三维实体六面体网格生成关键技术研究及软件开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着三维建模技术和数值方法的发展,针对三维实体的有限元技术在工程领域得到了越来越广泛的应用。实体网格的生成是三维实体有限元分析的重要前提,六面体网格由于其在计算精度、单元数量等方面明显优于四面体网格,正成为有限元分析中的主流网格。目前,任意三维实体的六面体网格全自动生成问题仍然没有获得真正意义上的解决。本文针对六面体网格自动生成中的实体模型表达、实体分解、基于扫掠的六面体网格生成及六面体网格质量优化等关键技术,进行了深入细致的研究,开发了三维实体网格生成软件。主要研究成果如下:
     (1)提出了基于局部刚性和整体线弹性反向变形有限元法的曲面参数化算法。克服了组合曲面不易于参数化的缺点,利用从局部到整体的思想,通过分析作用在局部三角形上的仿射变换雅可比矩阵的奇异值,寻求局部三角形到参数域的刚性变换,然后采用线弹性有限元反向变形方法整体求解参数化结果。
     (2)提出了基于扫掠体识别的三维实体模型分解方法。首先将模型的所有边分类,采用宽度优先搜索算法提取出模型的所有组合面;然后选择一张复杂度最高的组合面作为源面,利用深度优先搜索算法确定源面对应的约束面和连接面;最后针对不同的约束面类型构造裁剪面,将实体模型分解为多个扫掠体的组合。分解后的实体可直接采用映射法或扫掠法生成六面体网格。
     (3)提出了基于内在特征和能量约束的曲面网格投影方法。通过网格参数化方法将源网格和目标基准网格展开到平面上;根据平面网格伸缩内在特征、平面网格变形能及边界位置约束建立二次能量方程,并采用最小二乘法最小化该方程,从而将平面上的源网格变形到目标基准网格上;最终映射到目标曲面上得到目标网格。实现了多张曲面之间的网格投影,并且保证了目标网格和源网格同胚。
     (4)提出了从双八面体局部变换到整体线弹性有限元法的六面体网格优化方法。采用基于双八面体的局部变换将每个六面体单元进行局部规则化,得到网格质量较高的局部优化网格;比较局部优化前后的六面体单元,利用线弹性有限元法求得网格节点残余内力;将表面网格组成的几何特征作为约束条件,进而利用不平衡的网格节点残余内力整体求解得到六面体网格优化结果。优化后六面体网格保留了原有网格模型的几何特征,显著提高了六面体网格的质量。
     在对上述方法深入研究的基础上,借助Open CASCADE几何造型平台,自主开发了三维实体网格生成软件。该软件具有标准的几何和有限元数据输入输出接口、六面体网格自动生成以及网格质量检查等功能。基于软插件技术,实现了三维实体网格生成软件的功能扩展,方便用户进行功能扩展。通过对航空零件的六面体网格自动生成,表明该软件网格生成效率较高,六面体网格质量较好,满足了三维实体有限元数值模拟的要求。
With the development of three-dimensional modeling technology and numerical method, thefinite element technology for three-dimensional entities has been used more widly in engineering. Thesolid mesh generation is an important premise of three-dimensional finite element analysis, and thehexahedral mesh is becoming the main element in finite element analysis for its superiority incalculation accuracy, element number and other aspect compared with the tetrahedral mesh. Now,automatic hexahedral mesh generation for arbitrary three-dimensional volumes is still not trulyresolved. In this thesis, the key techniques in automatic hexahedral mesh generation, such as solidmodel expression, volume decomposition, swept volume hexahedral mesh generation, hexahedralmesh quality optimization, etc are deeply studied, and a mesh generation software forthree-dimensional volumes has been developed. The research achievements are as follows:
     (1) A local rigid and global linear-elastic reverse deformation finite element method basedsurfaces parameterization method has been proposed, whcih overcomes the shortcomings that thecomposite surfaces are difficult to parameterize. Base on the local to global methodology, the localrigid transformation can be taken by analyzing the Jacobian of affine transformation of each triangleand adjusting the corresponding singular values, and then the final parameterization result can beobtained by linear-elastic finite element method globally.
