多孔SiO_2凝胶对放射性废液中锕系核素的分离、固化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用溶胶-凝胶技术通过分相法和超临界干燥法分别合成了多孔SiO2凝胶,借助TG-DTA、SEM、FT-IR、压汞仪、气体吸附仪等分析手段,对合成的多孔SiO2凝胶的结构性能进行了表征;采用间歇法研究了多孔SiO2凝胶对溶液中铈的吸附性能,筛选出分相法制备的多孔SiO2凝胶,然后采用间歇法和连续法分别研究了其对溶液中铀的吸附性能;以铈为模拟元素,采用低温烧结多孔Si02凝胶的方法合成了高硅玻璃陶瓷固化体,并借助于TG-DTA、XRD、SEM及抗浸出性能测试等分析测试方法,对烧结的多孔SiO2凝胶固化锕系核素进行了初步研究。研究成果如下:
     (1)通过分相法和超临界干燥法均成功制备了多孔SiO2凝胶,其中,分相法制备的多孔SiO2凝胶内部是由连续的孔结构构成,是一种轻质多孔网络结构材料;具有较高的孔隙率和骨架密度,较低的表观密度;孔径分布以大孔和中孔为主,微孔较少,因此能够以不同的物理吸附方式吸附分离溶液中的离子及离子基团;基本结构单元为Si-O-Si,表面有大量的羟基基团和有机基团,对其进行高温处理,其基本结构特征均未发生明显变化,因此该法制备的多孔SiO2凝胶具有良好的热稳定性。超临界干燥法制备的多孔SiO2凝胶是具有海绵状网络结构的多孔材料,高温处理后,网络结构发生坍塌,热稳定性较差。由以上所述可知,分相法制备的多孔SiO2凝胶的性能明显优于超临界干燥法制备的多孔Sio2凝胶,因此,在锕系核素的分离固化研究中,主要研究了分相法制备的多孔SiO2凝胶对铈和铀的吸附分离性能和固化包容性能。
     (2)多孔SiO2凝胶(分相法)对溶液中铈和铀均具有良好的吸附性能,但对铈的吸附平衡时间较长;在初始浓度一定时,对铈和铀的吸附性能受固液比的影响较大,而且对铈和铀的吸附体系的最大固液比是不同的;对铈和铀的吸附主要以物理吸附和化学吸附两种方式进行的,而且在吸附反应的不同阶段,主要的吸附方式是不同的;多孔SiO2凝胶对铀的吸附性能随着溶液pH值的不同而有所不同,在中性和弱酸性溶液中,吸附性能较好,而在pH<5的酸性较强的溶液中吸附性能较差;溶液的初始浓度不同时,吸附性能是不同的,平衡吸附量随着初始浓度的增加而逐渐升高,平衡吸附率和平衡吸附比则逐渐降低;溶液中所含离子的种类和价态不同时,多孔SiO2凝胶对铀的吸附性能也不同,三价离子对铀的吸附影响较大,而二价及一价离子对铀的吸附基本无影响;多孔SiO2凝胶对铀的吸附符合Langmuir等温吸附方程,吸附动力学符合准二级反应动力学方程,因此铀在多孔凝胶上是单分子层吸附,吸附反应不是简单的表面反应过程,而是多种反应过程的组合,吸附反应不仅发生在多孔凝胶的表面,还发生在颗粒内部;动态吸附性能受流入液流速的影响的较大,动态平衡吸附量随着流速的降低逐渐增大,而迁移速率则逐渐减小。
     (3)通过低温烧结而不是高温熔融工艺可以成功制备包容铈的高硅玻璃陶瓷固化体,固化体的外观特征、致密度及密度与烧结温度的高低有关,温度过高或过低均不利于固化体的烧结,较佳烧结温度约为1150-1250℃;包容的模拟元素铈是以CeO2晶体的形式均匀分布在高硅玻璃基质中,抗浸出性能测试也显示低温烧结制备的高硅玻璃陶瓷固化体的元素归一化浸出率明显低于目前已经工业化应用的硼硅酸盐玻璃固化体,对铈具有良好的包容性能。
Sol-Gel technology was applied to synthesize porous silica gel by phase separation and supercritical drying. The structure property of synthesized porous silica gel were characterized by means of TG-DTA, SEM, FT-IR, Press Mercury Analyzer, Gas Adsorption Analyzer and so on. Discontinous process was applied to study the adsoptive property of porous silica gel to cerium ions, while the adsorptive property to uranium was studied using discontinuous process and dynamic adsorption test. High silica glass-ceramic solidification forms wraping the simulating element cerium are synthesized by sintering porous silica gel at lower temperature, which was analyzed by TG-DTA, XRD, SEM, leaching test and so on. Research results are as follows:
     Porous silica gel could be successfully fabricated by phase separation and supercritical drying. That one fabricated by phase seperation is a kind of light porous material which has the structure of contimous pore and network with high porosity, high skelen density, low apparent density, the pore size distribution of main mesopore and micropore, the basic structure unit of Si-O-Si and surface of a large number of hydroxyl groups and organic groups. Porous silica gel synthesized by phase separation has good thermal stability as the basic structure features are not changed significantly after heat-treatment at high temperature, while porous silica gel prepared by supercritical drying has sponge-like network structure and poor thermal stability. In summary, porous silica gel synthesized by phase separation has better performance than that synthesized by supercritical drying, so that our works were focoused on the adsorption-separation properties and solidification-enbeding properties of porous silica gel fabricated by phase separation in the studing of the separation-solidification of simulative High Radioactive Level of Liquid Waste.
