电动助力转向系统稳定性和电流控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动助力转向系统是近年来迅速发展的一种新型动力转向装置,能够较好地解决汽车转向时轻便性和灵敏性的矛盾,并且具有节能、环保、容易装配等诸多优点。目前,电动助力转向系统正逐步取代液压助力和电液助力转向器,成为世界汽车技术发展的研究热点。
     本课题来源于国家“863”计划项目,以某国产A0级轿车为对象,研究电动助力转向系统的稳定性和电流控制算法。本文就EPS系统的建模、稳定性、最优PID参数、电流控制策略和软硬件开发等方面进行了详细论述。全文共分为七章。
     第一章是绪论。简要介绍了电动助力转向系统的工作原理、结构形式和分类。总结了电动助力转向系统在稳定性和电流控制算法方面的研究历史与发展现状,指出了本文研究的主要内容。
     第二章是EPS系统的建模。本章采用MATLAB/Simulink建立了EPS系统模型,建模过程中采用PID反馈控制,通过分析地面反力的形成过程,将地面反力正比于齿条位移。建模过程中充分考虑了电机电气参数的变化、电流传感器的低通滤波性质和EPS控制器的滞后特性。最后采用频域和时域两种方法,通过电流扫频实验、阶跃实验和转向实验,对所建立的模型进行了验证。
     第三章是EPS的稳定性分析。回顾了系统稳定性的基本概念和常用的判定方法,提出采用研究PID参数稳定域的方法来分析EPS系统的稳定性。通过绘制三维的PID参数稳定空间,得到了PID参数对系统稳定性的影响。在此基础上,通过分析系统参数的变化对PID参数稳定域的影响,研究了系统参数对EPS稳定性的影响。
     第四章是基于遗传算法的最优PID参数研究。分析了EPS系统对稳定性、快速性和精确性的要求,指出了其中的矛盾。提出采用遗传算法对PID参数进行优化,以兼顾EPS的各项性能要求。在此基础上,分析了系统参数变化对最优性能指标和最优PID参数的影响,并分析了系统的鲁棒性,得到了各参数对系统性能的影响关系。
     第五章是电流控制策略及其鲁棒性分析。通过分析系统参数对系统性能的影响,提出了以选择曲线型助力特性、电机转速前馈控制、蓄电池电压补偿和最优PID参数自适应方法为主要内容的电流控制策略。通过Monte-Carlo随机抽样试验,对控制系统的稳定性、电流跟随性和鲁棒性进行验证和评价。
     第六章介绍了EPS软硬件系统的开发和实车实验。建立了电机试验台和EPS简易试验台,介绍了EPS控制器硬件的组成结构和各模块的实现方法,采用uC/OS-II嵌入式操作系统框架实现了EPS控制软件。测试了电机内阻和反电动势系数随电机电流的变化关系,采用电机参数自适应的方法获得了更精确的电机转速估计。最后,对EPS系统的稳定性和电流控制策略进行了实车验证。
     第七章对全文进行了总结,并对将来的研究进行了展望。
     通过对电动助力转向系统稳定性和电流控制的仿真分析和实车验证,主要得到以下结论:
     (1)电机内阻、电机反电动势系数、助力增益和蓄电池电压对EPS系统稳定性影响较大。
     (2)就对最优性能指标和最优PID参数的影响程度来说,电机内阻、电机反电动势系数、助力增益和蓄电池电压的影响较大,而电机电磁转矩系数、电机电感和地面反力弹性系数影响不大。
     (3)采用曲线型助力特性、电机转速前馈控制、蓄电池电压补偿和最优PID参数自适应的方法可以提高EPS系统的电流跟随性能和鲁棒性。
     (4)电机内阻和反电动势系数随电机电流的变化而变化,采用电机参数自适应的方法可以获得更精确的电机转速估计。
     本文在以下3个方面有所创新:
     (1)提出采用PID参数稳定域来研究EPS系统稳定性的方法,通过分析系统参数对PID参数稳定域的影响关系,得到这些参数对系统稳定性的影响。采用遗传算法对电流控制PID参数进行了最优整定,研究了系统参数对最优性能和最优控制参数的影响。
     (2)提出以选择曲线型助力特性、电机转速前馈控制、蓄电池电压补偿和最优PID参数自适应方法为主要内容的电流控制策略,采用Monte-Carlo随机抽样试验的方法,对提出的控制策略进行了验证。
     (3)提出基于电机参数自适应的电机转速估计方法。该方法中电机内阻和反电动势系数随电机电流的变化而变化,实验证明该方法具有更高的估计精度。
Electric power steering system is a new type power steering system developed rapidly in recent years. This new system can solve the contradiction between handiness and sensitivity, and has many advantages such as energy saving, environmental protection and easy assemblity. Recently, electric power steering system is gradually replacing the hydraulic and electro-hydraulic power steering system, and becoming automotive technology research focus all over the world.
