外源脯氨酸提高甜瓜幼苗耐盐性的生理调节功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化严重影响作物生长发育,制约着作物产量和品质的提高。在设施栽培中由于特殊的小气候环境,加之复种指数高、不科学的肥水管理加重了土壤盐渍化,解决土壤盐渍化是当前设施蔬菜生产中急需解决的难题。脯氨酸是植物体内重要的渗透调节物质,许多植物受到逆境胁迫时会积累较高水平的脯氨酸,它在增强植物抗逆性上具有重要的作用。甜瓜因其果实香甜,富含营养,深为人们喜爱,由于甜瓜对土壤盐渍化所造成盐害胁迫比较敏感,限制了其种植的范围和生长效果。本研究以耐盐性较强的甜瓜品种‘玉皇’和耐盐性较弱的品种‘雪美’为试材,研究外源脯氨酸对盐(100mmol·L-1NaCl)胁迫下甜瓜幼苗生长、光合代谢、活性氧代谢和矿质元素吸收与分布等的影响;在此基础上,以‘雪美’为试材,研究了外源脯氨酸对盐胁迫下甜瓜幼苗体内硝酸还原作用与脯氨酸代谢的影响,旨在揭示外源脯氨酸提高甜瓜幼苗耐盐性的生理调节功能,主要结果如下:
     采用隶属函数分析法对12个甜瓜品种进行了耐盐性分析,筛选出耐盐性强的品种3个,耐盐性中等的品种6个,耐盐性弱的品种3个。
     适宜浓度脯氨酸处理可以缓解盐胁迫对‘雪美’甜瓜幼苗的伤害,0.1-0.4mmol·L-1脯氨酸能显著提高盐胁迫下甜瓜幼苗的鲜重和干重,增加甜瓜幼苗叶片的叶绿素含量,降低根系超氧阴离子(O2·-)产生速率、过氧化氢(H2O2)含量、丙二醛(MDA)含量和质膜相对透性,其中以添加0.2mmol·L-1脯氨酸效果最好,而较高浓度的脯氨酸(1.6-3.2mmol·L-1)加重了盐胁迫下甜瓜幼苗的伤害。
     盐胁迫降低了甜瓜幼苗根系的SOD、CAT、APX、DHAR和GR抗氧化酶活性,耐盐性较弱的‘雪美’甜瓜变化幅度大于耐盐性较强的‘玉皇’,施用外源脯氨酸可提高盐胁迫下2个甜瓜品种体内的抗氧化酶活性,降低甜瓜体内O2·-产生速率和H2O2、 MDA含量及质膜相对透性,增强甜瓜的耐盐性,其中对‘雪美’效果好于‘玉皇’。外源脯氨酸还提高了盐胁迫和正常营养液培养下非酶促抗氧化物质ASA和GSH的含量。这些结果表明,外源脯氨酸可通过增强盐胁迫下甜瓜幼苗体内抗氧化酶活性和抗氧化剂来清除盐胁迫产生的活性氧,保护膜的完整性,缓解盐胁迫伤害。
     盐胁迫导致甜瓜幼苗叶片叶绿素含量下降,降低甜瓜幼苗叶片的净光合速率(Pn)和PSⅡ实际光化学效率(ΦPSⅡ),抑制了甜瓜幼苗的生长,对‘雪美’甜瓜抑制作用大于‘玉皇’。盐胁迫显著地降低了‘玉皇’甜瓜气孔导度(Gs)和胞间CO2浓度(Ci),提高了‘雪美’甜瓜幼苗的Ci,说明‘玉皇’Pn下降是由气孔因素引起的,‘雪美'Pn下降是由非气孔因素引起的。外源脯氨酸通过提高‘雪美’甜瓜叶片的叶绿素含量、气孔导度(Gs)、胞间CO2浓度(Ci)、PS Ⅱ实际光化学效率(OPS Ⅱ)和光化学淬灭(qP),提高‘玉皇'Pn、Chlb和ΦPS Ⅱ,增强甜瓜植株光合速率,提高PsⅡ的运转效率。表明,外源施加脯氨酸可以通过增强光合电子传递效率,增加了光化学反应分配的光能份额,从而提高了实际光化学效率,增强甜瓜的耐盐性,对耐盐性较弱的‘雪美’甜瓜使用效果较好。
     盐胁迫降低了植株体内Ca2+、K+、Mg2+等大量元素和Fe、Mo、Mn、Zn、Cu等微量元素含量,增加了Na+和Cl-的含量,破坏了甜瓜体内矿质营养元素平衡,并且耐盐性较弱的‘雪美’甜瓜变化的幅度大于耐盐性较强的‘玉皇’甜瓜;盐胁迫提高了甜瓜幼苗根系N和P的含量,降低了叶片中N和P含量。盐胁迫下外源施用脯氨酸对甜瓜幼苗体内的矿质营养元素的吸收具有明显地调节作用,进一步提高了N和P含量和Ca2+、K+、Mg2+、Fe、Mo、Mn、Zn、Cu等含量,增加了组织中的K+/Na+、Mg2+/Na+和Ca2+/Na+的比值,提高对Ca2+、K+、Mg2+的选择性运输能力。表明,脯氨酸可以促进甜瓜对各种必需营养元素的吸收,增强离子区域化分布能力,调节植物体内的矿质营养元素平衡,缓解盐胁迫对植物的伤害。
     盐胁迫提高了‘雪美’甜瓜幼苗叶片和根系内铵态氮(NH4+-N)含量,降低了硝态氮(N03--N)含量以及硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性,抑制了甜瓜对氮素的吸收利用;盐胁迫下,甜瓜幼苗可溶性蛋白和脯氨酸含量提高。外源施用脯氨酸增强了盐胁迫下甜瓜幼苗体内NR和GS活性,提高了盐胁迫下甜瓜幼苗叶片和根系内N03--N含量、降低了盐胁迫下甜瓜幼苗叶片和根系内NH4+-N含量,促进了甜瓜对氮素的吸收利用。施用外源脯氨酸进一步提高了盐胁迫下甜瓜幼苗体内可溶性蛋白和脯氨酸含量,抑制了吡咯啉-5-羧酸合成酶(P5CS)活性,提高了鸟氨酸转氨酶(OAT)和脯氨酸脱氢酶(ProDH)活性,改变了植物体内脯氨酸代谢途径。这些结果表明,脯氨酸可以调节甜瓜幼苗体内硝酸还原作用,促进植株对氮素的吸收,减轻盐胁迫伤害;同时也通过调节甜瓜体内脯氨酸代谢,增加脯氨酸含量,提高甜瓜耐盐性。
Soil salinity severely affects the growth and development of crops and restricts their yields and quality. However, this phenomenon is becoming more and more serious because of special microclimate environment, high multiple crop index and unscientific management of water and fertilizer and needs to be solved urgently in greenhouse cultivation. Proline is a crucial osmotic adjustment in plants and will be accumulated to a higher lever when plants are in environmental stress, which plays an important role in enhancing resisting adversity of plants. In this paper, melon cultivars salt tolerance were identified and filtered. Based on the effects of exogenous proline on growth, photosynthesis, ROS metabolism, the absorption and distribution of mineral elements in melon cultivars (Cucumis melo L. cv. Yuhuang and cv. Xuemei) under100mmol·L-1salt stress, had studied the effects of exogenous proline on the nitrate reducation and proline metabolism in Xuemei, Main results were as follows:
     Salt tolerance of the12melon cultivars melon were compared by membership function method, and selected three high salt tolerant, six moderate salt tolerant and three sensitivity salt tolerant melon cultivars.