     (2) A three-dimensional volume decomposition method based on swept volume recognition ispresented. Firstly, all boundary edges are classified and all composite surfaces are extracted bywidth-first searching algorithm; Then, the constraint faces and linking faces corresponding to thesource face are determined by depth-first searching algorithm. Finally, the cutting surfaces can begenerated for different type of constraint faces, and the entire geometric models can be decomposedinto the combination of multiple swpet volumes. The divided meshable pieces can generatehexahedral mesh by applying mapping or sweeping method directly.
     (3) A surface mesh projection algorithm based on intrinsic characteristics and energyconstraints is presented. The source surface mesh and the target base mesh are flattened by meshparameterization method; A quadratic energy equation based on scaled intrinsic characteristics ofplanar mesh, mesh deformation energy and boundary constraints is established, then a least-squaremethod is used to minimize this energy function to morph the planar source mesh onto the planartarget base mesh; The target surface mesh is then obtained by mapping the plane source mesh onto the target base mesh. Mesh projection between multi surfaces can be implemented by using this method,which ensures that the target mesh is homeomorphism to source mesh.
     (4) A double octahedron based local transformation and global linear-elastic finite elementmethod hexahedral mesh quality optimization method is presented. A double octahedron based localtransformation method is used to regularize a hexahedron locally, and regular hexahedral elements areobtained for every single mesh. Locally by analyzing the displacement of hexahedral element nodesbetween pre and post regularization, and the residual internal force can be calculated by linear elasticfinite element method. Globally by treating the surface features as constraints, the hexahedral meshquality optimization result can be obtained by loading the unbalanced residual internal force into itscorresponding node. After the optimization, the hexahedral mesh could preserve the geometricalfeatures of original model, and the hexahedral mesh quality is highly improved.
     On the basis of deep study of these methods, and with the Open CASCADE geometric modelingplatform, a multi-functional three-dimensional solid mesh generation software is developed, includingstandard geometric and finite element data exchange interface, automatic hexahedral mesh generationand hexahedral mesh quality measurement and so on. By utilizing soft plug-in technology, thefunction extended interface is implemented to provide convenience for user extensions. The practicalhexahedral mesh generation examples of aeronautical blade and other complex parts show that thedeveloped software has higher mesh generation efficiency and can generate good quality hexahedralmesh, which meets the requirements of three-dimensional finite element numerical simulation.
引文
[1]胡恩球,张新访,向文等.有限元网格生成方法发展综述.计算机辅助设计与图形学学报,1997,9(4):378-383.
    [2]张洪梅.三维六面体网格自适应生成算法研究及其应用,[博士学位论文].济南:山东大学,2007.
    [3] S E Benzley, E Perry, K Merkley. A Comparison of All Hexahedral and All Tetrahedral FiniteElement Meshes for Elastic and Elastic-Plastic Analysis. Proceedings of the4th IntemationalMeshing Roundtable, Albuquerque, NM: Sandia National Laboratories,1995:179-191.
    [4] W C Thacker. A Brief Review of Methods Used for Generating Irregular Computational Grids.International Journal for Numerical Methods in Engineering,1980,15(9):1335-1341.
    [5] K Ho-Le. Finite Element Mesh Generation Methods: a Review and Classification. ComputerAided Design,1988,20(1):27-38.
    [6] M S Shephard. Approaches to the automatic generation and control of finite element meshes.Applied Mechanics Review,1988,41(4):169-185.
    [7] S J Owen. A Survey of Unstructured Mesh Generation Technology. Proceedings of the7thInternational Meshing Roundtable, Dearborn, MI: Sandia National Laboratories,1998:239-267.
    [8]关振群,宋超,顾元宪等.有限元网格生成方法研究的新进展.计算机辅助设计与图形学学报,2003,15(1):1-14.
    [9] T Blacker. Meeting the Challenge for Automated Conformal Hexahedral Meshing. Proceedingsof the9th International Meshing Roundtable, New Orleans, CA: Sandia National Laboratories,2000:11-19.
    [10] T J Tautges. The Generation of hexahedral meshes for assembly geometry: survey and progress,International Journal for Numerical Methods in Engineering,2001,50(12):2617-2642.
    [11]吕军,王忠金.有限元六面体网格的典型生成方法及发展趋势.哈尔滨工业大学学报,2001,33(4):485-490.
    [12] H Edelsbrunner. Geometry and Topology for Mesh Generation.Cambridge: CambridgeUniversity Press,2001:1-190.
    [13] E L Wilson. Automation of the Finite Element Method: A Personal Historical View. FiniteElement Analysis Design,1993,13(2-3):91-104.