     The paper comes from the national 863 project, studying on the electric power steering system stability and current control algorithm to an A0 class car as an object, In this paper, EPS system modeling, stability, optimal PID parameters, current control strategies and hardware and software development are discussed in detail. Paper is divided into seven chapters.
     Chapter I is an introduction. A brief introduction of electric power steering system principle, structure and classification was gived. The context of the history and development situation of electric power steering system stability and the current control algorithm were summed up. The main contents of this paper were pointed out.
     Chapter II is EPS system model establishment. This chapter established the EPS system model with MATLAB/Simulink. In the modeling process, PID feedback control was used. By analyzing the formation of ground-reaction force, the ground reaction force was modled as proportional to the rack displacement. The changes to the motor electrical parameters, low pass filtering nature of current sensor and characteristics of EPS controller lag were taking into full account in modling process. Though the current sweep experiment, the current step experiment, and the steering wheel turning experiment of frequency domain and time domain methods, the model established was validated.
     Chapter III is the analysis of EPS stability. The basic concepts of system stability and common determination methods were reviewed. To analyze the EPS system stability, the method of using PID parameters stability regions was proposed. The influence of system stability was studied by drawing three-dimensional PID parameters stability space. And then, the influence of the PID parameters stability region when system parameters are changing was studied, and then the influence on the system stability was got.
     Chapter IV is the study on the optimal PID parameters with genetic algorithm. The stability, rapidity and accuracy of EPS system were analyzed. By taking into account of all the various performance requirements EPS, the method of using genetic algorithm to optimize PID parameters was proposed. On this basis, the influence of system parameters on the optimal performance and the optimal PID parameters along with the robustness of the system were studied, and the influence of parameters on the system performance were obtained.
     Chapter V is the study of the current control strategy and its robustness. By analyzing the influence of system parameters on system performance, a current control strategy is proposed which content selecting the curvilinear assistance, motor speed feedforward control, battery voltage compensation and the optimal PID parameters adaptive method. By using Monte-Carlo random sampling test method, the EPS system stability, current control effect and robustness were evaluated.
     Chapter VI describes the EPS software and hardware system development and the real vehicle validation. The development process of the motor testrig and EPS controller hardware were introduced by describing its composition and realization of each module. The EPS controller software was carried out using uC/OS-II embedded operating system. The motor back-EMF coefficient and the resistance which change with the electric current were measured, and then, a more accurate estimate of motor speed was achieved by varying motor parameters. And at last, the EPS system stability and the current control strategy were validated in a real vehicle.
     Chapter VII gives a summary of the paper and a research prospect in the future.
     Through simulation analysis and real vehicle validation for the electric power steering system stability and current control strategy, the main conclusions are as follows:
     (1) EPS system stability is more sensitive for these parameters than the others: motor resistance, back-EMF coefficient, assist gain and battery voltage.
     (2) The optimal performance and the optimal PID parameters are sensitive to motor resistance, back-EMF coefficient, assist gain a greater impact and the battery voltage, and insensitive to motor torque coefficient, motor inductance and the elasticity coefficient of the ground reaction force.
     (3) Current control performance and robustness of EPS can be improved by using curvilinear assistance, motor speed feedforward control, battery voltage compensation and the optimal PID parameters adaptive method.
     (4) Motor resistance and back-EMF coefficient change with the motor current, and a more accurate motor speed can be estimated using variable parameters.
     This paper has been innovative in the following areas:
     (1) The method of using PID parameters stability regions to analyze the EPS system stability was proposed. The influence on the system stability was got by studing the influence of the PID parameters stability region when system parameters are changing. The method of getting optimal PID parameters using genetic algorithm was proposed, and the optimal current control method and system robustness can be studied by analyzing the optimal performance and the optimal PID parameters.
     (2) The current control strategy which contents curvilinear assistance, motor speed feedforward control, battery voltage compensation and the optimal PID parameters adaptive method was proposed. Monte-Carlo random sampling test method was proposed to verify the control strategy.
     (3) A more accurate motor speed estimate method using variable parameters was proposed, in which motor resistance and back-EMF coefficient change with the motor current.
引文
[1]王望予.汽车设计(第三版)[M].北京:机械工业出版社,2001.
    [2]晋兵营,宁广庆,施国标.汽车电动助力转向系统发展综述[J].拖拉机与农用运输车,2010(2).