     Suitable concentration proline could alleviate damage caused by salt stress,0.1-0.4mmol·L-1proline could improve the fresh and dry weight of the melon seedlings under the salt stress remarkably and increase their chlorophyll contents as well as decreased H2O2content, O2-production rate, MDA content and membrane permeability. Among these results, the0.2mmol·L-1proline treatment showed the best effect. But the higher concentration of proline treatment1.6and3.2mmol·L-1made the damage on melon seedlings worse.
     Salt stress decreased SOD, CAT, DHAR, APX and GR activities of both melon cultivars, and the variation range of Xuemei was larger than Yuhuang. After using proline, the two cultivars'antioxidant activities and salt tolerance was increased while their O2·-production rate was decreased with H2O2content, MDA content and membrane permeability decreased as well under salt stress,and its effects on Xuemei was better than Yuhuang. exogenous proline also increased the content of non-enzymatic antioxidants such as ASA and GSH under salt stress and normal nutrient solution culture. Therefore, it showed that the exogenous proline can clear the ROS caused by salt stress by increasing the activities of antioxidant enzymed and non-enzymatic antioxidants content so that it can protect the membrane integrity to lessen the damage caused by the salt stress.
     Salt stress decreased the chlorophyll content, Pn and ΦPSⅡ, inhibited the growth, the effect was more markedly Xuemei than Yuhuang. Salt stress decreased Gs and Ci in cv. Yuhuang melon, increased Ci in cv. Xuemei. Exogenous proline increased chlorophyll content, Gs, Ci, ΦPS Ⅱ and qP in cv. Xuemei, increased Pn, Chlb and ΦPS Ⅱ in Yuhuang, Therefore, these results showed that exogenous proline can increase the actual photoche-mical efficiency to strengthen melons'salt tolerance by enhancing the transport rate of photo synthetic electron and light sharing distributed by photochemical reaction and its effects on Xuemei was better.
     Salt stress decreased ion contents, in creased the Na+and Cl-contents in melon, destroy the balance of mineral nutrient, the effect was more markedly Xuemei than Yuhuang; salt stress increased the N and P contents in roots, decreased in leaves. Exogenous proline markedly regulate the absorption to mineral nutrient under salt stress, increased N and P content in melon; and also Ca、K、Mg、Fe、Mo、Mn、Zn and Cu contents, enhanced K+/Na+、Mg2+/Na+and Ca2+/Na+ratio. These results showed that exogenous proline could alleviate the damage by accelerating melons'absorption of necessary nutrients, enhancing ion's regional distribution ability and regulating the absorption balance of mineral nutrients.
     Salt stress increased NH4+-N, decreased NO3--N content, NR and GS activities in leaves and roots of cv. Xuemei melon, inhibit the absorption of nitrogen in melon; melon increased the salt torelent via to increase soluble protein and proline contents. Exogenous proline increased NR and GS activities, increased NO3--N, decreased NH4+-N content, promoting the absorption of N. exogenous proline improved the soluble protein and proline contents, feedback inhibite P5CS activity, increase OAT and ProDH activities. it could be concluded that the proline could regulate Nitrate reduction and foster their absorption to nitrogen to alleviate the damage caused by salt stress.melons salt tolerance could be improved by regulating their proline metabolism to increase the proline content.
