大豆源蛋白饲料原料中三聚氰胺/三聚氰酸的近红外显微成像分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是世界上最大的畜禽养殖生产国之一,同时也是大豆源蛋白饲料的需求大国。蛋白质含量是蛋白饲料的主要营养指标,饲料中若含有禁用的三聚氰胺等非蛋白氮掺假物将致使动物泌尿系统产生结石、肾衰竭、膀胱结石甚至膀胱癌导致死亡。国内外学者采用化学分析等方法能够有效检测饲料中三聚氰胺/三聚氰酸,但现有方法自动化程度低,对样本有破坏性,对环境有污染性,分析过程复杂且成本高,而其他光谱分析法对饲料中多目标物的同步分析能力有限。本文开展大豆源蛋白饲料原料中三聚氰胺/三聚氰酸的近红外显微成像分析方法研究,为饲料中非蛋白氮检测提供新途径,为开发基于图像和光谱信息的蛋白饲料原料和饲料产品中其他更多非蛋白氮掺假物的分析研究提供了参考,也对饲料安全品质在线分析系统的开发研究,促进饲料自动化检测技术发展具有重要意义。论文取得的主要创新性成果有:
     (1)通过对近红外显微成像仪器参数的单因素、多因素方差分析,并综合考虑图像质量、采集效率和含有1%质量分数且不同粒度三聚氰胺的掺假大豆源蛋白饲料原料样本的分析效果,得出推荐采用的近红外显微成像仪器参数条件是空间分辨率=25μm×25μm,干涉仪动镜移动速度=1cm/s,光谱分辨率=32cm-1,扫描次数=4次。
     (2)通过对不同厚度大豆源饲料原料颗粒下三聚氰胺颗粒的近红外线显微成像分析,得出被颗粒厚度在100μm以上大豆源饲料原料覆盖的三聚氰胺颗粒将较难被检测出来:通过对不同类别大豆源饲料原料中三聚氰胺的分析,得出不同类别间分析效果差别较大;通过对不同粒度大豆源饲料原料中三聚氰胺的分析,得出粒度小于500μm时三聚氰胺分析效果差别较小。
     (3)基于近红外显微图像,采用偏最小二乘判别分析、支持向量机判别分析、多元曲线分辨-交替最小二乘结合图像二值化分割,结果大豆源蛋白饲料原料中含量高于0.050%的三聚氰胺被检测出来,对三聚氰胺含量为0.050%-5.000%(w/w)大豆源蛋白饲料原料定量分析所得的三聚氰胺含量值与制备样本的含量值线性回归,得到决定系数R2分别是0.9336、0.9426、08820。多元曲线分辨-交替最小二乘结合图像二值化分割对大豆源蛋白饲料原料中三聚氰酸定性分析结果是大豆源蛋白饲料原料中含量高于0.050%的三聚氰酸被检测出来,对掺入0.050%-5.000%(w/w)三聚氰酸的大豆源蛋白饲料原料定量分析预测的三聚氰酸含量值与制备样本的三聚氰酸含量值线性回归的决定系数R2=0.9367。
     (4)基于近红外显微图像,采用多元曲线分辨-交替最小二乘法建立了大豆源蛋白饲料原料中三聚氰胺、三聚氰酸的同步分析模型,再结合图像二值化分割方法对样本中的三聚氰胺和三聚氰酸进行定性分析,试验结果表明该方法可有效的同步分析出大豆源蛋白饲料原料中的三聚氰胺和三聚氰酸,检测限是0.050%;分析模型对三聚氰胺和三聚氰酸含量均为0.050%-2.000%(w/w)的掺假大豆源蛋白饲料原料进行定量分析,结果得出的三聚氰胺和三聚氰酸含量值与制备样本的含量值进行线性回归的决定系数分别是0.8952和0.7787。
China is one of the largest producing countries of livestock and poultry breeding in the world, and also a soy source protein feed demanded country. Protein content is the main nutrition indicator of the protein feed. Feed contains forbidden nonprotein nitrogen adulterant such as melamine will cause urinary tract stones, renal failure, bladder calculi bladder cancer even lead to death. Scholars at home and abroad can effectively detect melamine/cyanuric acid in feed using chemical analysis methods, but the methods have the disadvantages of the low automatic degree, the destructiveness to the sample, the pollution to the environment, the complex analysis process and the high cost. Moreover, for the other spectral analysis methods, the synchronous analysis ability of multiple target objects in feed is limited. This thesis carried out the analysis method research of melamine/cyanuric acid in soy source protein feed materials using near infrared microscopy imaging. The research provides a new idea for nonprotein nitrogen analysis in feed. The research also provides a reference for the development of other more nonprotein nitrogen adulterant analysis in protein feed materials and feed products based on image and spectral information. The research is significant to the on-line analysis system development of feed safety quality and promoting the development of feed automated analysis technology. The main innovation achievements obtained as followed.