    [14] O C Zienkiewicz, D V Phillips. An automatic mesh generation scheme for plane and curvedsurfaces by isoparametric coordinates. International Journal for Numerical Methods inEngineering,1971,3(4):519-528.
    [15] W J Gordon, C A Hall. Construction of curvilinear coordinate systems and applications to meshgeneration. International Journal for Numerical Methods in Engineering,1973,7(4):461-477.
    [16] R E Barnhill, G Birkhoff, W J Gordon. Smooth interpolation in triangles. Journal ofApproximation theory,1973,8(2):114-128.
    [17] J F Thompson, Z U A Warsi, C W Mastin. Numerical grid generation: foundations andapplications. North-Holland: Elsevier Science Pub. Co.,1985:1-483.
    [18] F T Tracy. Graphics pre-and post-processor for two dimensional finite element methodprograms. Proceedings SIGGRAPH77,1977,11(2):11-12.
    [19] C L Lawson. Software for C1surface interpolation. Mathematical Software III,1977,73(4):519-535.
    [20] D F Watson. Computing the n-Dimensional Delaunay Tessellation with Application to VoronoiPolytopes. The Computer Journal,1981,24(2):167-172.
    [21] A Bowyer. Computing Dirichlet Tessellations. The Computer Journal,1981,24(2):162~166.
    [22] N P Weatherill, O Hassan. Efficient three-dimensional Delaunay triangulation with automaticpoint creation and imposed boundary constrains. International Journal for Numerical Methods inEngineering,1994,37(12):2005~2039.
    [23]徐永安,杨钦,吴壮志,等.三维约束Delaunay三角化的实现.软件学报,2001,12(1):103~110.
    [24]宋超.任意三维实体四面体单元网格自动剖分方法及程序实现,[硕士学位论文].大连:大连理工大学,2001.
    [25] R Haber, M S Shephard, J F Abel et.al. A General Two-Dimensional, Graphical Finite ElementPreprocessor Utilizing Discrete Transfinite Mappings. International Journal for NumericalMethods in Engineering,1981,17(7):1015-1044.
    [26] M A Yerry, M S Shephard. A Modified Quadtree Approach to Finite Element Mesh Generation.IEEE Computer Graphics&Applications,1983,3(1):39-46.
    [27] A Bykat. Design of a recursive shape controlling mesh generator. International Journal forNumerical Methods in Engineering,1983,19(9):1375-1390.
    [28] E A Heighway. A mesh generator for automatically subdiving irregular polygons intoquadrilaterals. IEEE transactions on Magnetic,1983,19(6):2535-2538.
    [29] S H Lo. Generating Quadrilateral Elements on Plane and Over Curved Surfaces. Computers andStructures,1989,31(3):421-426.
    [30] B P Johnston, J M Sullivan, A Kwasnik. Automatic Conversion of Triangular Finite ElementMeshes to Quadrilateral Elements. International Journal for Numerical Methods in Engineering,1991,31(1):67-84.
    [31] C K Lee, S H Lo. A New Scheme for the Generation of a Graded Quadrilateral Mesh.Computers and Structures,1994,52(5):847-857.
    [32] B Wordenweber. Finite Element Mesh Generation. Computer Aided Design,1984,16(5):285-291.
    [33] J Z Zhu, O C Zienkiewicz. A New Approach to the Development of Automatic QuadrilateralMesh Generation. International Journal for Numerical Methods in Engineering.1991,32(4):849-866.
    [34] S H Lo. Volume Discretization into Tetrahedra I: Verification and Orientation of BoundarySurfaces. Computers and Structures,1991,39(5):493-500.
    [35] S H Lo. Volume Discretization into Tetrahedra II:3D Triangulation by Advancing FrontApproach. Computers and Structures,1991,39(5):501-511.
    [36] T D Blacker, M B Stephenson. Paving: A New Approach to Automated Quadrilateral MeshGeneration. International Journal for Numerical Methods in Engineering,1991,32(4):811-847.
    [37] S A Canann. Plastering and Optismoothing: New Approach to Automated,3D Hexahedral MeshGeneration and Mesh Smoothing,[Doctor Dissertation]. Provo, Utah: Brigham YoungUniversity,1991.
    [38] T Blacker and R J Myers. Seams and Wedges in Plastering: A3D Hexahedral Mesh GenerationAlgorithm. Engineering with Computers,1993,9(2):83-93.