    [3]Tilo Meister, Reidar Fleck, Marcus Fischer. Enabling Technologies for Lateral Dynamic Assistant Systems[R]. SAE Technical Paper:2006-01-1172.
    [4]NAKAYAMAT, SUDAE. The Present and Future of Electric Power Steering[J]. Vehicle Design, 1994.
    [5]A OSUKA, Y.MATSUOKA, T.YSUTSU, etc. Development of Pinion-Assist Type Electric Power Steering System[J]. KOYO Engineering Journal English Edition, 2002.
    [6]郁强,张金华.电动转向系统开发与研究[J].轻型汽车技术, 2002(8).
    [7]王迅.电动助力转向系统(EPS)技术现状与发展[J].湖北汽车工业学院学报, 2008(9).
    [8]雷琼红.汽车电动助力转向(EPS)技术的现状和发展趋势分析[J].机械工程师,2009(9).
    [9]陈无畏,初长宝.基于分层式协调控制的汽车电动助力转向与防抱制动系统仿真[J].机械工程学报,2009(7).
    [10]陈无畏,孙启启,初长宝.汽车电动助力转向与主动悬架系统的H∞集成控制[J].振动工程学报,2007(2).
    [11]吴勃夫.基于预测控制的汽车主动悬架与电动助力转向系统集成控制优化设计[D].合肥工业大学硕士学位论文,2006(5).
    [12]申荣卫,陶炳全.汽车转向技术现状与发展趋势[J].邢台职业技术学院学报,2006(10).
    [13]YASUO Shimizu, TOSHITAKE Kawai. Development of Electric Power Steering[R]. SAE Technical Paper:910014.
    [14]Ji-Hoon Kim, Jae-Bok Song. Control Logic for an Electric Power Steering System Using Assist Motor[J]. Mechatronics, 2002(12).
    [15]MANU Parmar, JOHN Y Hung. A Sensorless Optimal Control System for an Automotive Electric Power Assist Steering System[J]. IEEE Trans. on Electronics, 2004,51(2).
    [16]陈奎元,马小平,季学武.电动助力转向系统控制技术的研究[J].江苏大学学报(自然科学版),2004,25(1).
    [17]杨水卜,刘志远.电动助力转向仿真系统的构建[J].自动化技术与应用,2009(10).
    [18]孟涛,余卓平,陈慧,等.电动助力转向控制策略研究及试验验证[J].汽车技术,2005(5).
    [19]牟春燕,王昕彦,周华维.电动助力转向系统(EPS)电动机电流控制的研究[J].拖拉机与农用运输车,2009(12).
    [20]徐建平,何仁,苗立冬,等.电动助力转向系统的建模与仿真分析[C].中国汽车工程学会2003学术年会.
    [21]施国标,申荣卫,林逸.电动助力转向系统的建模与仿真技术[J].吉林大学学报(工学版),2007(1).
    [22]申荣卫,林逸,台晓虹,等.电动助力转向系统建模与补偿控制策略[J].农业机械学报,2007(7).
    [23]史剑宗,王小青,许南绍.电动助力转向系统控制策略[J].重庆工学院学报(自然科学),2009(1).
    [24]赵学平,李欣,陈杰,等.电动助力转向系统永磁直流电机PWM控制模式研究[J].系统仿真学报,2010(1).
    [25]余树桥,赵燕.电动转向器的动力学建模和分析[J].湖北工业大学学报,2005(6).
    [26]李强,何仁.基于PI电流环电动助力转向系统的鲁棒H∞控制[J].江苏大学学报(自然科学版),2009(3).
    [27]吕振,杨新华.基于改进模糊PID控制的EPS系统建模仿真[J].计算机仿真,2009(9).
    [28]TAKAYUKI Kifuku, SHUN’CHI Wada. An Electric Power Steering System[R]. Mitsubishi Electric Advance, 1997(3).
    [29]MASAHIKO Kurishige. A New Electric Current Control Strategy for EPS Motors[R]. SAE Technical Paper:2001-01-0484.
    [30]林逸,张昕,施国标.电动助力转向助力特性补偿策略的耦合仿真分析[J].汽车工程,2005(2)
    [31]唐新蓬,杨树.基于横摆角速度反馈的电动助力转向系统的初步研究[J].广西工学院学报,2005(12).
    [32]MASAHIKO Kurishige, SHUNICHI Wada, TAKAYUKI Kifuku, etc. A New EPS Control Strategy to Improve Steering Wheel Returnability[R]. SAE Technical Paper:2000-01-0815.