     (1) Based on the variance analysis of single factor and multi-factor of near infrared microscopy (NTRM) imaging instrument parameters and considering the image quality, NIRM image collection efficiency and the analysis results of the soy source protein feed materials containing1%(w/w) different particle size melamine adulterant, the final instrument parameters were recommended as follows:pixel size=25μm, interferometer speed=1cm/s, resolution=32cm-1, scans per pixel=4.
     (2) Based on the research of near infrared microscopy imaging analysis of the melamine particle covered by different thickness soy source protein feed materials particles, it is concluded that the melamine particles covered by the particles with thickness more than100μm will be detected difficultly. The analysis of melamine in different varieties soy source protein feed materials found that the analysis effect had a great difference. Based on the melamine analysis in different soy source protein feed materials with different particle size, it is concluded mat the melamine analysis effect had a small difference when the particle size is less than500μm.
     (3) Based on NIRM imaging, using partial least squares discriminant analysis (PLS-DA), support vector machine discriminant analysis (SVM-DA), multivariate curve resolution-alternating least squares (MCR-ALS) and image threshold segmentation, The qualitative analysis of0.00025%~5.000%(w/w) melamine in soy source protein feed materials was carried out, and the melamine in soy source protein feed materials containing more than0.050%melamine have been detected. The quantitative analysis of0.050%~5.000%(w/w) melamine in soy source protein feed materials was carried out and the percentages of added melamine were correlated to the predicted melamine concentrations. The correlation coefficient (R2) of the PLS-DA, SVM-DA and MCR-ALS methods were0.936,0.9426and0882, respectively. Using NIRM imaging combined with (MCR-ALS) and image threshold segmentation, the qualitative analysis of0.010%~5.000%(w/w) cyanuric acid in soy source protein feed materials was carried out, and the melamine in soy source protein feed materials containing more than0.050%melamine have been detected. Based on the quantitative analysis of soy source protein feed materials containing0.050%~5.000%(w/w) cyanuric acid, the percentages of added cyanuric acid were correlated to the predicted cyanuric acid concentrations and the correlation coefficient (R2) was0.9367.
     (4) Using NIRM imaging and MCR-ALS, the synchronous analysis model of melamine and cyanuric acid in soy source protein feed materials was built. Combined with image threshold segmentation, the qualitative analysis of0.050%~2.000%(w/w) melamine and cyanuric acid melamine in soy source protein feed materials was carried out, and the melamine in soy source protein feed materials containing more than0.050%melamine and cyanuric acid have been detected. The qualitative analysis results show that the method can synchronously analyze melamine and cyanuric acid in soy source protein feed materials effectively. Based on the quantitative analysis of soy source protein feed materials containing0.050%~2.000%(w/w) melamine and cyanuric acid, the percentages of added melamine and cyanuric acid were correlated to the predicted concentrations, and the correlation coefficient (R2) of melamine and cyanuric acid were0.8952and0.7779, respectively.