    [39] W J Schroeder, M S Shephard. A combined octree/Delaunay method for fully automatic3dmesh generation. International Journal for Numerical Methods in Engineering,1990,29(1):37~55.
    [40] T S Li, R M McKeag, C G Armstrong. Hexahedral Meshing Using Midpoint Subdivision andInteger Programming. Computer Methods in Applied Mechanics and Engineering,1995,124(1-2):171-193.
    [41] M A Price, C G Armstrong. Hexahedral Mesh Generation by Medial Surface Subdivision: Part I.International Journal for Numerical Methods in Engineering,1995,38(19):3335-3359.
    [42] M A Price, C G Armstrong. Hexahedral Mesh Generation by Medial Surface Subdivision: PartII. International Journal for Numerical Methods in Engineering,1997,40(1):111-136.
    [43] R Schneiders, R Schindler, F Weiler. Octree-based generation of hexahedral element meshes.Proceedings of the5th International Meshing Roundtable, Pittsburgh, PA: Sandia NationalLaboratories,1996:205~216.
    [44] T J Tautges, T Blacker, S Mitchell. The Whisker-Weaving Algorithm: A Connectivity BasedMethod for Constructing All-Hexahedral Finite Element Meshes. International Journal forNumerical Methods in Engineering,1996,39(19):3327-3349.
    [45] P Murdoch, S Benzley. The Spatial Twist Continuum. Proceedings of the4th InternationalMeshing Roundtable, Albuquerque, NM,1995:243-251.
    [46] T D Blacker. The Copper Tool. Proceedings of the5th International Meshing Roundtable,Pittsburgh, PA: Sandia National Laboratories,1996:13-30.
    [47] M L Staten, S A Canann, S J Owen. BMSweep: Locating Interior Nodes During Sweeping.Proceedings of the7th International Meshing Roundtable, Dearborn, MI: Sandia NationalLaboratories,1998:7-18.
    [48] S Yamakawa, K Shimada. High Quality Anisotropic Tetrahedral Mesh Generation via PackingEllipsoidal Bubbles. Proceedings of the9th International Meshing Roundtable, New Orleans,CA: Sandia National Laboratories,2000:263-273.
    [49] Y Su, K H Lee, A S Kumar. Automatic hexahedral mesh generation for multi-domain compositemodels using a hybrid projective grid-based method. Computer Aided Design,2004,36(3):203-215.
    [50] M L Staten, S J Owen, T D Blacker. Unconstrained Paving&Plastering: A New Idea for AllHexahedral Mesh Generation. Proceedings of the14th International Mesh Roundtable, SanDiego, CA: Sandia Natioanal Laboratories,2005:399-416.
    [51] I Yasushi, M S Alan, K S Bharat. Octree-based reasonable-quality hexahedral mesh generationusing a new set of refinement templates. International Journal for Numerical Methods inEngineering,2009,77(13):1809-1833.
    [52] V Veyas, K Shimida. Tensor-Guided Hex-Dominant Mesh Generation with Targeted All-HexRegions. Proceedings of the18th International Mesh Roundtable, Salt Lake City, UT: SandiaNational Laboratories,2009:377-396.
    [53] J F Shepherd. Conforming Hexahedral Mesh Generation via Geometric Capture Methods.Proceedings of the18th International Meshing Roundtable, Salt Lake City, UT: Sandia NationalLaboratories,2009:85-102.
    [54]吕军.有限元六面体网格自动生成及法兰镦锻过程数值模拟,[博士学位论文].哈尔滨:哈尔滨工业大学,2001.
    [55]乔新宇.六面体有限元网格自动划分算法的研究和实现,[硕士学位论文].南京:南京航空航天大学,2006.
    [56] M Sabin. Criteria for comparison of automatic mesh generation method. Advances inEngineering Software,1991,13(5-6):220-225.
    [57] R Schneiders. A Grid-Based Algorithm for the Generation of Hexahedral Element Meshes.Engineering with Computers,1996,12(3-4):168-177.
    [58]陈文亮.板料成型CAE分析教程.机械工业出版社,北京,2005.
    [59] J S Letcher, D M Shook, S G Shepherd. Relational Geometry Synthesis: Part I–Framework.Computer Aided Design,1995,27(11):821-832.
