化学沉淀—微滤工艺处理含锶废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着核技术的发展,放射性废水的直接排放会造成局部水域的放射性核素污染。研究去除核污染产生的放射性元素对于促进清洁能源生产、保障人体健康、保护环境具有积极意义。膜分离技术作为一门新型学科,结合化学沉淀技术处理放射性废水,具有工艺简单、自动化程度高、占地少等优点。本文主要研究化学沉淀-微滤工艺处理含锶废水的可行性和优化方案。
     整个试验分为初步试验和小试试验两个部分。初步试验主要探索了处理含锶废水需要的沉淀剂,最终选择了Na2CO3作为沉淀剂,同时也研究了减缓膜污染的技术措施,确定在沉淀器和膜反应器中分别投加FeCl3。小试试验共进行三个阶段,第一、二阶段均采用间歇运行的方式,Na2CO3的投加量分别为2000 mg/L和1000 mg/L,结果显示:一、二阶段工艺的平均去污因数(Decontamination Factor, DF)分别为220、154,浓缩倍数(Concentration Factor, CF)分别为302、462,尽管第一阶段平均DF较低,但处理水量和膜污染程度均优于前者。另外针对间歇运行中反应器启动的前3个小时出现的出水锶浓度较高的现象,第三阶段进行了连续运行的试验研究,除反应器运行方式改变外,其它工艺参数均和二阶段相同,结果显示:平均DF和CF分别为145、480,连续运行方式可以消除间歇运行产生的锶返溶问题。
     采用化学沉淀-微滤工艺含锶废水时,镁的去除率较低;铁、钙基本被全部去除;相关阴离子基本没有去除。除出水pH值稍高外,出水可以很好的满足《污水综合排放标准》(GB8978-1996)。
     针对工艺运行管理过程中的膜污染问题采取的低压操作、间歇运行、控制曝气强度和周期性的排泥洗膜等技术措施,可以降低膜比通量下降的速率。
     试验结果显示化学沉淀-微滤工艺可以有效处理含锶废水,该工艺具有流程简单、自动化程度高、能耗低、污泥产生量少、出水水质优良等诸多优点,是低放废水处理的理想选择之一。
Along with the development of nuclear technology, the direct discharge of radioactive wastewater can cause the radionuclide contamination of local waters. Study on removal of radioactive elements produced by nuclear contamination has a positive significance in promoting clean energy production, protection of human health and environment. Compared to traditional process, the membrane process, emerged as a new technology, has many advantages such as simple process, higher degree of automation, less area required, when combined with chemical precipitation technology and separation technology to treat radioactive wastewater. The feasibility and optimization program of treating wastewater containing strontium by chemical precipitation-microfiltration was focused in this paper.
     The whole experiment was composed of preliminary experiment and pilot-scale experiments. In the preliminary experiment, chemical precipitation agent to deal with wastewater containing strontium is mainly studied, and Na2CO3 was chosen in the end. In addition, technical measures to mitigate membrane fouling was also discussed, and finally, FeCl3 was decided to be dosed into the sedimentation tank and membrane reactor. Pilot-scale experiments can be divided into three stages. In the first and second stage, the mode of intermittent operation was used, and the dosage of Na2CO3 was 2000 mg/L and 1000 mg/L, respectively. The results showed that the average decontamination factor (DF) of the first and second stage were 220, 462, and concentration factor (CF) were 302, 462. Although the average DF of the second stage was lower than the first one, the volume of treated wastewater and the degree of membrane fouling were improved, compared with the former. In addition, to cope with the problem that the strontium in the effluent was much higher during the first three hours after the reactor was started up, the experiment of continuous operation was carried out in the third stage, in which all parameters were same with the second stage, except for the mode of process operation. The results showed that the average DF and CF were 145, 480. The mode of continuous operation could eliminate the problem, that strontium had re-solved to the reactor in the mode of intermittent operation.
     While integrated chemical precipitation-microfiltration process was used to treat wastewater containing strontium, the removal rate of magnesium was much lower, ferrum and calcium were removed completely, and the related anions were not removed. In addition to higher pH value, the effluent could meet the requirement of the Integrated Wastewater Discharge Standard (GB8978-1996).