引文
Abbas O. Fernandez Pierna J, Boix A, et al. Key parameters for the development of a NIR microscopic method for the quantification of processed by-products of animal origin in compound feedingstuffs. Analytical and Bioanalytical Chemistry,2010,397(5):1965-1973
    Abbas O, Lecler B, Dardenne P, et al. Detection of melamine and cyanuric acid in feed ingredients by near infrared spectroscopy and chemometrics. Journal of Near Infrared Spectroscopy,2013,21 (3):183-194
    Ai KL, Liu YL, Lu LH. Hydrogen-Bonding Recognition-Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula. Journal of the American Chemical Society,2009,131 (27):9496-9497.
    Alexandrino GL, Poppi RJ. NIR imaging spectroscopy for quantification of constituents in polymers thin films loaded with paracetamol. Analytica Chimica Acta,2013,76537-44
    Amigo JM. Practical issues of hyperspectral imaging analysis of solid dosage forms. Analytical and Bioanalytical Chemistry,2010,398 (1):93-109
    Amigo JM, Ravn C. Direct quantification and distribution assessment of major and minor components in pharmaceutical tablets by NIR-chemical imaging. European Journal of Pharmaceutical Sciences, 2009,37 (2):76-82
    Awa K, Okumura T, Shinzawa H, et al. Self-modeling curve resolution (SMCR) analysis of near-infrared (NIR) imaging data of pharmaceutical tablets. Analytica Chimica Acta,2008,619 (1):81-86
    Balabin RM, Smirnov SV. Melamine detection by mid-and near-infrared (MIR/NIR) spectroscopy. A quick and sensitive method for dairy products analysis including liquid milk, infant formula, and milk powder. Talanta,2011,85 (1):562-568
    Carneiro RL, Poppi RJ. Homogeneity study of ointment dosage forms by infrared imaging spectroscopy. Journal of Pharmaceutical and Biomedical Analysis,2012,5842-48
    Chao KL, Qin JW, Kim MS. et al. A Raman Chemical Imaging System for Detection of Contaminants in Food. Kim MS, Tu SI, Chao K (eds) Sensing for Agriculture and Food Quality and Safety Iii, Place:Published,2011.
    Chen LM, Liu YN. Surface-Enhanced Raman Detection of Melamine on Silver-Nanoparticle-Decorated Silver/Carbon Nanospheres:Effect of Metal Ions. Acs Applied Materials & Interfaces,2011,3(8): 3091-3096
    Cruz J, Bautista M, Amigo JM, et al. Nir-chemical imaging study of acetylsalicylic acid in commercial tablets. Talanta,2009,80 (2):473-478
    Delarozadelgado B, Soldado A, Martinezfernandez A, et al. Application of near-infrared microscopy (NIRM) for the detection of meat and bone meals in animal feeds:A tool for food and feed safety. Food Chemistry,2007,105 (3):1164-1170
    Ding N, Yan N, Ren CL, et al. Colorimetric Determination of Melamine in Dairy Products by Fe(3)O(4) Magnetic Nanoparticles-H(2)O(2)-ABTS Detection System. Analytical Chemistry,2010,82 (13): 5897-5899
    Dome JL, Doerge DR, Vandenbroeck M, et al. Recent advances in the risk assessment of melamine and cyanuric acid in animal feed. Toxicology and Applied Pharmacology,2013,270(3):218-229
    Ehling S, Tefera S, Ho IP. High-performance liquid chromatographic method for the simultaneous detection of the adulteration of cereal flours with melamine and related triazine by-products ammeline, ammelide, and cyanuric acid. Food Additives and Contaminants,2007,24(12):1319-1325
    Garber EAE. Detection of melamine using commercial enzyme-linked immunosorbent assay technology. Journal of Food Protection,2008,71 (3):590-594
    Gendrin C, Roggo Y, Collet C. Content uniformity of pharmaceutical solid dosage forms by near infrared hyperspectral imaging:A feasibility study. Talanta,2007,73 (4):733-741
    Guo LQ, Zhong JH, Wu JM, et al. Sensitive turn-on fluorescent detection of melamine based on fluorescence resonance energy transfer. Analyst,2011,136(8):1659-1663
    Han CP, Li HB. Visual detection of melamine in infant formula at 0.1 ppm level based on silver nanoparticles. Analyst,2010,135 (3):583-588
    Harsha SS, Laman N, Grischkowsky D. High resolution waveguide THz-TDS of melamine.2008 Quantum Electronics and Laser Science Conference (QELS),2008.