引文
安树青,张碧君,仲崇信.胁迫下小麦幼苗叶绿素含量、生物量及12种元素的累积与分布.海洋湖沼通报,1996,2:33-39
    安永平,强爱玲,张媛媛,等.渗透胁迫下水稻种萌发特性及抗旱性鉴定指标研究.植物遗传资源学报,2006,7(4):421-426
    白桦,王玉国.外源脯氨酸对盐胁迫下大豆愈伤组织SOD和POD活性的影响.华北农学报,2002,17(3):37-40
    白丽萍,周宝利,李宁,等.盐胁迫下嫁接茄的离子吸收和运输.植物生理学通讯,2005,41(6):767-769
    蔡雁平,袁祖华,孙小武.盐胁迫下嫁接黄瓜和自根黄瓜幼苗的保护酶活性变化.湖南农业大学学报(自然科学版),2008,34(5):554-556
    曹芳,魏永胜.渗透胁迫下硝酸钾对烟草脯氨酸代谢途径的影响.西北农业学报,2010,19(9):144-148
    车永梅,唐静,陈康,等.一氧化氮对盐胁迫下玉米幼苗叶绿素荧光参数和光合特性的影响.玉米科学,2009,17(3):91-94
    陈惠哲,Natalia Ladatko,朱德峰,等.盐胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究.植物生态学报,2007,31(5):937-945
    陈火英,张建华,庄天明,等.利用花粉管通道技术培育番茄耐盐新种质.西北植物学报,2004,24(1):12-16
    陈坤明,宫海军,王锁民.植物抗坏血酸的生物合成、转运及其生物学功能.西北植物学报,2004,24(2):329-336
    陈沁,刘友良.谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用.作物学报,2000,26(3):365-371
    陈少良,李金克,毕望富,等.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化.植物学通报,2001,18(5):587-596
    陈少良,李金克,尹伟伦,等.盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化.北京林业大学学报,2002,24(5):84-88
    陈淑芳,朱月林,刘友良,等NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量和光合特性的影响.园艺学报,2005,32(4):609-613
    陈亚华,沈振国,刘有良,等.胁迫对棉花幼苗的离子平衡.棉花学报,2001,13(4):225-229
    陈因.氨态氮和硝态氮的测定.见:中国科学院上海植物生理研究所,上海市生理学会编,现代植物生理学指南.北京:科学出版社,1999.138-140
    陈 因,方大惟.外源脯氨酸对受短期高温胁迫的蓝藻固氮活性的影响.南京农业大学学报,1993,16(2):42-46
    陈竹生,聂华堂,计玉,等.柑桔种质的耐盐性鉴定.园艺学报,1992,19(4):289-295
    程玉静,郭世荣,张润花,等.外源硝酸钙对黄瓜幼苗盐胁迫伤害的缓解作用.西北植物学报,2009,29(9):1853-1859
    戴松香,陈少良.植物根细胞离子通道研究进展.北京林业大学学报,2005,27(3):98-103
    戴伟民,蔡润,潘俊松,等.盐胁迫对番茄幼苗生长发育的影响.上海农业学报,2002,18:58-62
    丁能飞,傅庆林,刘琛,等.外源氯化钙对盐胁迫下西兰花抗氧化酶系统及离子吸收的影响.中国农学通报,2010,26(6):133-137
    董园园,董彩霞,卢颖林,等.NH4+-N部分代替NO3--N对番茄生育中后期氮代谢相关酶活性的影响.土壤学报,2006,43(2):261-266
    杜长霞,李娟,郭世荣,等.外源亚精胺对盐胁迫下黄瓜幼苗生长和可溶性蛋白表达的影响.西北植物学报,2007,27(6):1179-1184
    杜利霞,董宽虎,夏方山,等.盐胁迫对新麦草种子萌发特性和生理特性的影响.草地学报,2009,6(17):789-794
    段吉锋,刘世琦,张自坤,等.盐胁迫对尼日利亚茄子与普通茄子幼苗生理生化指标的影响.西北农业学报,2010,19(2):159-162
    段九菊,郭世荣,樊怀福,等.盐胁迫对黄瓜幼苗根系脯氨酸和多胺代谢的影响.西北植物学报,2006,26(12):2486-2492
    段显德,周波,杨国会,等.玉米耐盐性研究.通化师范学院学报,2001,22(2):67-69
    樊怀福,郭世荣,杜长霞,等.外源NO对NaCl胁迫下黄瓜幼苗氮化合物和硝酸还原酶活性的影响.西北植物学报,2006,26(10):2063-2068
    樊怀福,郭世荣,焦彦生,等.外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响,生态学报,2007a,27(2):546-553
    樊怀福,李娟,郭世荣,等.外源NO对NaCl胁迫下黄瓜幼苗生长和根系谷胱甘肽抗氧化酶系统的影响,西北植物学报,2007b,27(8):1611-1618
    樊怀福,郭世荣,李娟,等.外源一氧化氮对盐胁迫下黄瓜幼苗生长和渗透调节物质含量的影响.生态学杂志,2007,26(12):2045-205
    范浩定,吴爱芳,周仕龙.大棚蔬菜土壤盐渍化治理技术研究.长江蔬菜,2004,(4):48-49
    房玉林,惠竹梅,高邦牢,等.盐胁迫下葡萄光合特性的研究.土壤通报,2006,37(5):881-884