     During the operation of the experiment, many technical measures, including low-pressure operation, intermittent operation, control of aeration intensity and periodic sludge discharge, were adopted to mitigate membrane fouling, and could be testified to reduce the rate of decreasing membrane specific flux.
     The results showed that integrated chemical precipitation-microfiltration technology could effectively deal with wastewater containing strontium. The process for the treatment of the wastewater containing strontium has many advantages, such as simple process, higher degree of automation. To sum up, the integrated chemical precipitation-microfiltration process is one of ideal choices to treat lower radioactive wastewater.
引文
[1]曹敬丽,徐家昂,邓大平.江河水系放射性污染研究状况[J].中国辐射卫生, 2005, 14(4): 317-318.
    [2] Martínez-Aguirre A, García-León M. 210Pb distribution in river waters and sediments near phosphate fertilizer factories[J]. Applied Radiation Isotopes, 1996, 47(5): 599-602.
    [3] Dim L A, Ewa I O, Ikpokonte A E. Uranium-thorium levels in the sediments of the Kubanni River in Nigeria[J]. Applied Radiation Isotopes, 2000, 52(4): 1009-1015.
    [4] St-Pierre S, Chambers D B, Lowe L M, et al. Screening level dose assessment of aquatic biota downstream of the Marcoule nuclear complex in southern France[J]. Health Physics, 1999, 77(3): 313-321.
    [5] Kryshev I I, Romanov G N, Sazykina T G, et al. Environmental contamination and assessment of doses from radiation releases in the Southern Urals[J]. Health Physics, 1998, 74(6): 687-697.
    [6]王宝贞.放射性废水处理(上册)[M].北京:科学出版社, 1979.
    [7]国家环境保护总局科技标准司.环境标准实施指南-污水综合排放标准分册[M].长春:吉林科学技术出版社, 1999.
    [8]徐四大.核物理学[M].北京:清华大学出版社, 1992.
    [9]戴树桂.环境化学[M].北京:高等教育出版社, 1997.
    [10]时均,袁权,高从楷.膜技术手册[M].北京:化学工业出版社, 2001.
    [11] Dziezak J D. Membrane separation technology offers processors unlimited potential[J]. Food Technology, 1990, 44(9): 108-113.
    [12]雷晓东,熊蓉春,魏刚.膜分离法污水处理技术[J],工业水处理, 2002, 22(2): 1-3.
    [13]罗明典.微生物治理环境污染物技术评述[J].现代化工, 2004, 24(10): 5-9.
    [14]蒋永一,黄秋红,顾鼎祥.应用生物吸附剂技术处理中低放废液的研究[J].铀矿地质, 2003, 19(5): 310~317.
    [15] The feasibility study for decontamination of LRW modeling solutions with Mycoton sorbents application[R]. Report under contract No.156/08624243/00085., Moscow: 2000, 10-26.
    [16]叶国安,何建玉,姜永青.酰胺荚醚对Am(Ⅲ)和Eu(Ⅲ)的萃取行为研究Ⅰ.萃取机理研究[J].核化学与放射化学, 2000, 22(2): 65-71.
    [17]刘德敏,刘翔峰,王世联,等. 1-苯基-3-甲基-4-氰硫基-5-吡唑酮的合成及其对镅和铕的萃取研究[J].核化学与放射化学, 2004, 26(1): 53-55.
    [18] Ensor D D, Jarvinen G D, Smith B F. The use of soft donor ligands, 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione and 4,7-diphenyl -1,10-phenanthroline, for improved separation of trivalent Americium and Europium[J]. Solvent Extract and Ion Exchange, 1988, 6(3): 439-445.
    [19]刘德敏,刘翔峰,杨裕生. 5,7二溴-8-羟基喹啉与含N协配体对镅和铕的萃取研究[J].核化学与放射化学, 1997, 19(3): 12-17.
    [20] Siddall T H. Bidentate organophosphorus compounds as extractants I. extraction of cerium, ptomethium and americium nitrates[J]. Journal of Inorganic Nuclear Chemistry, 1963, 25(7): 883-892.
    [21] Ansari S A, Mohapatra P K, Prabhu D R, et al. Transport of Americium (III) through a supported liquid membrane containing N,N,N', N'-tetraoctyl-3-oxapentane, diamide (TODGA) in n-dodecane as the carrier [J]. Journal of Membrane Science, 2006, 282(1-2): 133-141.