    [60] A Sheffer, T Blacker, M Bercovier. Clustering: Automated Detail Suppression Using VirtualTopology. Trends in Unstructured Mesh Generation, Evanston: ASME,1997:57-64.
    [61] M S Shephard, M W Beau, R M Bara. Revisiting the Elimination of the Adverse Effects ofSmall Model Features in Automatically Generated Meshes. Proceedings of the7th InternationalMeshing Roundtable, Dearborn, MI: Sandia National Laboratories,1998:119-132.
    [62] C G Armstrong, S J Bridgett, R J Donaghy, et al. Techniques for Interactive and AutomaticIdealization of CAD Models. Proceedings of the6th International Conference on NumericalGrid Generation in Computational Field Simulation, London: University of Greenwich,1998:643-662.
    [63] T Sheffer, J Blacker, M Bercovier. Virtual Topology Operators for Meshing. Proceedings of the6th International Meshing Roundtable, Park City, UT: Sandia National Laboratories,1997:49-65.
    [64] T J Tautges. The Common Geometry Model (CGM): A Generic, Extensible Geometric Interface.Proceeding of the9th International Meshing Roundtable, New Orleans, CA: Sandia NationalLaboratories,2000:337-347.
    [65] J Kraftchec. Virtual Geometry: A Mechanism for modification of CAD model topology forimproved meshability,[Master Dissertation]. Wisconsin: University of Wisconsin,2000.
    [66] N A Golias, R W Dutton. Delaunay triangulation and3D adaptive mesh generation. FiniteElements in Analysis and Design,1997,25(3):331-341.
    [67]彭群生,胡国飞.三角网格的参数化.计算机辅助设计与图形学学报,2004,16(6):731-739.
    [68] W T Tutte. Convex representations of graphs. Proceedings of the London Mathematical Society,London,1960:304~320.
    [69] M S Floater. Parameterization and smooth approximation of surface triangulations. ComputerAided Geometric Design,1997,14(3):231-250.
    [70] M S Floater. Mean value coordinates. Computer Aided Geometric Design,2003,20(1):19-27.
    [71] A Sheffer, de E Sturler. Parameterization of faceted surfaces for meshing using angle-basedflattening. Engineering with Computers,2001,17(3):326-337.
    [72] A Sheffer, B Lévy, M Mogilnitsky, et al. ABF++: fast and robust angle based flattening. ACMTransactions on Graphics,2005,24(2):311-330.
    [73] M Eck, T DeRose, T Duchamp, et al. Multiresolution analysis of arbitrary meshes. In: ComputerGraphics Proceedings, Annual Conference Series, ACM SIG-GRAPH, Los Angeles,1995:173-182.
    [74] B Levy, J L Mallet. Non-distorted texture mapping for sheared triangulated meshes. In:Computer Graphics Proceedings, Annual Conference Series, Orlando: ACM SIGGRAPH,1998:343-352.
    [75] K Hormann, G Greiner. MIPS: An Efficient Global Parameterization Method. In: Proc Curvesand Surfaces,1999:153-162.
    [76]薛均晓,罗钟铉.三角网格的能量优化参数化方法.计算机辅助设计与图形学学报,2009,21(10):1472-1479.
    [77]张磊,刘利刚,王国瑾.保相似的网格参数化.中国图象图形学报,2008,13(12):2383-2387.
    [78] Li Baojun, Zhang Xiangkui, Zhou Ping et al. Mesh Parameterization based on one-step inverseforming. Computer Aided Design,2010,42(7):633-640.
    [79]鲍益东.汽车车身部件一步逆成形有限元法与碰撞仿真研究,[博士学位论文].长春:吉林大学,2005.
    [80] T W Sederberg, P Gao, G J Wang et.al.2-D shape blending: An intrinsic solution to the vertexpath problem. In Computer Graphics,1993,27:15-18.
    [81]张磊.从局部到整体的参数化研究,[博士学位论文].杭州:浙江大学,2009.
    [82]王勖成.有限单元法.北京:清华大学出版社,2003:1-114.
    [83] W A Cook, W R Oaks. Mapping methods for generating three-dimensional meshing. Computersin Mechanical Engineering,1983,1:67-72.
    [84] D W White, L Mingwu, S E Benzley. Automated hexahedral mesh generation by virtualdecomposition. Proceedings of the4th International Meshing Roundtable, Albuquerque, NM:Sandia National Laboratories,1995:65-76.