     Porous silica gel synthesized by phase separation has fine adsorptive capacity to cerium and uranium, while a longer equilibrium adsorptive time to cerium was obtained. The adsorptive properties of porous silica gel to cerium and uranium are affected by sorbents' quantity for a given initial concentration of cerium and uranium. Adsorptive mechanism of cerium and uranium on porous silica gel was more physic adsorption than chemical adsorption, and the main adsorption mechanism are different in different stage of the adsorptive reaction. The adsorptive properties of porous silica gel to uranium are affected by the pH value in solution, which are better in neutral and weak acid solution, while poorer in strong acid solution at pH<5.0. The adsorptive property parameters of porous silica gel to uranium are different when the initial concentration of uranium in solution is changed. The equilibrium adsorptive capacity increase with increasing the initial concentration of uranium in solution, while the equilibrium adsorptive rate and ratios decrease. When the species and states of other ions in solution are different, the adsorptive capacity of porous silica gel are also changed. Trivalent ions have greater influence on the adsorptive capacity of porous silica gel, while divalent and monovalent ions no influence. It keeps to Langmuir equation orderliness and quasi-Second order kinetic equation that porous silica gel adsorbed uranium. Therefore, uranium in the surface of porous silica gel is monolayer adsorption, and adsorption reaction is not a simple surface reaction process but the combination of a variety of reactions, which not only occurs on the surface of porous silica gel but also occurs in the grains. Dynamic adsorptive property are greatly influenced by the flow rate of solution.The dynamic equilibrium adsorptive capacity increases with decreasing the flow rate, while the migration rate of uranium is gradually reduced.
     High silica glass-ceramic solidification forms immobilizing cerium could be successfully synthesized by sintering in lower temperature not melting at higher temperature. Appearance character, compaction and density of solidification forms relate with the sintering temperature. Solidification forms are conducive to being sintered and the optimum sintering temperature is about 1150℃~1250℃. Cerium in the form of CeO2 crystals uniformly distribute in the high silica glass matrix. The results of leaching test show that high silica glass synthesized by sintering porous silica gel at the lower temperature has a good immobilizing performance. The normalized leaching rate of elements is significantly less than that of the current borosilicate glass solidification forms which have been applied to industry now.
引文
1 何赣溪.放射性废物概述[J].工科物理,1998;8(6):7~10.
    2 张华.高放固化体处置条件下的浸出和模刑研究[D].博士学位论文.北京:中国原子能科学研究院,2004.
    3 车春霞.模拟放射性焚烧灰陶瓷固化处理的研究[D].硕士学位论文.绵阳:西南科技大学,2006.
    4 杨建文.富烧绿石人造岩石和锆英石固化模拟锕系废物研究[D].博士学位论文.北京:中国原子能科学研究院,2000.
    5 罗上庚.高放废物的分离与嬗变[J].辐射防护,1996;16(1):72~75.
    6 吕彦杰.模拟α-高放废液独居石磷酸盐玻璃陶瓷固化体的研究[D].硕士学位论文.武汉:中国地质大学,2008.
    7 罗上庚.玻璃固化国际现状及发展前景[J].硅酸盐通报,2003;1:42-48.
    8 罗上庚.玻璃固化技术的新发展[J].科技导报,1997:3:55~57.