    高方远,陆贤军,康海岐,等.水稻耐低磷种质的苗期筛选与鉴定.作物学报,2006,32(8):1151-1155
    高洪波,郭世荣,汪天.营养液低氧胁迫对网纹甜瓜幼苗脯氨酸和多胺含量的影响.植物生理学通讯,2004,40(4):434-436
    高洪波,章铁军,吕桂云,等NaCl胁迫下外源γ-氨基丁酸对黄瓜幼苗生长和活性氧代谢的影响.西北植物学报,2007,27(10):2046-2051
    高永生,陈集双.盐胁迫下La3+对小麦幼苗叶片抗氧化系统活性的影响.中国稀土学报,2005,23(4):490-495
    龚明,赵方杰,吴颂如,等NaCl胁迫对大麦硝酸盐吸收和有关的酶活的影响.植物生理学通讯,1990,(2):13-16
    顾兴友,郑少玲,严小龙,等.盐浓度对水稻苗期耐盐指标变异度的影响.华南农业大学学报.1998,19(1):30-34
    管志勇,陈素梅,王艳艳,等.菊花近缘种属植物耐盐筛选浓度的确定及耐盐性比较.生态学杂志,2010,29(3):467-472
    郭宝生,杨凯,宋景芝,等.西藏小麦耐盐鉴定及分析.植物遗传资源科学,2002,2(2):36-39
    郭小丁,邬景禹,钮福祥,等.在滨海盐渍地鉴定甘薯品种耐盐性.江苏农业科学,1993,6:17-18
    郭岩,张莉,肖岗,等.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.中国科学C辑,生命科学,1997,27(2):151-155
    韩晓日,侯玉慧,姜琳琳,等.硅对盐胁迫下黄瓜幼苗生长和矿质元素吸收的影响.土壤通报,2006,37(6):1162-1165
    韩志平,郭世荣,李娟.设施栽培西瓜品种对盐胁迫的响应.江苏农业学报,2008,24(6):888-895
    郝迺斌,李桐柱,张其德,等.叶绿体膜的结构与功能Ⅷ:镁离子对叶绿体类囊体膜的叶绿素-蛋白复合体聚合的影响.生物化学与生物物理学报,1981,13(4):365-372
    贺岩,陈云昭,王玉国,等.外源脯氨酸对盐胁迫下大豆离体胚再生植株生长及渗透调节的影响.山西农业大学学报,1999,19(2):100-103
    贺岩,李志岗,陈云昭,等.外源脯氨酸对盐胁迫下大豆离体胚再生植株生理特征及线粒体结构的影响.大豆科学,2000,19(4):314-319
    侯彩霞.游离脯氨酸的测定[M]//中国科学院上海植物生理研究所,上海市植物生理学会编.现代植物生理学实验指南.北京:科学出版社,1999:303
    胡晓辉,杜灵娟,邹志荣.Spd浸种对盐胁迫下番茄(Solanum lycopersicum)幼苗的保护效应.西北植物学报,2009,29(9):5152-5157
    胡忠,曹军,庄东红,等.耐盐性植物转基因工程的研究进展.热带亚热带植物学报,2006,14(2):169-178
    华春,王仁雷,刘友良.外源ASA对盐胁迫下水稻叶绿体活性氧清除系统的影响.作物学报,2004,30(7):692-696
    黄诚梅,杨丽涛,江文,等.聚乙二醇胁迫对甘蔗生长前期叶片水势及脯氨酸代谢的影响.干旱地区农业研究,2008,26:205-208
    惠红霞,许兴,李前荣.外源甜菜碱对盐胁迫下枸杞光合功能的改善.西北植物学报,2003,23(12):2137-242
    蒋荷,孙加祥,汤陵华.水稻种质资源耐盐性鉴定与评价.江苏农业科学,1995,4:15-16
    吉志军,唐运平,张志扬.不同基底处理下碱蓬种植对滨海盐渍土的改良与修复效应初探.南京农业大学学报,2006,29(1):138-141
    贾庚祥,朱治清,李银心.甜菜碱与植物耐盐基因工程.植物学通报,2002,10(1):50-56
    姜卫兵,高光林,俞开锦,等.水分胁迫对果树光合作用及同化代谢的影响研究进展.果树学报,2002,19(6):416-420
    焦彦生,郭世荣,李娟,等.钙对根际低氧胁迫下黄瓜幼苗活性氧代谢的影响.西北植物学报,2006,26(10):2056-2062
    金忠民,沙伟,师帅.盐胁迫对不同亚麻部分生理指标的影响.安徽农业科学,2010,38(16):8667-8668
    李常健,林清华,张楚富,等.NaCl对水稻谷氨酰胺合成酶活性及同工酶的影响.武汉大学学报(自然科学版),1999,45:498-500
    李德全,邹琦,程炳嵩.土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质.植物生理学报,1992,18(1):37-44
    李东方,李紫燕,李世清,等.施氮对不同品种冬小麦植株硝态氮和硝酸还原酶活性的影响.西北植物学报,2006,26(1):104-109
    李合生主编.植物生理生化实验原理与技术.北京:高等教育出版社,2002:194-197,258-260
    李宏,邓江宇,张红,等NaCl胁迫对盐桦幼苗生理特性的影响.西北植物学报,2009,29(11):2281-2287
    李华,贺洪军,朱金英,等.外源水杨酸对黄瓜幼苗盐胁迫伤害的影响.北方园艺,2010,13:19-21
    李军,高新昊,郭世荣,等.外源亚精胺对盐胁迫下黄瓜幼苗光合作用的影响.生态学杂志,2007,26(10):1595-1598
    李明,王根轩.干早胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响.生态学报,2002,22(4):503-508
    李明霞.保护地土壤营养障碍与治理途径.蔬菜,1999,(10):4-5
    李宁,周宝利,白丽萍,等.盐胁迫下嫁接茄子中几种保护酶活性的变化.辽宁农业科学,2006,1:10-12