    [85] J L Mitchiner, L R Phillips, M B Stephenson, et al. Automated quadrilateral mesh generation: aknowledge system approach. ASME Paper No.88-WA/CIE-41988.
    [86] C G Armstrong, D J Robinson, R M McKeag, et al. Medials for meshing and more. Proceedingsof the4th International Meshing Roundtable, Albupuerpue: Sandia National Laboratories,1995:100-112.
    [87] Y Lu, R Gadh, T J Tautges. Feature based hex meshing methodology: feature recognition andvolume decomposition. Computer-Aided Design2001,33(3):221-231.
    [88]马露杰,黄正东.基于面壳封闭的B-Rep模型分解方法.计算机学报,2009,32(6):1183-1195.
    [89] Zhengdong Huang, Bo Xie, Lujie Ma, et al. Feature conversion based on decomposition andcombination of swept volumes. Computer-Aided Design,2006,38(8):857-873.
    [90] D R White, T J Tautges. Automatic Scheme Selection for Toolkit Hex Meshing. NumericalMethod Engineering,2000,49(1):27-44.
    [91] S S Liu, R Gadh. Finite Element Hexahedral Mesh Generation via Decomposition of Swept andConvex Basic LOgical Bulk (BLOB) Shapes. Journal of Manufacturing Science andEngineering, ASME Transactions,1998,120(4):728-735.
    [92] H Shi, B Yaw, H Sakurai. Automated Hexahedral Mesh Generation by Swept VolumeDecomposition and Recomposition. Proceedings of the5th International Meshing Roundtable,Pittsburgh, PA: Sandia National Laboratories,1996:273-280.
    [93] D Goodrich. Generation of all-quadrilateral surface meshes by mesh morphing,[MasterDissertation]. Provo, Utah: Brigham Young University,1997.
    [94] P M Knupp. Next Generation Sweep Tool: A Method For Generating All-Hex Meshes OnTwo-and-One-Half Dimensional Geometries. Proceedings of the7th International MeshingRoundtable, Dearborn, MI: Sandia National Laboratories,1998:505-513.
    [95] X Roca, J Sarrate, A Huerta. Surface Mesh Projection for Hexahedral Mesh Generation bySweeping. Proceedings of the13th International Meshing Roundtable, Williamburg, VA:2004:169-180.
    [96] X Roca, J Sarrate, A Huerta. A new least-squares approximation of affine mappings for sweepalgorithms. Engineering with Computers,2010,26(3):327-337.
    [97] X Roca, J Sarrate. An automatic and general least-squares projection procedure for sweepmeshing. Engineering with Computers,2010,26(4):391-406.
    [98]翟建军,乔新宇,丁秋林.基于扫掠法的六面体网格生成算法及实现.南京航空航天大学学报,2007,39(1):71-74.
    [99] T Igarashi, T Moscovich, J F Hughes. As-Rigid-As-Possible shape manipulation. ACMTransactions on Graphics,2005,24(3):1134-1141.
    [100] Yanlin Weng, Weiwei Xu, Yanchen Wu, et al.2D shape deformation using nonlinear leastsquares optimization. International Journal of Computer Graphics,2006,22(9):653-660.
    [101] Yanzhen Wang, Kai Xu, Yueshan Xiong, et al.2D shape deformation based on rigid squarematching. Computer Animation and Virtual Worlds,2008,19(3-4):411-420.
    [102] J Huang, X Shi, X Liu, et al. Subspace gradient domain mesh deformation. ACM Transactionson Graphics,2006,25(3):1126-1134.
    [103]孙家广,胡事民.计算机图形学基础教程.北京:清华大学出版社,2005:114-120.
    [104] M Lai, S Benzley, G Sjaardema, et al. A multiple source and target sweeping method forgenerating all hexahedral finite element meshes. Proceedings of the5th International MeshingRoundtable. Albuquerque, NM: Sandia National Laboratories,1996:217-228.
    [105]毕运波,柯映林,董辉跃.扫掠体六面体网格生成算法研究.浙江大学学报,2007,41(5):727-731.
    [106] D A Field. Laplacian smoothing and Delaunay triangulations, Communications in AppliedNumerical Methods,1998,4(6):709-712.
    [107] L A Freitag. On combining Laplacian and optimization-based mesh smoothing techniques.Trends in Unstructured Mesh Generation,1997:37-43.