    [33]徐建平,何仁,苗立东,等.电动助力转向系统回正控制算法研究[J].汽车工程,2004(5).
    [34]景立群,季学武.电动助力转向系统的主动回正控制[J].汽车技术,2008(9).
    [35]徐建平,何仁,苗立东,等.电动助力转向系统回正控制算法研究[J].汽车工程,2004(5).
    [36]徐涛,过学迅,杨波,等.基于转角的电动助力转向系统回正性能控制[J].湖北汽车工业学院学报,2009(3).
    [37]Sumio MOTOYAMA. Development of EPS+ (Electric Power Steering Plus)[J]. MITSUBISHI MOTORS, 2008, 20.
    [38]Masahiko Kurishige, Shunichi Wada, Takayuki Kifuku etc. A New EPS Control Strategy to Improve Steering Wheel Returnability[R]. SAE Technical Paper:2000-01-0815.
    [39]Hideyuki Tanaka, Kazuo Hitosugi, Masahiko Kurishige. Development of Torque Controlled Active Steering with Improving the Vehicle Stability for Brushless EPS[R]. SAE Technical Paper:2007-01-1147.
    [40]Aly Badawy, Jeff Zuraski, Farhad Bolourchi. Modeling and Analysis of an Electric Power Steering System[R]. SAE Technical Paper:1999-01-0399.
    [41]OSUKA Y, MATSUOKA T, TSUTSUI. Development of Pinion-Assist TypeElectric Power Steering System[J]. KOYO Engineering Journal English Edition, 2002(161).
    [42]Yuji Kozaki, Goro Hirose, Shozo Sekiya, etc. Electric Power Steering (EPS)[J]. Motion & Control, 1999(6).
    [43]NOBUO Sugitani, YUKIHIRO Fujuwara. Electric Power Steering with H2 infinity Control Designed to Obtained Road Information[C]. Proc. of the American Control Conference. New Mexico: Albuquerque, 1997(2).
    [44]ZAREMBER A T, LIUBAKKAMK. Control and Steering Feel Issues in the Design of an Electric Power Steering System[R]. Proceedings of American Control Conference Phil德尔福a, Pennsyivania, June, 1998.
    [45]叶耿,杨家军,刘照,等.汽车电动式动力转向系统转向路感研究[J].华中科技大学学报(自然科学版),2002(2).
    [46]左建令.汽车电动助力转向系统的分类及应用特点[J].上海汽车,2009(12).
    [47]谢刚,田大庆,殷国富.电动助力转向系统的传感器容错控制技术研究[J].中国机械工程,2006(7).
    [48]王耘,胡树根,邓文才.基于BP神经网络的电动助力转向器在线故障诊断研究[J].汽车工程,2008(12).
    [49]田大庆,殷国富,谢刚,等.基于完整性鲁棒容错技术的汽车电动助力转向系统控制器研究[J].四川大学学报(工程科学版),2009(3).
    [50]林逸,施国标,邹常丰.电动助力转向系统转向性能的客观评价[J].农业机械学报,2003,34(4).
    [51]施国标,林逸,邹常丰,等.电动助力转向系统匹配设计的研究[J].公路交通科技,2003(5).
    [52]吴文江,杜彦良,季学武等.电动转向系统助力性能研究[J].中国安全科学学报,2003(7).
    [53]张昕,施国标,林逸.电动助力转向的转向感觉客观综合评价[J].机械工程学报,2009(6).
    [54]林逸,施国标,邹常丰等.电动助力转向系统转向性能的客观评价[J].农业机械学报,2003(7).
    [55]胡春花.电动助力转向系统中折线型助力特性的设计[J].制造业自动化,2008(12).
    [56]向铁明,易际明,方遒.电动助力转向系统助力特性曲线的设计[J].西华大学学报(自然科学版),2009(5).
    [57]Masahiko Kurishige, Takayuki Kifuku. Static Steering-Control System for Electric-Power Steering[J]. Mitsubishi Electric ADVANCE, 2001(6).
    [58]Takayuki Kifuku, Shun’ichi Wada. An Electric Power-Steering System[J]. Mitsubishi Electric, 1997(3).
    [59]Zhao Xue-Ping, Li Xin, Chen Jie, Men Jin-Lai. Parametric design and application of steering characteristic curve in control for electric power steering[J]. Mechatronics, 2009(9).
    [60]Y. NAGAHASHI A, KAWAKUBO T, TSUJIMOTO, etc. Development of High Power Column-Type Electric Power Steering System[J]. JTEKT Engineering Journal English Edition, 2007(10).