    李为观,杨寅桂,魏跃,等.热胁迫下黄瓜幼苗生理生化指标变化及CSHSP70基因表达.南京农业大学学报,2010,33(3):47-50
    李卫欣,陈贵林,赵利,等NaCI胁迫下不同南瓜幼苗耐盐性研究.植物遗传资源学报,2006,7(2):192-196
    李晓芬,尚庆茂,张志刚,等.多元统计分析方法在辣椒品种耐盐性评价中的应用.园艺学报,2008,35(3):351-356
    李延,刘星辉,庄卫民.植物Mg素营养生理的研究进展.福建农业大学学报,2000,29(1):74-80
    李烨,姜景彬,刘洪兰,等.番茄苗期耐盐性相关指标的筛选研究.北方园艺,2009,10:84-86
    李运合,钱善勤,覃逸明.盐胁迫下外源NO对玉米幼苗叶片蔗糖代谢的影响.湖北农业科学,2010,49(7):1589-1592
    廖岩,彭友贵,陈桂珠.植物耐盐性机理研究进展.生态学报,2007,27(5):2077-2089
    林建明,汤玉玮.低PH对水稻黄化叶片硝酸还原酶活性暗诱导的调节.植物生理与分子生物学学报,1986,12(4):307-314
    林栖凤,邓用川,李冠一,等.红树DNA导入茄子获得耐盐后代的研究.生物工程进展,2001,21(5):40-44
    林栖凤,邓用川,李冠一,等.耐盐辣椒分子育种.生物工程进展,1999,19(5):19-24
    林栖凤,邓用川,李冠一,等.外源DNA导入豇豆提高耐盐能力的研究.生物化学杂志,1997(专刊):454-455
    刘爱华,王永飞.土壤水分胁迫对生菜幼苗部分生理指标的影响.西北农业学报,2010,19(6):144-147
    刘爱荣,赵可大.盐胁迫对盐芥生长及硝酸还原酶活性的影响.植物生理与分子生物学学.2005,31(5):469-476
    刘华,舒孝喜,赵银,等.盐胁迫对碱茅生长及碳水化合物含量的影响.草业科学,1997,18-19
    刘建新,胡浩斌,王鑫.外源对盐胁迫下黑麦草幼苗活性氧代谢、多胺含量和光合作用的影响.植物研究,2009,29(3):313-315
    刘俊,刘怀攀,刘友良.外源甜菜碱对盐胁迫下大麦幼苗体内多胺和离子含量的影响.作物学报,2004,30(11):1119-1123
    刘俊英,石国亮,崔辉梅.外源甜菜碱对盐胁迫下加工番茄生理特性的影响.北方园艺,2009,8:243-246
    刘开力,韩航如,徐颖洁,等.外源一氧化氮对盐胁迫下水稻根部脂质过氧化的缓解作用.中国水稻科学,2005,19(4):333-337
    刘丽萍,臧小云,袁巧云,等.外源蔗糖对盐胁迫荞麦幼苗根系生长的缓解效应.植物生理学通讯,2006,42(5):847-850
    刘亮梅,张喆嫄,谢宏山,等.盐胁迫对四种碧桃植物抗性指标的影响.北方园艺,2010,12:72-74
    刘鹏,杨玉爱.硼钼胁迫对大豆叶片硝酸还原酶和硝态氮含量的影响.浙江大学学报(农业与生命科学版),2000,26(2):151-154
    刘书仁,郭世荣,孙锦,等.脯氨酸对高温胁迫下黄瓜幼苗活性氧代谢和渗调物质含量的影响.西北农业学报,2010,19(4):127-131
    刘伟,潘廷国,柯玉琴.盐胁迫对甘薯叶片氮代谢的影响.福建农业大学学报,1998,27(4):490-494
    刘翔,许明,李志文.番茄苗期耐盐性鉴定指标初探.北方园艺,2007,3:4-7
    刘新星,罗俊杰.豌豆幼苗在盐胁迫下的生理生态响应.草业科学,2010,27(7):88-93
    刘友良,汪良驹.植物对盐胁迫的反应和耐盐性.见:余叔文,汤章成主编.植物生理与分子生物学.北京:科学出版社,1998,752-769
    刘玉新,谢小丁.耐盐植物对滨海盐渍土的生物改良试验研究.山东农业大学学报(自然科学版),2007,38(2):183-188
    卢静君,多立安,刘祥君.盐胁迫下两种草SOD和POD及脯氨酸动态研究.植物研究,24(1):115-119
    罗音,王玉军,谢胜利,等.等渗水分与盐分胁迫对烟草种子萌发的影响及外源甜菜碱的保护作用.作物学报,2005,31(8):1029-1034
    罗庆云,於丙军,刘友良.大豆苗期耐盐性鉴定指标的检验.大豆科学,2001,20(3):177-182
    马晨,马履一,刘太祥,等.盐碱地改良利用技术研究进展.世界林业研究,2010,23(2):28-32
    马翠兰,刘星辉,陈素英.盐胁迫下柚和橘幼苗体内矿质元素变化的比较研究.热带亚热带植物学报,2005,13(4):333-337
    麦维军,王颖,梁承邺,等.谷胱甘肽在植物抗逆中的作用.广西植物,2005,25(6):570-575
    米银法,王进涛,朱坤.外源钙对盐胁迫下菊花生理效应影响.科技导报,2010,28(17):83-86
    宁建凤,郑青松,杨少海,等.高盐胁迫对罗布麻生长及离子平衡的影响.应用生态学报,2010,21(2):325-330
    牛传坡,蒋静艳,黄耀.UV-B辐射强度变化对冬小麦碳氮代谢的影响.农业环境科学学报,2007,26(4):1327-1332
    祁栋灵,韩龙植,张三元,等.水稻耐盐/碱性鉴定评价方法.植物遗传资源学报,2005,6(2):226-231
    钱琼秋,宰文珊,朱祝军,等.外源硅对盐胁迫下黄瓜幼苗叶绿体活性氧清除系统的影响.植物生理与分子生物学学报,2006,32(1):107-112
    秦峰梅,张红香,武祎,等.盐胁迫对黄花苜蓿发芽及幼苗生长的影响.草业学报,2010,19(4):71-78