    Haughey SA, Graham SF, Cancouet E, et al. The application of Near-Infrared Reflectance Spectroscopy (NIRS) to detect melamine adulteration of soya bean meal. Food Chemistry,2013,136 (3-4): 1557-1561
    He L, Liu Y, Lin M, et al. A new approach to measure melamine, cyanuric acid, and melamine cyanurate using surface enhanced Raman spectroscopy coupled with gold nanosubstrates. Sensing and Instrumentation for Food Quality and Safety,2008,2(1):66-71
    Huang H, Li L, Zhou GH. et al. Visual detection of melamine in milk samples based on label-free and labeled gold nanoparticles. Talanta,2011,85(2):1013-1019
    Huang Y, Cao J, Ye S, et al. Near-infrared spectral imaging for quantitative analysis of active component in counterfeit imidacloprid using PLS regression. Optik,2013,124(13):1644-1649
    Ihunegbo FN, Tesfalidet S, Jiang W. Determination of melamine in milk powder using zwitterionic HILIC stationary phase with UV detection. Journal of Separation Science,2010,33(6-7):988-995
    Jin Y, Meng LC, Li MX, et al. Highly sensitive detection of melamine and its derivatives by capillary electrophoresis coupled with online preconcentration techniques. Electrophoresis,2010,31 (23-24):3913-3920
    Kim B. Perkins LB, Bushway RJ, et al. Determination of melamine in pet food by enzyme immunoassay, high-performance liquid chromatography with diode array detection, and ultra-performance liquid chromatography with tandem mass spectrometry. Journal of Aoac International,2008,91 (2): 408-413
    Lachenmeier DW, Humpfer E, Fang F, et al. NMR-Spectroscopy for Nontargeted Screening and Simultaneous Quantification of Health-Relevant Compounds in Foods:The Example of Melamine. Journal of Agricultural and Food Chemistry,2009,57(16):7194-7199
    Lee SY, Ganbold EO, Choo J, et al. DETECTION OF MELAMINE IN POWDERED MILK USING SURFACE-ENHANCED RAMAN SCATTERING WITH NO PRETREATMENT. Analytical Letters,2010,43 (14):2135-2141
    Liang AH, Zhou LP, Jiang ZL. A Simple and Sensitive Resonance Scattering Spectral Assay for Detection of Melamine Using Aptamer-Modified Nanosilver Probe. Plasmonics,2011,6(2): 387-392
    Lin M, He L, Awika J, et al. Detection of Melamine in Gluten, Chicken Feed, and Processed Foods Using Surface Enhanced Raman Spectroscopy and HPLC. Journal of Food Science,2008,73 (8): T129-T134