    9 盛嘉伟,罗上庚,汤宝龙.90-19/U模拟高放玻璃固化体的浸出特性评价[J].核化学与放射化学,1995:17(2):1-6.
    10 姜耀中,汤宝龙,张宝善等.821厂高放废液固化用基础玻璃配方的研制[J].原子能科学技术,1995:29(3):253-261.
    11 黄文,周萘,Day D E等.Cr2O3对高放核材料磷酸盐玻璃固化体的影响[J].无机材料学报,2005;20(4):842~849.
    12 郭喜良,范智文,孙庆红,王辉.DOE高放废物玻璃固化体接收技术规范简介[J].辐射防护通讯,2005:25(1):39~42.
    13 金力云,李云,高月英等.X射线荧光光谱法测定模拟高放废液玻璃固化体中26种主、次及微量元素[J].原子能科学技术,1995;29(6):539~544.
    14 黄文,周萘,Day D E等.高放射性核废料玻璃固化体结构与化学稳定性[J].同济大学学报(自然科学版),2005;33(5):654~658.
    15 黄文,周萘,Day D E等.磷酸盐玻璃固化体化学耐蚀性研究[J].硅酸盐学报,2004;32(4):461-470.
    16 胡唐华,鲍卫民,宋崇立等.模拟含锶废物铁磷酸盐玻璃固化体的化学稳定性[J].辐射防护,2001:21(6):354-364.
    17 胡唐华,鲍卫民,宋崇立等.模拟含铯废物玻璃固化体组成对浸出性能的影响[J].辐射防护,2002:22(5):306-312.
    18 胡唐华,冯孝贵,徐世平等.模拟铯废物钛硅酸盐玻璃的化学稳定性研究[J].硅酸盐学报,2002;30(1):131~134.
    19胡唐华,鲍卫民,宋崇立等.模拟锶铯废物铁磷酸盐玻璃固化及化学稳定性[J].硅酸盐通报,2003:2:86-88.
    20姜耀中.821厂模拟高放废液玻璃固化冷台架产品性能评价及数学模型建立[D].硕士学位论文.北京:中国原子能科学研究院,1995.
    21车春霞,滕元成,桂强.放射性废物固化处理的研究及应用现状[J].材料导报,2006;20(2):94-97.
    22 Roth G, Weisenburger S. Vitrication of high-level liquid waste:glass chemistry, process chemistry and process technology[J]. Nuclear Engineering and Design,2000; 202:197-207.
    23李维音.玻璃固化技术简述[J].核工程研究与设计,2005;9:25-26.
    24 Tzeng Chin-Ching, Kuo Yung-Yen, Huang Tsair-Fuh. Treatment of radioactive wastes by plasma incineration and vitrification for final disposal[J]. Journal of Hazardous Materials,1998; 58:207-220.
    25 Sales B C, Boatner L A. Lead-Iron phosphate glass:a stable storage medium for high-level nuclear waste[J]. Science,1984; 226:45-48.
    26 Mesko M G, Day D E, Bunker B.C. Immobilization of CsCl and SrF2 in iron phosphate glass[J]. Waste Management,2000; 20:271-278.
    27 Huang W, Kim C, Day D E, Ray C S. Solubility of high chrome nuclear waste in iron phosphate glasses[A]. In:Sundaram S K, Spearing D R, Vienna J D ed. Ceramic Transaction.143, Westerville OH, USA:American Ceramic Society,2003:347-354.
    28 Li H, Hrma P, Langowski M H. Vitrification and chemical durability of simulated high-level nuclear waste glasses with high concentration of Cr2O3 and Al2O3[J]. The American Ceramic Society,1996: 299-306.
    29 Andrews M K. Glass Formulation Development in Testing for the Vitrification of Cesium-Loaded Crystalline Silicotitanate (CST) [A]. AIR ANG WASTE MANAGEMENT ANNUAL MEETING Toronto,1997.
    30 Kaushik C P, Mishra RK, Sengupta P, et al. Barium borosilicate glass-a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste[J]. Journal of Nuclear Materials, 2006; 7 (4):1-10.
    31何涌.高放射性废物固化体的特性[J].地址科技情报,2000;19(3):73~76.
    32何涌.高放废液玻璃固化体和矿物固化体性质的比较[J].辐射防护,2001:21(1):43-47.
    33张瑞珠,师素娟.钛酸盐陶瓷固化Sr2+核素的SHS热力学[J].现代技术陶瓷,2008;1:3-6.