    秦丽凤,石贵玉,李佳枚,等.盐胁迫对大米草幼苗某些生理指标的影响,广西植物,30(2):265-268
    全先庆,张渝洁,单雷,等.脯氨酸在植物生长和非生物胁迫耐受中的应用.生物技术通讯,2007,18(1):179-162
    饶立华.植物矿质营养及其诊断.北京:农业出版社,1993:78-82
    尚庆茂,宋世清,张志刚,等.外源BR诱导黄瓜(Cucumis sativus L.)幼苗的抗盐性.中国农业科学,2006,39(9):1872-1877
    邵玉翠,任顺荣,廉晓娟,等.有机-无机土壤改良剂对滨海盐渍土降盐防碱的效果.生态环境学报,2009,18(4):1527-1532
    沈文飚.硝酸还原酶也是植物体内的NO合成酶.植物生理学通讯,2003,39(2):168-170
    沈义国,阎冬青.榆钱菠菜脯氨酸转运蛋白基因的克隆及转基因拟南芥的耐盐性.植物学报,2002,44(8):956-962
    沈振荣,杨万仁,徐秀梅.不同盐分胁迫对苜蓿种子萌发的影响.种子,2006,25(4):34-37
    施秀珠,奚振邦,朱建萍.上海郊区蔬菜塑料大棚土壤障碍问题.上海农业科技,1991,(1):28-30
    史淑芝,崔杰,鲁兆新,等.甜菜种质资源耐盐性筛选,中国甜菜糖业,2008,4,7-9
    宋洪元,雷建军,李成琼.植物热胁迫反应及抗热性鉴定与评价.中国蔬菜,1998,(1):48-50
    孙金月,赵玉田,常汝镇,等.小麦细胞壁糖蛋白的耐盐性保护作用与机制研究.中国农业科学,1997,30(4):9-15
    孙立荣,郝福顺,吕建洲,等.外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响.生态学报,2008,28(11):5714-5722
    孙西丽,赵方贵,张英吴,等.外源维生素对盐胁迫下玉米种子萌发和某些生理指标的影响.青岛农业大学学报(自然科学版),2009,26(4):313-317
    孙小芳,刘友良.棉花品种耐盐性鉴定指标可靠性的检验.作物学报,2001,27(6):794-801
    汤章城,王育启,吴亚华,等.钾在高粱苗水分亏缺时脯氨酸累积中的作用.植物生理学报,1984,1O(3):209-215
    陶大立,何兴元.国内植物环境胁迫研究应注意的几个基本问题.生态学杂志,2009,28(1):102-107
    陶军,顾卫,许映军,等.蚯蚓资源在海冰水改良渤海湾滨海盐渍土壤中的应用前景.资源科学,2010,32(3):466-471
    田吉林,杨玉爱,何玉科.转HAL1基因番茄的耐盐性.植物生理与分子生物学学报,2003,29(5):409-414
    童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究.园艺学报,1991,18(2):159-162
    汪志伟,负文俊,颉建明,等.外源亚精胺对盐胁迫下辣椒幼苗生长抑制的缓解效应.甘肃农业大学学报,2009,4:67-72
    王清,黄惠英,张金,等.外源硅及脯氨酸对盐胁迫下马铃薯试管苗的影响.中国蔬菜,2005(9):16-18
    王宝山,赵可夫.小麦叶片中Na、K提取方法的比较.植物生理学通讯,1995,31(1):50-52
    王春裕.论盐渍土之种稻生态改良.土壤通报,2002,33(2):94-95
    王聪,朱月林,杨立飞,等NaCl胁迫对菜用大豆种子抗坏血酸-谷胱甘肽循环的影响.植物营养与肥料学报,2010,16(5):1209-1216
    王东明,贾媛,崔继哲.盐胁迫对植物的影响及植物盐适应性研究进展.中国农学通报,2009,25(04):124-128
    王兰兰,张立军,陈贵,等.甘薯愈伤组织对干旱胁迫和盐胁迫的生理反应对比.生态学杂志,2006,25(12):1508-1514
    王清,黄惠英,张金,等.外源硅及脯氨酸对盐胁迫下马铃薯试管苗的影响.中国蔬菜,2005(9):16-18
    王仁雷,华春,罗庆云,等.盐胁迫下水稻叶绿体中Na+、Cl"积累导致叶片净光合速率下降.植物生理与分子生物学学报,2002,28(5):385-390
    王荣华,王维成,刘焕霞,等.不同甜菜种质耐盐性鉴定和筛选.中国糖料,2008,4,14-16
    王淑芳,王峻岭,赵彦修,等.胆碱脱氢酶基因的转化及转基因番茄耐盐性的鉴定.植物生理学报,2001,27(3):248-252
    王素平,贾永霞,郭世荣,等.多胺对盐胁迫下黄瓜(Cucumis sativus L.)幼苗体内K+、Na+和Cl-含量及器官间分布的影响.生态学报,2007,27(3):1122-1129
    王小华,庄南生.脯氨酸与植物抗寒性的研究进展.中国农学通报,2008,24(11):398-402
    王小山,顾洪如.外源硅对紫花苜蓿抗盐性的影响.江苏农业科学,2009,6:266-269
    王新伟,不同浓度对马铃薯试管苗的胁迫效应.马铃薯杂志,1998,12:203-207
    王旭东,于振文,石玉,等.磷对小麦旗叶氮代谢有关酶活性和籽粒蛋白质含量的影响.作物学报,2006,32(3):334-339
    王燕,刘青,华春,等.外源亚精胺对盐胁迫下水稻根系抗氧化酶活性的影响.西北农业学报,2009,18(6):161-165
    王征宏,吕淑芳,张亚冰.盐胁迫下外源NO对玉米叶片氮代谢产物的影响.安徽农业科学,2007,35(17):5055-5056
    王志强,王春丽,欧吉权,等.NaHSO3对盐胁迫下小麦幼苗氮同化酶及脯氨酸含量的影响.武汉植物学研究,2006,24(6):546-550