    [61]Hooman Mohammadi, Reza Kazemi. Simulation of Different Types of Electric Power Assisted Steering (EPS) to Investigate Applied Torque Positions’Effects[R]. SAE Technical Paper:2003-01-0585.
    [62]Michael Wellenzohn. Improved Fuel Consumption through Steering Assist with Power on Demand[R]. SAE Technical Paper:2008-21-0046.
    [63]Christian R. Kelber, Jo?o Francisco Quevedo Jr, Leonardo Lessa. Compensation of Power Supply Fluctuations in Electric Power Steering (EPS) Systems[R]. SAE Technical Paper:2007-01-2647.
    [64]Roy McCann. Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System[R]. SAE Technical Paper:2000-01-0817.
    [65]S. PATRICK. Numerical Simulation of Electric Power Steering (EPS) System[J]. KOYO Engineering Journal English Edition, 2002, 161
    [66]M. MORIYAMA. Development Trend of Advanced Steering System[J]. Koyo Engineering Journal English Edition, 2004, 165.
    [67]S. Gruner A, Gaedke G, Karch. Control of Electric Power Steering Systems From State of Art to Future Challenges[C]. Proceedings of the 17th World Congress The International Federation of Automatic Control, July 6-11, 2008.
    [68]ROYMcCann. Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System[J]. Society of Automotive Engineers, 2000-01-0817.
    [69]何仁,徐建平.电动助力转向系统稳定性分析[J].江苏大学学报(自然科学版),2004(7).
    [70]左丽,李夏青,吴文江.电动助力转向系统稳定性分析[J].北京汽车,2006(3).
    [71]申荣卫,施国标,林逸,等.电动助力转向系统稳定性分析与研究[J].汽车技术,2006(4).
    [72]容一鸣,苏泉,崔九同.电动转向器中补偿器的设计[J].机电工程,2004(5).
    [73]吴文江,杜彦良,季学武,等.电动转向系统稳定性能与抗干扰性能的研究[J].振动工程学报,2004(6).
    [74]李强,何仁.非线性闭环汽车电动助力转向系统稳定性分析[J].森林工程,2008(1).
    [75]孟涛.改善电动助力转向系统动态性能的控制策略[J].机械与电子,2006(6).
    [76]苗立东,何仁.基于相位补偿的电动助力转向系统控制方法[J].交通运输工程学报,2007(2).
    [77]申荣卫,林逸,台晓虹,等.汽车电动助力转向系统转向盘转矩直接控制策略[J].吉林大学学报(工学版),2007(5).
    [78]孟涛,陈慧,余卓平,等.提高电动助力转向系统动态性能的控制策略研究及实车试验验证[J].中国机械工程,2007(1).
    [79]吴文江,季学武,杜彦良.电动转向控制系统跟踪性能研究[J].机械工程学报,2004(4).
    [80]赵万忠,施国标,林逸等.基于遗传算法的EPS系统参数优化[J].吉林大学学报(工学版),2009(3).
    [81]吴锋,杨志家,姚栋伟,等.电动助力转向系统控制策略的研究[J].汽车工程,2006(7).
    [82]胡春花.电动助力转向系统中电动机功率驱动的设计[J].制造业自动化,2008(11).
    [83]马锡平,王君艳,谭茀娃,等.汽车电动助力转向电机的控制[J].微特电机,2005(5).
    [84]王廷宏,陆文昌.汽车电动助力转向系统控制器设计[J].计算机测量与控制,2008(3).
    [85]Masahiko Kurishige, Takayuki Kifuku, Noriyuki Inoue, etc. A Control Strategy to Reduce Steering Torque for Stationary Vehicles Equipped with EPS[R]. SAE Technical Paper:1999-01-0403.
    [86]Akinobu Sugiyama, Masahiko Kurishige, Hanako Hamada. An EPS Control Strategy to Reduce Steering Vibration Associated with Disturbance from Road Wheels[R]. SAE Technical Paper:2006-01-1178.
    [87]Seongjoo Kim, Jonghyun Pyo. A Control Strategy for Kickback Reduction using Electric Power Steering and Combined Chassis Control[R]. SAE Technical Paper:2007-01-3658.
    [88]Yasuo Shimizu, Toshitake Kawai. Development of Electric Power Steering[R]. SAE Technical Paper:910014
    [89]J.S.Chen. Control of Electric Power Steering Systems[R]. SAE Technical Paper:981116.
    [90]Ji-Hoon Kim, Jae-Bok Song. Control logic for an electric power steering system using assist motor[J]. Mechatronics, 2002(12).
