P K. Cross-coupled control of biaxial feed drvie servo mechanisms[J]. ASME Journal of Dynamic Systems, Measurement and Control,1990,112(1):225-232.
    [92]Chuang H Y,Lin C H. A model-referenced adaptive control strategy for improving contour accuracy of multi axis machine tools[J].IEEE Transactions on Industry Application,1992,28(1):221-227.
    [93]Yeh S S,Hsu P L. Analysis and design of the integrated controller for precise motion systems[J].IEEE Transactions on Control Systems Technology,1999,7(6):706-717.
    [94]Li S Y,Liu H B,Cai W J. A new coordinated control strategy for boiler-turbine system of coal-fired power plant[J]. IEEE Transactions on Control Systems Technology,2005,13(6):943-954.
    [95]Sun D,Shao X Y,Feng G. A model-free cross-coupled control for position synchronization of multi-axis motions:theory and experiments[J]. IEEE Transactions on Control Systems Technology,2007,15(2):306-314.
    [96]Zhong Q,Shi Y,Mo J. A linear cross-coupled control system for high-speed machining[J]. International Journal of Advanced Manufacturing Technology,2002,19(8):558-563.
    [97]曲永印,赵希梅,郭庆鼎.基于零相位误差跟踪控制器的轮廓误差交叉耦合控制[J].中国机械工程,2006,17(11):1135-1137.
    [98]张承慧,石庆升,程金.一种基于相邻耦合误差的多电机同步控制策略[J].中国电机工程学报,2007,27(15):59-63.
    [99]Perez P,Calderon G,Araujo-Vargas I. Relative coupling strategy [C]. Electronic Machines and Drives Conference,Mexico City,2003.
    [100]王宣银,程佳.基于相关耦合的并联四轴电动伺服平台鲁棒控制[J].中国电机工程学报,2009,29(6):117-121.
    [101]刘国海,刘平原,沈跃,等.两电机变频调速系统的神经网络广义逆解耦控制[J].中国电机工程学报,2008,28(36):98-102.
    [102]Koren Y. Cross-coupled biaxial computer control for manufacturing system[J]. ASME Journal of Dynamic Systems, Measurement and Control,1980. 102(12):256-272.
    [103]Kulkarni P, Srinivasaa K. Cross-coupled Compensators for Contouring Control of Multi-axial Machine Tools[J].In Proceedings of the 13th North American Manufacturing Research Conference,1985:558-566.
    [104]Tomizuka M, Hu J, Chiu T, Kamano T. Synchronization of Two Motion Control Axes Under Adaptive Feedforward Control[J]. ASME Journal of Dynamic Systems, Measurement and control.1992,114(6):196-202.
    [105]Renton D,Elbestawi M A. High speed servo control of multi-axis machine tools[J]. International Journal of Machine Tools and Manufacture,2000,40(4):539-559.
    [106]Barton K L, Alleyne A G. A cross-coupled iterative learning control design for precision motion control[J]. IEEE Transactions on Control Systems Technology, 2008,16(6):1218-1231.
    [107]Xiao Y, Zhu K Y. A cross-coupling reference model control algorithm. International Journal of Adaptive Control and Signal Processing,2005,19:623-638.
    [108]Ouafi A E,Guillot M,Bedrouni A. Accuracy enhancement of multi-axis CNC machines through on-line neurocompensation[J]. Journal of Intelligent Manufacturing,2000,11(6):535-545.
    [109]Clark W I,Shih A J, Hardin, etc. Fixed abrasive diamond wire machining---part I:process monitoring and wire tension force[J], International Journal of Machine Tools and Manufacture,2003,43 (5):523-532.
    [110]常美茹.半导体晶片加工用线切割机质量控制的研究[J].半导体技术,2006,31(3):176-179.
    [111]Kennedy J,Eberhart R. Particle swarm optimization. In:IEEE International Conference on Neural Networks. Washington 1995,1942-1948.
    [112]Shi Y,Eberhart R. Empirical study of particle swarm optimization. In: Proceeding of IEEE International Conference on Evolutionary Computation. Washington,1999,1945-1950.
    [113]Urkin V I. Variable structure system with sliding modes[J]. IEEE Transactions on Automatic Control,1977,22(2):212-222.
    [114]Wang W J,Lin H R. Fuzzy control design for the trajectory tracking on uncertain nonlinear system[J].IEEE Transactions on Fuzzy Systems, 1999,7(1):53-62.
    [115]Levant A. Sliding order and sliding accuracy in sliding mode control[J]. International Journal of Control,1993,58(6):1247-1273.
    [116]Man Z H. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators[J]. IEEE Transactions on Automatic Control[J].1994,39(12):2464-2469.
    [117]Lee J H,Ko J S. Continuous variable structure controller for BLDDSM position control with prescribed tracking performance[J]. IEEE Transactions on Industrial Electronics,1994,41(5):483-491.
    [118]Barto S A.Time-varying sliding modes for second-order system[J]. IEE Proceedings-Control Theory and Applications,1996,143(5):455-462.
    [119]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [120]Zadeh L A. Fuzzy Sets[J].Information Control,1965,8:338-353.
    [121]Mamdani E H. Application of Fuzzy Algorithms for Simple Dynamic Plant. Proc.IEE Control and Science, Part D,1974,121 (2):1585-1588.
    [122]高桂革.模糊控制理论及其应用的发展[J].上海电机学院学报,2005,8(5):62-64,69.
    [123]张化光,何希勤.模糊自适应控制理论及其应用[M].北京:北京航空航天大学出版社,2002.
    [124]Chang M K. An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators[J]. Control Engineering Practice,2010,18(1):13-22.
    [125]张伟,毛剑琴.基于模糊树模型的自适应模糊滑模控制方法[J].控制理论与应用,2010,27(2):263-268.
    [126]侯忠生.非参数模型及其自适应控制理论[M].北京:科学出版社,1999.
    [127]侯忠生.无模型自适应控制的现状和展望[J].控制理论与应用,2006,23(4):586-592.
    [128]胡慧,刘国荣.机械手的在线鲁棒自适应神经网络跟踪控制[J].控制理论与应用,2009,26(3):337-341.
    [129]赵希梅,郭庆鼎.数控机床多轴联动伺服电机的零相位自适应鲁棒交义耦合控制,中国电机工程学报,2008,28(12):129-133.
    [130]于长官.现代控制理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [131]Slotine J J, Li W. Applied nonlinear control[M]. American, New Jersey: Prentice Hall,1991.