    王志强,王春丽,王同朝,等.钙离子对盐胁迫小麦幼苗氮代谢的影响.生态学报,2009,29(8):4339-4345
    王志强,丁立,徐晋豫,等.蔗糖预处理对盐胁迫小麦幼苗氮同化的影响.河南农业大学学报,2008,42(3):268-276
    魏光辉,董新光,杨鹏年,等.棉花膜下滴灌土壤盐分运移规律分析.水土保持研究,2009,16(6):162-166
    魏国强,朱祝军,方学智,等NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响.中国农业科学,2004,37:1754-1759
    翁森红,蒋尤泉,王承斌.牧草耐盐性鉴定指标和方法的初步研究.中国草地,1992,1:30-34
    吴成龙,周春霖,尹金来,等NaCl胁迫对菊芋幼苗生长及其离子吸收运输的影响.西北植物学报,2006,26(11):2289-2296
    吴雪霞,朱月林,朱为民,等.外源一氧化氮对NaCl胁迫下番茄幼苗光合作用和离子含量的影响.植物营养与肥料学报,2007,13(4):658-663
    吴雪霞,朱月林,朱为民,等.外源一氧化氮对NaCl胁迫下番茄幼苗生长和光合作用的影响.西北植物学报,2006,26(6):1206-1211
    伍国强,王强龙,包爱科,等.液泡膜Na+/H+逆向转运蛋白与植物耐盐性.中国农业科技导报,2008,10(2):13-21
    武维华,张蜀秋,袁明,等.植物生理学.北京:科学出版社,2003:86-105
    夏方山,董秋丽,董宽虎,等.盐胁迫对碱地风毛菊苗期脯氨酸代谢的影响.草地学报,2010,18(5):689-693
    夏阳,梁慧敏,王太明,等.盐胁迫对苹果器官中钙镁铁锌含量的影响.应用生态学报,2005,16(3):431-434
    夏阳,林杉,张福锁,等.淋洗对盐胁迫下大豆生长和矿质营养基因型差异的研究.土壤学报,2003,40(1):155-159
    肖伏娥,胡扬.外源脯氨酸与水稻幼苗的抗寒性.湖南农学院学报,1988,14(2):15-19
    徐春波,米福贵,王勇.转基因冰草植株耐盐性研究.草地学报,2006,14(1):20-23
    徐慧妮,王秀峰,孙旭东,等.黄瓜种子萌发对N03-胁迫的响应及耐盐性评价.西北植物学报,2011,31(2):325-331
    徐启贺,李壮,徐锴,等.持续干早胁迫及复水对3种苹果砧木渗透调节能力的影响.中国果树,2010,3,17-22
    徐胜利,陈青云,陈小青,等.盐胁迫下嫁接伽师甜瓜植株生长与多胺以及多胺氧化酶活性的关系.果树学报,2006,23(2):260-265
    许兴,李树华,惠红霞,等.NaCl胁迫对小麦幼苗生长、叶绿素含量及Na+、K+吸收的影响.西北植物学报,2002,22(2):278-284
    许雯,孙梅好,朱亚芳,等.甘氨酸甜菜碱增强青菜抗盐的作用.植物学报,2001,43(8):809-814
    阎志红,刘文革,赵胜杰,等.NaCl胁迫对不同西瓜种质资源发芽的影响.植物遗传资源学报,2006,7(2):220-225
    杨凤军,李天来,臧忠婧,等.外源钙施用时期对缓解盐胁迫番茄幼苗伤害的作用.中国农业科学,2010,43(6):1181-1188
    杨萍,罗庆熙,张珂珂,等.外源维生素对盐胁迫下黄瓜种子萌发及幼苗生长的影响.长江蔬菜,2010,7:41-42
    杨晓英,章文华,王庆亚,等.江苏野生大豆的耐盐性和离子在体内的分布及选择性运输.应用生态学报,2003,14(12):2237-2240
    杨秀红,李建民,董学会,等.外源甘草酸对NaCl胁迫条件下甘草幼苗生长、根部甘草酸含量以及几种与盐胁迫相关生理指标的影响.植物生理学通讯,2006,42(3):441-444
    杨秀红,李建民,董学会,等.盐胁迫对甘草种子发芽与子叶抗氧化指标的影响.种子,2005,29(4):30-32
    杨秀玲,郁继华,李雅佳,等.NaCl胁迫对黄瓜种子萌发及幼苗生长的影响.甘肃农业大学学报,2004,39:6-17
    杨艳华,陈国祥,刘少华,等.外源山梨醇对盐胁迫下两优培九和武运粳7号光合特性及类囊体膜多肽组分的影响.中国水稻科学,2004,18(3):234-238
    杨颖丽,徐世键,保颖,等.盐胁迫对两种小麦叶片蛋白质的影响.兰州大学学报(自然科学版),2007,43(1):70-74
    姚世响,陈莎莎,徐栋生,等.不同盐胁迫对新疆耐盐植物藜叶片钾、钠元素含量及相关基因表达的影响.光谱学与光谱分析,2010,30(8):2281-2284
    姚正培,孟君,李冠.玉米自交系芽苗期耐盐性的鉴定与筛选.华北农学报,2007,22(5):27-30
    殷波,柳延涛.膜下长期滴灌土壤盐分的空间分布特征与累积效应.干旱地区农业研究,2009,27(6):228-231
    雍山玉,郁继华,王燕燕,等.外源一氧化氮对盐胁迫下辣椒种子萌发和幼苗生理的影响.甘肃农业大学学报,2007,42(4):51-55
    余光辉,刘正辉,曾富华.脯氨酸累积与其合成关键酶活性的关系.湛江师范学院学报,2002,23(6):57-60
    於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆生长和离子分布的影响.作物学报,2001,27(6):776-780
    喻敏,萧洪东,陈跃进,等.硼、钼对低温下海滨雀稗可溶性糖和游离脯氨酸含量的影响.作物学报,2004,30(8):739-744
    郁万文,曹帮华,吴丽云.盐胁迫下刺槐无性系生长和矿质营养平衡研究.西北植物学报,2005,25(10):2097-2102