    34张瑞珠,郭志猛,李燕.钛酸盐陶瓷固化放射性废物[J].硅酸盐通报,2005;4:16-19.
    35 DONALD I W, METCALFE B L, TAYLOR R N J. The immobilization of high level radioactive wastes using ceramics and glasses[J]. JOURNAL OF MATERIALS SCIENCE,1997; 32:5851-5887.
    36 Borovinskaya I P, Barinova T V, Ratnikov V I. Consolidation of Radioactives waste into mineral-like material by the SHS method. Inter J SHS,1998; 7 (1):129-135.
    37 Barinova T V, Borovinskaya I P, Ratnikov V I. SHS immobilization of radioactive wastes[J]. Key Engineering Materials,2002; 217:193-200.
    38 罗上庚,杨建文,朱鑫璋.人造岩石固化包容锕系核素废物[J].化学学报,2000;58(12):1608-1614.
    39 张传智,张宝善,汤宝龙等.高放废液合成岩石固化研究[J].辐射防护,1997;17(6):417-426.
    40 李利宇,罗上庚,汪德熙.模拟高放废液钛酸盐陶瓷固化体的浸出影响因素研究[J].辐射防护,1997;17(5):373~378.
    41 周冠南.模拟含铀废物晶格固化研究[D].硕士学何论文.绵阳:西南科技大学,2007.
    42 Ewing R C, Webert W J, Clinard F W. Radiation effects in nuclear waste forms for high-level radioactive waste[J]. Progress in Nuclear Energy,1995; 29 (2):63.
    43 Weber W J, Ewing R C, Angell C A. Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition[J]. Journal of Material Research,1997; 12:1945-1978.
    44 Weber W J, Ewing R C, Carlow C R A. Radiation effects on crystalline ceramics for the immobilization of high-level waste and Plutonium[J]. Journal of materials Research,1998,13:1431-1484.
    45 Donald I W, Metcalfe B L, Fong S K, et al. A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal[J].Journal of Nuclear Materials,2006; 11 (011) 1-16.
    46 滕元成,车春霞,张朝彬等.模拟放射性焚烧灰陶瓷固化的初步研究[J].辐射防护,2007;275:291-296.
    47 张振涛,王雷,甘学英等.高放废液和锕系核素玻璃-陶瓷固化技术研究简况[J].中国原子能科研究院年报,2006:255-256.
    48 Loiseau P, Caurant D, Baffier N, et al. Glass-ceramic nuclear waste forms obtained from SiO2-Al2O3-CaO-ZrO2-TiO2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th):study of internal crystallization[J]. Journal of Nuclear Materials,2004; 335:14-32.
    49 He Yong, Lv Yanjie, Zhang Qian. Characterization of monazite glass-ceramics as wasteform for simulated a-HLLW[J]. Journal of Nuclear Materials,2008:201-206.
    50 Ames, Jr L L. Zeolitic extraction of cesium from queous solutions[J]. U.S.At.Energy comn.H. W, 1995; 25 (7):626-630.
    51 Liang Tien-Jui. The influence of cation concentration on the sorption of strontium on mordenite[J]. Applied Radiation and Isotopes,1999; 51 (5):527-532.
    52 Abdelrahim Abusafa, Hayrettin Yucel. Removal of 137Cs from aqueous solutions using different cationic forms of a natural zeolite:clinoptilolite[J]. Separation and Purification Technology,2002; 28:103-116.
    53 Sema Akyil, Mahmoud Aslani A A, Sule Aytas. Distribution of uranium on zeolite X and investigation of thermodynamic parameters for this system[J]. Journal of Alloys and Compounds, 1998; 271/273:769-773.
    54 宋金如,龚志湘等.凹凸棒石黏土吸附铀的性能研究及应用[J].华东地质学院学报,1998;2(3):265-272.
    55 章英杰,冯孝贵,梁俊福等.Am(Ⅲ)在花岗岩上吸附行为[J].原子能科学技术,2009;43(3):215-220.
    56 章英杰,冯孝贵,梁俊福等.超铀元素Am在膨润土上的吸附行为研究[J].世界核地质科学,2008:25(1):47-53.
    57 熊正为,王清良,郭成林.蒙脱石吸附铀机理研究[J].湖南师范大学自然科学学报,2007;30(9):75-79.
    58 李仕友,谢水波,王清良.粘十对废水中铀的吸附性能[J].化工环保,2006;26(6):459-462.