    [91]Tsung-Hsien Hu, Chih-Jung Yeh, Shih-Rung Ho, etc. Design of Control Logic and Compensation Strategy for Electric Power Steering Systems[C]. IEEE Vehicle Power and Propulsion Conference (VPPC), 2008.
    [92]Ouyang, DrC Morgan, DrC Nwagboso. Neural Network Model reference of Power Steering Systems[C]. Automotive & Transportation Technology, Congress and Exhibition, 2000.
    [93]TOSHIO Kohno, SHINJI Takeuchi, MINEKAZU Momiyama, etc. Development of Electric Power Steering(EPS) System with Control[R]. SAE Technical Paper:2000-01-0813.
    [94]Du-Yeol Pang, Bong-Choon Jang, Seong-Cheol Lee. Steering Wheel Torque Control of Electric Power Steering by PD-Control[C]. ICCAS2005.
    [95]申荣卫,林逸,台晓虹,等.电动助力转向系统建模与控制策略研究[J].公路交通科技,2006(8).
    [96]陈慧鹏,陈立平,王君明.电动助力转向系统性能优化及参数研究[J].机械科学与技术,2010(2).
    [97]何仁,徐建平.电动助力转向系统稳定性分析[J].江苏大学学报(自然科学版),2004(7).
    [98]左丽,李夏青,吴文江.电动助力转向系统稳定性分析[J].北京汽车,2006(3).
    [99]苗立东,何仁.汽车电动助力转向系统的振型分析[J].江苏大学学报(自然科学版),2009(7).
    [100]徐冠林,石沛林,唐绍丰,等.电动助力转向系统的滑模变结构控制[J].山东理工大学学报(自然科学版),2010(3).
    [101]晋兵营,聂建军,施国标.遗传算法优化的EPS系统模糊控制策略研究[J].机械设计与制造,2010(5).
    [102]吴文江,杜彦良,季学武,等.电动转向系统助力性能研究[J].中国安全科学学报,2003(7).
    [103]吴文江,杜彦良,季学武,等.增强电动转向系统助力跟踪性能的H∞控制[J].汽车工程,2004(4).
    [104]刘照.汽车电动助力转向系统动力学分析与控制方法研究[D].华中科学技术大学博士学位论文,2004(6).
    [105]田大庆.基于鲁棒控制理论的汽车电动转向助力系统控制技术研究[D].四川大学博士学位论文,2006(6).
    [106]李强.基于分岔理论的电动助力转向系统控制策略及其对汽车操纵稳定性影响的研究[D].江苏大学博士学位论文,2007(6).
    [107]徐汉斌.电动转向器控制系统研究[D].武汉理工大学博士学位论文,2007.
    [108]张振华.电动助力转向系统鲁棒控制的分析与研究[D].武汉理工大学硕士学位论文,2007.
    [109]谢刚.汽车电动助力转向系统的设计与控制技术研究[D].四川大学博士学位论文,2006.
    [110]卢娟.电动助力转向系统建模与仿真研究[D].重庆大学硕士学位论文,2006.
    [111]黄森仁.汽车电动助力转向系统(EPS)的研究[D].合肥工业大学硕士学位论文,2003.
    [112]王雄波.基于模糊控制的电动助力转向系统的研究与开发[D].湖南大学硕士学位论文,2008.
    [113]周冬林,黄菊花,曾群.自适应模糊PID控制器在电动助力转向系统中的应用[J].制造业自动化,2009(6).
    [114]李书龙,许超.电动助力转向系统中的模糊控制[J].公路交通科技,2004(4).
    [115]侯媛彬,汪梅,王立琦.系统辨识及其MATLAB仿真[M].北京:科学技术出版社,2004.
    [116]杨超.现代运动控制系统的数字式频响测试方法[J].计算机测量与控制,2006(11).
    [117]王伟,张晶涛,柴天佑. PID参数先进整定方法综述[J].自动化学报,2000(5).
    [118]李剑,谷俊杰. PID参数整定方法进展[J].电力情报,2001(3).
    [119]吴宏鑫,沈少萍. PID控制的应用与理论依据[J].控制工程,2003(1).
    [120]刘镇,姜学智,李东海. PID控制器参数整定方法综述[J].电力系统自动化,1997(8).
    [121]杨智,朱海锋,黄以华. PID控制器设计与参数整定方法综述[J].化工自动化及仪表,2005(5).
    [122]周宝林,朱建跃,蔡宁生,等.过程控制系统中PID控制器参数优化的研究[J].能源技术,2001(10).
    [123]方斌.时滞系统PID控制器增益的稳定范围研究[J].信息与控制,2009(10).