    Liu YL, Chao KL, Kim MS, et al. Potential of Raman Spectroscopy and Imaging Methods for Rapid and Routine Screening of the Presence of Melamine in Animal Feed and Foods. Applied Spectroscopy,2009,63 (4):477-480
    Lou TT, Wang YQ, Li JH, et al. Rapid detection of melamine with 4-mercaptopyridine-modified gold nanoparticles by surface-enhanced Raman scattering. Analytical and Bioanalytical Chemistry, 2011,401 (1):333-338
    Lu C, Xiang B, Hao G, et al. Rapid detection of melamine in milk powder by near infrared spectroscopy. Journal of Near Infrared Spectroscopy,2009,17(2):59-67
    Manuel Amigo J, Cruz J, Bautista M, et al. Study of pharmaceutical samples by NIR chemical-image and multivariate analysis. Trac-Trends in Analytical Chemistry,2008,27(8):696-713
    MauerLJ, Chernyshova AA, Hiatt A, et al. Melamine Detection in Infant Formula Powder Using Near-and Mid-Infrared Spectroscopy. Journal of Agricultural and Food Chemistry,2009,57 (10): 3974-3980
    Ping H, Zhang MW, Li HK, et al. Visual detection of melamine in raw milk by label-free silver nanoparticles. Food Control,2012,23 (1):191-197
    Piqueras S, Duponchel L, Tauler R, et al. Resolution and segmentation of hyperspectral biomedical images by Multivariate Curve Resolution-Alternating Least Squares. Analytica Chimica Acta, 2011,705 (1-2):182-192
    Puchert T, Lochmann D. Menezes JC, et al. A multivariate approach for the statistical evaluation of near-infrared chemical images using Symmetry Parameter Image Analysis (SPIA). European Journal of Pharmaceutics and Biopharmaceutics,2011,78(1):117-124
    Ravn C, Skibsted E, Bro R. Near-infrared chemical imaging (NIR-CI) on pharmaceutical solid dosage forms-Comparing common calibration approaches. Journal of Pharmaceutical and Biomedical Analysis,2008,48 (3):554-561
    Rohrer J, Lefferts S.高效液相色谱-紫外检测法快速检测液态牛奶和奶粉中的三聚氰胺.生命科学仪器,2010,(02):27-31
    Sabin GP. Breitkreitz MC, de Souza AM, et al. Analysis of pharmaceutical pellets:An approach using near-infrared chemical imaging. Analytica Chimica Acta,2011,706(1):113-119
    Sabin GP, de Carvalho Rocha WF, Poppi RJ. Study of the similarity between distribution maps of concentration in near-infrared spectroscopy chemical imaging obtained by different multivariate calibration approaches. Microchemical Journal,2011,99(2):542-547