    59 刘艳,易发成,王哲.膨润十对铀的吸附研究[J].非金属矿,2010;33(1):52-57.
    60 梁俊福,樊晓强,刘青山.硅胶对锆钚(Ⅳ)吸附的研究[J].核化学与放射化学,2006;28(2):80-85.
    61 章英杰,冯孝贵,梁俊福等.Am (Ⅲ)在铁氧化物上的吸附行为[J].核化学与放射化学,2009;31(1):10~15.
    62 陈朝猛,曾光明,汤池.羟基磷灰石吸附处理含铀废水的研究[J].金属矿山,2009;5:135-137.
    63 张纯,张伟,周星火.零价铁粉在含U(Ⅵ)废水处理中的应用[J].铀矿冶,2009;28(3)155-157.
    64 武志刚.气凝胶制备进展及其在催化方面的应用[J].化学研究与应用,2003;15(1):102-108.
    65 张志华,倪兴元,沈军等.SiO2气凝胶表面特性对其吸附性能的影响fJ].材料导报,2005;19(7):115~117.
    66 张志华,倪兴元,陈世文等.SiO2气凝胶常压制备、表面结构与吸附性质[J].原子能科学技术,2005:39(6):498~502.
    67 张伟娜,李云辉,王庆伟等.二氧化硅气凝胶的表面改性及热稳定性的研究[J].吉林师范大学学报(自然科学版),2009;2(2):67-69.
    68 任洪波,万小波,张林等.可加工SiO2气凝胶及其惯性约束聚变靶微柱制备[J].原子能科学技术,2007:41(5):633~636
    69 Kazuki NAKANISHI. Functional Porous Materrials via Sol-Gel with Separation[J]. Journal of Ceramic Society of Japan,2007; 115 (3):169-175.
    70 KAZUKI NAKANISHI. Pore Structure Control of Silica Gels Based on Phase Separation[J]. Journal of Porous Materials,1997; 4:67-112.
    71 Kazuki Nakanishi. Sol-Gel Process of Oxides Accompanied by Phase Separation[J]. The Chemical Society of Japan,79 (5):673-691.
    72 ERMAKOVA M A, ERMAKOV D YU, KUVSHINOV G G, et al. Synthesis of High Surface Area Silica Gels Using Porous Carbon Matrices[J]. Journal of Porous Materials,2000; 7:435-441.
    73 黄剑锋编著.溶胶-凝胶原理与技术[M].北京:化学工业出版社,2005:62.
    74 李梅,柳召刚,吴锦绣等编著.稀十元素及其分析化学[M].北京:化学工业出版社,2009:147-148.
    75 近藤精一,石川达雄,安部郁夫,李国希译.吸附科学[M].北京:化学工业出版社,2005:38,92.
    76 王金明.几种矿物材料对锶铯的吸附性能及其吸附机理研究[D].硕士学位论文.绵阳:西南科技大学,2006.
    77 《化学工程手册》编辑委员会.吸附及离子交换[M].北京:化学工业出版社,1989:27-33.
    78 陆九芳,李总成,包铁竹.分离过程化学[M].北京:清华大学出版社,1993:185.
    79 Zouboulis A I, Kydros K A, Matis K A. Removal of toxic metal ions from solutions using industrial solid by products[J]. Water Science and technology,1993; 27 (10):83-93.
    80 Guibal Eric. Contribution a letude de la biofixation de luranium par un champignon filamenteux: Mucor miehei. These de doctorat, I.N.S.A. de lyon, France,90 ISAL 0037,1990:165.
    81 王杰,刘小乃,刘迎九等.壳聚糖吸附铀的机理探讨[J].金属矿山,2009;5:149-151.
    82 Woignier T, Reynes J, Phalippou J, et al. Sintered silica aerogel:a host matrix for long life nuclear wastes[J]. Journal of Non-Crystalline Solids,1998; 225:353-357.
    83 Reynes J, Woignier T, Phalippou J. Permeability measurement in composite aerogel:application to nuclear waste storage[J]. Journal of Non-Crystalline Solids,2001; 285:323-327.
    84 Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste, Designation:C1220-98,2004.
    85 Hench L L, Clark D E, Campbell J. High level waste immobilization forms[J]. Nuclear and Chemical waste management,1984; 5:149-173.
    86 Guibal Eric, Lorenzelli Rebecca, Vincent Thierry, et al. Application of silica gel to metal ion sorption: Static and dynamic removal of uranyl ions[J]. Environmental Technology,1995; 16:101-114.