    [124]戴能红.线性系统PID控制器三维稳定空间研究[D].南京理工大学硕士论文,2008.
    [125]李奔.线性系统PID参数稳定域研究[D].南京理工大学硕士论文,2009.
    [126]欧林林,顾诞英,张卫东.基于幅值裕度和相位裕度的PID参数最优整定方法[J].控制理论与应用,2007(10).
    [127]欧林林,张卫东,顾诞英.一类时滞对象的PID控制器参数稳定域计算[J].控制与决策,2006(9).
    [128]王德进.一种确定PID参数稳定域的图解法[J].控制与决策,2007(6).
    [129]徐峰,李东海,薛亚丽,等.基于区间多项式稳定性理论的PID控制器[J].清华大学学报(自然科学版),2003(12).
    [130]谢超,刘鲁源.油田采油污水处理的溶解氧浓度PID控制稳定参数域综合[J].云南大学学报(自然科学版),2010(2).
    [131]徐志成.基于微粒群优化的鲁棒PID控制器参数整定方法研究[J].化工自动化及仪表,2006(5).
    [132]王介生,王金城,王伟.基于粒子群算法的PID控制器参数自整定[J].控制与决策,2005(1).
    [133]徐峰,李东海,薛亚丽.基于ITAE指标的PID参数整定方法比较研究[J].中国电机工程学报,2003(8).
    [134]张立群,李东海,唐多元,等.基于参数稳定空间的PID控制器设计[J].清华大学学报(自然科学版),2004(2).
    [135]张立群.优化PID控制器研究及其在热工对象控制中的应用[D].清华大学工学硕士学位论文,2004.
    [136]彭沛夫,林亚平,胡斌等.基于遗传因子的自适应蚁群算法最优PID控制[J].电子学报,2006(6).
    [137]谭冠政,李文斌.基于蚁群算法的智能人工腿最优PID控制器设计[J].中南大学学报(自然科学版),2004(2).
    [138]李楠. PID控制参数现代设计技术的研究与应用[D].浙江工业大学硕士,2009.
    [139]杨汉桥,林晓辉.遗传算法与模拟退火法寻优能力综述[J].机械制造与自动化,2010(4).
    [140]段红伟,胡劲松.基于改进的模拟退火算法及其在火炮控制系统中的应用[J].测控技术,2008(8).
    [141]霍海波,吴燕翔,刘雨青,等.基于改进模拟退火算法的二自由度PID控制器设计[J].科学技术与工程,2009(12).
    [142]王其东,姜武华,陈无畏.电动助力转向系统机械与控制参数集成优化[J].农业机械学报,2006(9).
    [143]赵万忠,施国标,林逸,等.基于遗传算法的EPS系统参数优化[J].吉林大学学报(工学版),2009(3).
    [144]任宏涛,崔凤奎.基于遗传算法的电动助力转向系统结构参数优化设计[J].洛阳理工学院学报(自然科学版),2009(3).
    [145]崔晓利,杨岳,毛建伟.汽车电动助力转向系统的匹配分析及优化设计[J].机械科学与技术,2010(1).
    [146]姜武华.汽车电动助力转向系统结构控制参数的集成优化[D].合肥工业大学硕士,2004.
    [147]赵保才.基于遗传算法的鲁棒PID设计[D].天津大学硕士研究生毕业论文,2006.
    [148]丁寅磊.基于遗传算法的PID控制器参数优化研究[D].华北电力大学,2008.
    [149]邓华昌.基于混合遗传算法的PID参数优化及其在液位控制中的应用[D].武汉科技大学,2009.
    [150]焦力兴.基于遗传算法进行PID参数寻优的热工系统的应用研究[D].华北电力大学,2008.
    [151]徐春梅.基于遗传算法的系统建模与PID控制方法研究[D].武汉大学,2005.
    [152]刘虹.应用改进遗传算法进行PID控制器参数整定[D].江苏大学,2006.
    [153]毛敏.基于遗传算法的PID参数寻优问题的研究[D].华北电力大学,2002.
    [154]范淑敏.遗传算法在PID控制中的应用[D].北方工业大学,2007.
    [155]张用.遗传算法PID控制在AUV运动控制中的应用[D].哈尔滨工程大学,2009.
    [156]杨黎明.一种改进的免疫遗传算法及在PID控制器优化设计中的应用[D].中南大学,2007.
    [157]廖芳芳,肖建.基于BP神经网络PID参数自整定的研究[J].系统仿真学报,2005(7).
    [158]郭鹏.基于神经网络的PID控制器参数优化方法研究[J].华北电力大学,2001(1).