    [22]张东,王艳,谭昭怡,等.交联聚乙烯醇磷酸酯的制备及对Eu3+和Am3+的吸附研究[J].四川大学学报(自然科学版),2003, 40(6): 1143-1147.
    [23]陈靖,焦荣洲.镅与镧系元素分离研究的新进展[J].原子能科学技术, 1998, 32(5): 472-475.
    [24]韩宾兵,吴秋林,朱永贝睿. TRPO-TBP/煤油体系对高放废液中镅、铀、钚和锝等的萃取和反萃[J].辐射防护, 2001, 21(2): 93-97.
    [25]王建晨,王秋萍,陈靖,等.用TRPO从模拟高放废液中去除钕和镅的实验[J].清华大学学报(自然科学版),2000, 40(12): 21-24.
    [26] Zakrzewska-Trznadel G, Harasimowicz M. Removal of radionuclides by membrane permeation combined with complexation[J]. Desalination, 2002, 144(1-3): 207-212.
    [27] Navratil J D. Pre-analysis separation and concentration of actinides in groundwater using a magnetic filtration/sorption method[J]. Journal of Radioanalytical and Nuclear Chemistry, 2001, 248(3): 571-574.
    [28] Inoue H, Kagoshima M.Removal of 125I from radioactive experimental waste with an anion exchange paper membrane[J]. Applied Radiation and Isotopes, 2000, 52(6): 1407-1412.
    [29] Teramoto M, Fu S S, Takatani K, et al. Treatment of simulated level radioactive wastewater by supported liquid membranes: uphill transport of Ce(Ⅲ) using CMPO as carrier[J]. Separation and Purification Technology, 2000, 18(1): 57-69.
    [30] Neville M D, Jones C P, Turner A D. The EIX process for radioactive waste treatment[J]. Progress in Nuclear Energy, 1998, 32 (3-4): 397-401.
    [31] Tomaszewska M, Gryta M, Morawski A W. Study on the concentration of acids by membrane distillation[J]. Journal of Membrane Science, 1995, 102(1-2): 113-122.
    [32] Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski A G. Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation[J]. Journal of Membrane Science, 1999, 163(2): 257-264.
    [33] Rout T K, Sengupta D K, Besra L. Flocculation improves uptake of 90Sr and 137Cs from radioactive effluents[J]. International Journal of Mineral Processing, 2006, 79(4): 225-234.
    [34] Akers R.絮凝技术[M]. 1版,潘才元,译.北京:原子能出版社, 1981.
    [35]栾兆坤.微絮凝-深床过滤理论与应用研究[J].环境化学, 1997, 16(6): 590-592.
    [36] Zakrazeska-Trznadel G, Harasimowicz M, Chmielewski A G. Membrane processes in nuclear technology-application for liquid radioactive waste treatment[J]. Separation and Purification Technology, 2001, 22-23: 617-625.
    [37]国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2002.
    [38] Wesat R C. CRC Handbook of Chemistry and Physics[M]. 58th ed. Ohio: CRC Press Inc,1977.
    [39]谢天俊.简明定量分析化学[M].广州:华南理工大学出版社, 2003.
    [40]曹效鑫,魏春海,黄霞.投加粉末活性炭对一体式膜生物反应器膜污染的影响研究[J].环境科学学报, 2005, 25(11): 1443-1447.
    [41]汤鸿霄.用水废水化学基础[M].北京:中国建筑工业出版社. 1979.
    [42]王萍,李国昌.结晶学教程[M].北京:国防工业出版社, 2006.
    [43]赵珊茸,边秋娟,凌其聪.结晶学及矿物学[M].北京:高等教育出版社, 2004.
    [44]叶铁林.化工结晶过程原理及应用[M].北京:北京工业大学出版社, 2006.
    [45]尹国,彭超英,朱国洪,等.膜生物反应器中膜污染研究进展[J].环境保护科学, 2000, 26(101): 10-13.
    [46] Mulder M.膜技术基本原理[M]. 3版,李琳,译.北京:清华大学出版社,1999.
    [47]王晓琳.膜的污染和劣化及其防治对策[J].工业水处理, 2001, 21(9): 1-3.
    [48]许振良.膜法水处理技术[M].北京:化学工业出版社, 2001.