    Salguero-Chaparro L, Baeten V, Abbas O, et al. On-line analysis of intact olive fruits by vis-NIR spectroscopy:Optimisation of the acquisition parameters. Journal of Food Engineering,2012,112 (3):152-157
    Schimleck LR, Sturzenbecher R, Jones PD, et al. Development of wood property calibrations using near infrared spectra having different spectral resolutions. Journal of Near Infrared Spectroscopy,2004, 12 (1):55-61
    Smirnov SV. Neural network based method for melamine analysis in liquid milk.2011 International Conference on Intelligent Computation Technology and Automation (ICICTA),2011,
    von Holst C, Baeten V, Boix A, et al. Transferability study of a near-infrared microscopic method for the detection of banned meat and bone meal in feedingstuffs. Analytical and Bioanalytical Chemistry,2008,392 (1):313-317
    Wang D, Ding YS, Cao JL, et al. Study of spatial distribution for the active ingredient in ibuprofen tablet based on near-infrared micro-imaging technology. Chinese Chemical Letters,2011,22(11): 1335-1338
    Wang QA, Haughey SA, Sun YM, et al. Development of a fluorescence polarization immunoassay for the detection of melamine in milk and milk powder. Analytical and Bioanalytical Chemistry,2011, 399 (6):2275-2284
    Wen ZQ, Li GY, Ren D. Detection of Trace Melamine in Raw Materials Used for Protein Pharmaceutical Manufacturing Using Surface-Enhanced Raman Spectroscopy (SERS) with Gold Nanoparticles. Applied Spectroscopy,2011,65 (5):514-521
    Yin WW, Liu JT, Zhang TC, et al. Preparation of Monoclonal Antibody for Melamine and Development of an Indirect Competitive ELISA for Melamine Detection in Raw Milk, Milk Powder, and Animal Feeds. Journal of Agricultural and Food Chemistry,2010,58(14):8152-8157
    Zhang X, Tauler R. Application of Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) to remote sensing hyperspectral imaging. Analytica Chimica Acta,2013,76225-38
    Zhang XF, Zou MQ, Qi XH, et al. Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy. Journal of Raman Spectroscopy,2010,41 (12):1655-1660
    Zhou JH, Zhao J, Xue XF, et al. Determination of melamine in royal jelly and lyophilized powder using ultrasonically assisted extraction by ion-pair HPLC with UV detection. Journal of Separation Science,2010,33 (2):167-173