    [159]任子武.基于神经网络的参数自整定PID控制算法研究[J].哈尔滨理工大学,2004(2).
    [160]荣辉,张济世,马信山.前馈神经网络的模糊PID算法及其在电力系统负荷预测中的应用[J].电工技术学报,1998(8).
    [161]梁仁仁. PID参数自整定算法在悬浮控制系统的应用研究[J].国防科学技术大学,2008(11).
    [162]周一军.改进型临界比例度法用于PID参数的自整定[J].自动化仪表,2002(1).
    [163]何国荣,纪娜.基于临界比例度法的PID控制器参数整定方法研究[J].杨凌职业技术学院学报,2008(6).
    [164]何宏源,徐进学,金妮. PID继电自整定技术的发展综述[J].沈阳工业大学学报,2005(8).
    [165]李书才,刘红波.基于迭代继电反馈的多变量PID控制器自整定[J].控制工程,2008(7).
    [166]潘帅,杨平.基于继电反馈的PID自整定控制技术进展[J].上海电力学院学报,2008(6).
    [167]黄勇强,吴建华,熊振华,等.基于继电反馈的伺服系统PID参数整定研究[J].机械制造,2008(12).
    [168]李一军.基于遗传神经网络的PID自整定算法的研究[J].西安科技大学,2009(4).
    [169]胡寿松.自动控制原理(第3版)[M].北京:国防工业出版社,2000.
    [170]Norbert Hohenbiehler, DirkAbel. Calculating All Kp Admitting Stability of a PID Control Loop[C]. Proceedings of the 17th World Congress,July, 2008.
    [171]Jurgen Ackermann, Dieter Kaesbauer. Stable polyhedral in parameter space[J]. Automatica, 2003.
    [172]MT Soylemeza, N Munrob, H Baki. Fast Calculation of Stabilizing PID Controllers[J]. Automatica, 2003.
    [173]Ho Mt, Datta A, Bhattacharyyya S P. A Linear programming Characterization of All Stability PID[J]. Proc of American Control Conf, 1997.
    [174]欧林林,张卫东,顾诞英.线性时滞系统的P和PI控制器稳定参数集[J].上海交通大学学报,2006(7).
    [175]曾振平,陈增强,袁著社.确保鲁棒性能的PID控制器参数域的一种确定方法[J].控制与决策,2005(4).
    [176]Ho MT, Datta A, Bhattacharyya S P. A New Approach to Feedback Stabilization[C], In Proeeedings of the 35th conference on decision and control, IEEE.
    [177]Silva G J, Datta A, Bhattacharyya S P. New resuls on the synthesis of PID controller[J]. IEEE Transon Automatic Conirol, 2002.
    [178]Martelli G. Comments on“New resuls on the synthesis of PID controller”[J]. IEEE Transon Automatic Conirol, 2005.
    [179]王德进.一种确定PID参数稳定域的图解法[J].控制与决策,2007(6).
    [180]欧林林,顾诞英,张卫东.一类时滞对象的PID控制器参数稳定域计算[J].控制与决策,2006(9).
    [181]胡爱军,林逸,施国标.电动助力转向系统结构参数优化[J].拖拉机与农用运输车,2008(10).
    [182]王其东,姜武华,陈无畏.电动助力转向系统机械与控制参数集成优化[J].农业机械学报,2006(9).
    [183]姜武华.汽车电动助力转向系统结构和控制参数的集成优化[D].合肥工业大学硕士学位论文,2004.
    [184]袁传义,陈龙江,浩斌.电动助力转向系统多目标优化控制研究[J].中国机械工程,2007(7).
    [185]崔晓利,杨岳,毛建伟.汽车电动助力转向系统的匹配分析及优化设计[J].机械科学与技术,2010(1).
    [186]宋宝,唐小琦,蔡李隆.带滤波前馈的变参数PID调节器在伺服驱动中的运用[J].仪表技术与传感器,2008(12).
    [187]王树清,戴连奎,于玲.过程控制工程[M].北京:化学工业出版社,2005.
    [188]王建飞,闫建国,卢京潮. uC/OS-II在TMS320LF2407上的移植[J].微型电脑应用,2005(3).
    [189]刘海峰,刘百芬.嵌入式操作系统uC/OS-II在DSP上的移植研究[J].华东交通大学学报,2006(1).
    [190]王劲松,李正熙,夏旺盛.嵌入式操作系统uC/OS-II的内核实现[J].现代电子技术,2003(8).
    [191]苗立东,何仁.电动助力转向器电动机等效电阻测量方法.实验技术与管理,2006(5).