    [108] X Y Li, L A Freitag. Optimization-based Quadrilateral and Hexahedral Mesh Untangling andSmoothing Techniques. Tech. Rep, Argonne National Laboratory,1999.
    [109] S Giuliani. An algorithm for continuous rezoning of the hydrodynamic grid in arbitraryLagrangian-Eulerian computer codes. Nuclear Engineering Design,1982,72(2):205–212.
    [110] Y Zhang, C Bajaj, G Xu. Surface smoothing and quality improvement of quadrilateral/hexahedral meshes with geometric flow. Proceedings of the14th International MeshingRoundtable, San Diego, CA: Sandia National Laboratories,2005:449-468.
    [111] N A Calvo, S R Idelsohn. All hexahedral mesh smoothing with a node-based measure of quality.International Journal for Numerical Methods in Engineering.2001,50(8):1957–1967.
    [112] P M Knupp. A method for hexahedral mesh shape optimization. International Journal forNumerical Methods in Engineering.2003,58(2):319–332.
    [113] A E Yilmaz, M Kuzuoglu. A particle swarm optimization approach for hexahedral meshsmoothing, International Journal for Numerical Methods in Fluids,2009,60(1):55-78.
    [114] P M Knupp. Hexahedral mesh untangling&algebraic mesh quality metrics. Proceedings of the9th International Meshing Roundtable, New Orleans, CA: Sandia National Laboratories,2000:173-183.
    [115]左旭,卫原平.基于Jacobian矩阵的三维有限元网格质量优化.上海交通大学学报,1998,32(5):142-144.
    [116] A Menéndez Díaz, C González Nicieza, A E álvarez-Vigil. Hexahedral mesh smoothing usinga direct method. Computer&Geosciences,2005,31(4):453–463.
    [117] M Savchenko, O Egorova, I Hagiwara, et al. Hexahedral mesh improvement algorithm. JSMEInt. J. Ser. C. Mech. Syst. Mach. Elem. Manufact.48(2)(2005)130–136.
    [118] V Savchenko, M Savchenko, O Egorova, et al. Mesh quality improvement: radial basis functionsapproach. Int. J. Comput. Math.85(10)(2008)1589–1607.
    [119] D Vartziotis, T Athanasiadis, I Goudas, et al. Mesh smoothing using the geometric elementtransformation method. Computer Methods Appllied in Mechenics and Engineering.2008,197(45-48):3760-3767.
    [120] D Vartziotis, J Wipper. The geometric element transformation method for mixed meshsmoothing. Engineering with Computers,2009,25(3):287-301.
    [121] D Vartziotis, J Wipper, B Schwald. The geometric element transformation method fortetrahedral mesh smoothing. Computer Methods Applied Mechnics and Engineering,2009,199(1-4):169-182.
    [122] D Vartziotis, J Wipper. A dual element based geometric element transformation method forall-hexahedral mesh smoothing. Computer Method in Applied Mechanics and Engineering,2011,200(9-12):1186-1203
    [123] Hongmei Zhang, Guoqun Zhao. Quality improvement method for graded hexahedral elementmeshes. Computer Aided Geometric Design,2010,27(7):563-575.
    [124] P Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix normand associated quantities. Part I—A framework for surface mesh optimization. InternationalJournal for Numerical Methods in Engineering,2000,48(8):401-420.
    [125] P Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix normand associated quantities. Part II—A framework for volume mesh optimization and the conditionnumber of the Jacobian matrix. International Journal for Numerical Methods in Engineering,2000,48(8):1165-1185.
    [126] T R Chandrupatla, A D Belegundu.工程中的有限元法(曾攀),北京:科学出版社,2010:168-250.
    [127]赵健,胡剑光,吴玲达.基于切平面中值坐标的Laplacian网格变形算法.计算机科学,2009,36(8):270-272.
    [128] Open CASCADE [EB/PL].(2000-09-04)[2008-10-11]. www.opencascade.org.
    [129]熊航.整体叶盘参数化造型及六面体网格生成方法研究,[硕士学位论文].南京:南航航空航天大学,2008.
    [130]董显法.基于Open CASCADE的曲面网格生成平台,[硕士学位论文].大连:大连理工大学,2009.
    [131]陈方明,陈奇.基于插件思想的可重用软件设计与实现.计算机工程与设计,2005,26(1):172~173.