    广东省饲料行业信息网.布瑞克中国豆粕供需平衡表(2014.2.10).2014.2.13
    巢强国,葛宇,王守法,等.气相色谱/质谱-同位素内标法定量分析动物源性食品中的三聚氰胺.食品工业,2010,(02):86-89
    陈安宇,焦义,刘春伟,等.采用增强拉曼检测技术对牛奶中三聚氰胺的检测.中国卫生检验杂 志,2009,(08):1710-1712
    陈俊峰,贾敬亮,张红艳.酶联免疫法检测生鲜乳中三聚氰胺的研究.乳业科学与技术,2011,(01):30-32
    陈智慧,史梅,王秋香,等.用凯氏定氮法测定食品中的蛋白质含量.新疆畜牧业,2008,(05):22-24
    程劫,苏晓鸥.纳米银粒子表面增强拉曼光谱在宠物饲料中三聚氰胺的速测研究.光谱学与光谱分析,2011,(01):131-135
    中国饲料行业信息网.饲料原料之——豆粕.2012.8.22
    崔烨.太赫兹光谱技术在食品安全中的应用:[硕士学位论文].首都师范大学,2009
    丁丽,相玉红,张卓勇.近红外光谱定量预测奶粉中三聚氰胺的含量.首都师范大学学报(自然科学版),2010,31(1):27-29
    丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述.电子科技大学学报,2011,(01):2-10
    董学锋,戴连奎,黄承伟.结合PLS-DA与SVM的近红外光谱软测量方法.浙江大学学报(工学版),2012,(05):824-829
    中华商务网.豆粕营养成份及标准.2002.8.15
    段焰青,杨涛,孔祥勇,等.样品粒度和光谱分辨率对烟草烟碱NIR预测模型的影响.云南大学学报(自然科学版),2006,28(04):340-344+349
    樊玉霞.猪肉肉糜品质与安全可见/近红外光谱快速检测方法的实验研究:[博士学位论文].浙江大学,2011
    范世福,李昀,赵友全.光谱成像的原理_技术和生物医学应用.生命科学仪器,2004,2(4):24-27
    冯朝丽,朱启兵,朱晓,等.基于光谱特征的玉米品种高光谱图像识别.江南大学学报(自然科学版),2012,(02):149-153
    高书燕,张树霞,杨恕霞,等.表面增强拉曼散射活性基底.化学通报,2007,(12):908-914
    郭俊先.基于高光谱成像技术的棉花杂质检测方法的研究:[博士学位论文].浙江大学,2011
    郭重华.近红外显微图像信息提取方法研究及应用:[硕士学位论文].北京:中国农业大学,2006
    韩雪.饲料中三聚氰胺的判定标准及检测方法.今日畜牧兽医,2011,(S1):58-63
    郝勇,孙旭东,高荣杰,等.基于可见/近红外光谱与SIMCA和PLS-DA的脐橙品种识别.农业工程学报,2010,26(12):373-377
    何彬.基于红外光谱技术的牛奶掺杂判别方法的研究:[硕士学位论文].天津大学,2010
    胡艳丽,王克然.饲料中真蛋白的测定.河南畜牧兽医(综合版),2007,(10):31-32
    黄红娟,郑一平,楼寿松.傅立叶显微红外化学成像在朱墨时序鉴定中的应用研究.刑事技术,2010,(04):29-32
    黄远程,张良培,李平湘,等.多光谱荧光影像的纯光谱分析与信号分离.光学学报,2010,(12):3631-3636
    黄越,王冬,段佳,等.近红外光谱成像分析技术的应用进展.现代仪器,2011,(05):13-18+14
    郏东耀,丁天怀.纤维红外吸收特性及其在皮棉杂质检测中的应用.农业工程学报,2004,(03):104-108
    姜训鹏,杨增玲,韩鲁佳,等.精料补充料中肉骨粉的显微近红外成像识别.农业机械学报, 2011,42(7):152-159
    蒋焕煜,彭永石,谢丽娟,等.扫描次数对番茄叶漫反射光谱和模型精度的影响研究.光谱学与光谱分析,2008,28(8):1763-1766
    井伟,陈旻实,李小晶,等.HPLC同时检测食品接触材料中三聚氰胺与三聚氰酸单体迁移量.分析试验室,2011,(04):34-38
    黎静,韩鲁佳,杨增玲.豆粕中三聚氰胺显微近红外成像检测的扫描条件优化.农业工程学报,2013,(13):244-254
    黎重.基于太赫兹时域光谱的奶粉中三聚氰胺的检测技术研究:[硕士学位论文].华中科技大学,2009
    李红,武丽荣,史宣明.大豆皮利用的研究进展.中国油脂,2011,(01):63-66
    李建蕊,李九生,赵晓丽.太赫兹时域谱技术快速定性检测奶粉中的三聚氰胺.中国计量学院学报,2009,(02):131-134
    李连庆,陈永平,张素青,等.三聚氰胺的检测方法及进展.天津水产,2010,(01):27-31
    李培玉,王际英,宫向红,等.高效液相色谱法检测渔用饲料及原料中的三聚氰胺.饲料工业,2009,(06):49-51
    李婷,孟子晖,王鹏,等.多元曲线分辨等方法和红外光谱用于二硝基五亚甲基四胺的合成反应机理研究.化学学报,2010,(20):2104-2110
    刘汇涛,邢秀梅,蒋清奎,等.三聚氰胺和三聚氰酸的毒性及其致病机理研究进展.特产研究,2010,(04):52-58
    刘木华.农产品质量安全光学无视检测技术及应用.Place:华中科技大学出版社,2011.6
    刘小莉.应用傅利叶近红外光谱定性、定量检测鱼粉中掺杂三聚氰胺的研究:[硕士学位论文].四川农业大学,2010
    刘小莉,贾刚,王康宁,等.应用傅利叶近红外光谱定性-定量检测鱼粉中掺杂三聚氰胺的研究.动物营养学报,2010,22(3):741-749
    刘瑛.基于主成分分析的遥感图像分割算法:[博士学位论文].新疆大学,2011
    刘瑜.多元曲线分辨结合在线红外光谱在含能化合物合成机理中的应用:[硕士学位论文].西北大学,2012
    孟兰环,刘兴凯,郭军.乳及乳制品三聚氰胺残留HPTLC检测方法的初步建立.中国乳品工业,2011,(06):60-61+64
    中国畜牧业信息网.全脂大豆.2007.2.6
    宋彬彬.饲料中三聚氰胺的检测.养殖技术顾问,2011,(05):90
    王冬.近红外显微图像技术及其在生物学中的应用:[硕士学位论文].北京:中国农业大学,2007
    王冬,马智宏,赵柳,等.两种相似塑料材料的显微近、中红外成像方法研究.光谱学与光谱分析,2011,31(09):2377-2382
    王冬,马智宏,赵柳,等.显微近红外图像用于分辨2种塑料材料的成像方法研究.计算机与应用化学,2010,27(12):1665-1668
    王冬,闵顺耕,丁云生,等.干烟叶的显微近红外图像分析.现代仪器,2010,16(1):27-30
    吴家鑫,刘晓洁,齐鹏,等.基于主元分析-模糊C均值聚类优化黄霉素发酵过程.化学工程, 2013,(10):5-8
    肖道清,曹国洲,朱晓艳,等.高效液相色谱法测定蜜胺-甲醛制品中三聚氰胺的特定迁移量.分析试验室,2010,(05):76-78
    谢丽娟,刘东红,张宇环,等.分辨率对近红外光谱和定量分析的影响研究.光谱学与光谱分析,2007,27(08):1489-1492
    邢淑婕,刘开华.牛奶中三聚氰胺的ELISA检测研究.中国食品添加剂,2009,(05):187-191
    徐会宁,贾泽慧,李华.HPLC结合MCR-ALS测定醋柳黄酮片中有效成分的含量.中国药学杂志,2008,(13):1025-1028
    徐晓枫,蒲云霞,包玉龙,等.高效液相色谱法测定乳清粉中的三聚氰胺.中国卫生检验杂志,2009,(03):541-542
    徐云,王一鸣,吴静珠,等.用近红外光谱检测牛奶中的三聚氰胺.红外与毫米波学报,2010,29(1):53-56
    杨仁杰,杨延荣,杜艳红,等.掺杂三聚氰胺牛奶二维相关红外光谱法的鉴别研究.天津农学院学报,2011,(04):34-37+52
    杨小静.三聚氰酸水平及与三聚氰胺合用对产蛋鸡健康影响及残留研究:[硕士学位论文].四川农业大学,2011
    杨秀坤,钟明亮,景晓军,等.基于W2DPCA-FCM的近红外显微图像分割.光学学报,2013,(08):81-86
    杨秀坤,钟明亮,景晓军,等.基于主成分分析-二阶导数光谱成像的红外显微图像分析.光学学报,2012,(07):110-114
    杨忠,任海青,江泽慧.PLS-DA法判别分析木材生物腐朽的研究.光谱学与光谱分析,2008,28(04):793-796
    姚琨,李富伟,李兆勇.发酵豆粕概述.饲料与畜牧,2011,12:32-38
    张方.多元曲线分辨等化学计量学方法在分析化学中的应用研究:[博士学位论文].西北大学,2006
    张贵生.三聚氰胺检测方法研究进展.国外医学(卫生学分册),2009,(04):239-242
    张婷婷.太赫兹时域光谱技术在农业和材料中的应用基础研究:[硕士学位论文].电子科技大学,2009
    张晓曼.基于SVM的近红外光谱定性分析及其应用:[硕士学位论文].2008
    张银堂,张彦峥,张丽娟,等.三聚氰胺-Cu-(2+)-ANS三元络合物荧光光谱法检测超痕量三聚氰胺.分析化学,2010,(08):1105-1109
    赵丽丽,赵龙莲,李军会,等.傅里叶变换近红外光谱仪扫描条件对数学模型预测精度的影响.光谱学与光谱分析,2004,24(1):41-44
    赵宁,徐飞,吴小平,等.ELISA一步法快速检测牛奶中三聚氰胺的研究.中国畜牧兽医,2011,(04):124-126
    赵宇翔,彭少杰,赵建丰,等.表面增强拉曼光谱法快速检测牛奶中的三聚氰胺.乳业科学与技术,2011,(01):27-29
    郑洁,周兵,邵康群,等.三聚氰胺分光光度法快速检测研究.现代农业科技,2011,(04):342-343
    郑清林,张瑞.原料乳中三聚氰胺快速检测液相色谱法.中国仪器仪表,2009,(08):51-53
    郑小霞,钱锋.高斯核支持向量机分类和模型参数选择研究.计算机工程与应用,2006,(01):77-79
    周小柳,唐忠锋,王继虎,等.三聚氰胺和三聚氰酸的太赫兹光谱研究.安徽农业科学,2009,(31):15120-15122
    朱瑾娜,李方实.食品和饲料中三聚氰胺检测方法研究进展.食品科学,2009,(11):276-279