    袁祖华,蔡雁平.盐胁迫下嫁接黄瓜幼苗有机渗透调节物质含量和膜脂过氧化水平研究.湖南农业大学学报(自然科学版),2007,33(2):180-182
    曾长立,董元火.外源钙对盐胁迫下芸薹属植物幼苗的生理效应.中国油料作物学报,2008,30(4):433-437
    曾长立,雷刚.外源SA对盐胁迫下雪里蕻幼苗生理特性的影响.长江蔬菜,2008,12b:25-27
    张恩平,张淑红NaCl胁迫对黄瓜幼苗子叶膜脂过氧化的影响.沈阳农业大学学报,2001,32(6):446-448
    张国新,王秀萍,鲁雪林,等.隶属函数法鉴定水稻品种耐盐性.安徽农业通报,2011,17(1):36-37
    张红菊,赵怀勇.蓖麻对盐渍土的改良效果研究.中国水土保持,2010,7:43-44
    张金凤,孙明高,夏阳,等.盐胁迫对石榴和樱桃脯氨酸含量和硝酸还原酶活性及电导率的影响.山东农业大学学报(自然科学版),2004,35(2):164-168
    张锦伟,许键,杨改刚,等.用不同浓度NaCl溶液筛选水稻苗期耐盐抗旱材料.西南农业学报,2004,1(增):81-84
    张其德.盐胁迫对植物及其光合作用的影响.植物杂志,2000,1:28-29
    张润花,郭世荣,樊怀福,等.外源亚精胺对盐胁迫下黄瓜植株氮化合物含量和硝酸还原酶活性的影响.武汉植物学研究,2006,24(4):381-384
    张士功,高吉寅,宋景芝.甜菜碱对NaCl胁迫下小麦细胞保护酶活性的影响.植物学通报,1999,16(4):429-432
    张士功,高吉寅,宋景芝.外源甜菜碱对盐胁迫下小麦幼苗体内几种与抗逆能力有关物质含量以及钠钾吸收和运输的影响(简报).植物生理学通讯,2000,36(1):23-26
    张士功,高吉寅,宋景芝.硝酸钙对盐分胁迫条件下小麦幼苗体内Na+、K+和Cl-含量及其分布的影响.北京农学院学报,1998,13(4):9-14
    张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444-448
    张伟,吕新,马云峰,等.次生盐渍化棉田膜下滴灌盐分运移规律研究.湖北农业科学,2010,49(5):1089-1100
    张振铭,胡化广.獐毛耐盐的生理变化与响应(简报).草地学报,2009,3(17):402-404
    赵华,曹云英,周蓉,等.外源甜菜碱对盐胁迫下水稻幼苗光合功能的改善.华北农学报,2006,21(6):72-74
    赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展.植物学通报,1999,16(5):540-546
    赵金莉,牛贵月.外源甜菜碱对黄瓜抗盐胁迫的影响.2009,6:112-115
    赵可夫,卢元芳,张宝泽,等.Ca2+对小麦幼苗降低盐害效应的研究.植物学报,1993,35(1):51-56
    赵可夫,王韶唐.作物抗性生理.北京:农业出版社,1990:75-78
    赵瑞雪,朱慧森,董宽虎,等.植物脯氨酸及其合成酶系研究进展.草业科学,2008,25(2):90-96
    赵锁劳,窦延玲.小麦耐盐性鉴定指标及其分析评价.西北农业大学学报,1998,26(6):80-85
    赵勇,马雅琴,翁跃进.盐胁迫下小麦甜菜碱和脯氨酸含量变化.植物生理与分子生物学学报,2005,31(1):103-106
    郑春芳,姜东,戴廷波,等.外源一氧化氮供体硝普钠浸种对盐胁迫下小麦幼苗碳氮代谢及抗氧化系统的影响.生态学报,2010,30(5):1174-1183
    郑青松,刘海燕,隆小华,等.盐胁迫对油菜幼苗离子吸收和分配的影响.中国油料作物学报,2010,32(1):65-70
    郑青松,刘玲,刘友良,等.盐分和水分胁迫对芦荟幼苗渗透调节和渗调物质积累的影响.植物生理与分子生物学学报,2003,29(6):585-588
    郑青松,刘兆普,刘友良,等.盐和水分胁迫对海蓬子、芦荟、向日葵幼苗生长及其离子吸收分配的效应.南京农业大学学报,2004,27(2):16-20
    周贺芳,邹志荣,杨兴娟,等.外源钙对盐胁迫下甜瓜植株的缓解效应.安徽农业科学,2007,35(9):2543-2546
    周俊国,朱月林,刘正鲁,等.组培条件下中国南瓜杂交种耐盐材料的筛选.核农学报,2007,21(4):345-348
    周泉澄,华春,周峰,等.外源甜菜碱对盐胁迫下盐角草和毕氏海蓬子萌发及幼苗生长的影响.干旱地区农业研究,2009,27(6):179-184
    周卫,马敬坤,王志强,等.等渗水分和盐胁迫对水稻幼苗叶片氨同化的影响.武汉大学学报(理学版),2005,51(4):521-524
    朱春燕,黄丹枫,蔡保松,等.甜瓜品种资源萌发期耐盐性及其指标评价.上海交通大学学报(农业科学版),2010,28(6):504-508
    朱进,别之龙.嫁接对盐胁迫下黄瓜苗离子含量的影响.湖北农业科学,2010,49(7):1642-1646
    朱士农,郭世荣.嫁接对盐胁迫下西瓜植株体内Na+K+含量及其分布的影响.园艺学报,2009,36(6):814-820
    朱晓军,杨劲松,梁永超,等.盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响.中国农业科学,2004,37(10):1497-1503
    朱义,谭贵娥,何池全,等.盐胁迫对高羊茅幼苗生长和离子分布的影响.生态学报,2007,27(12):5447-5454
    邹春琴,王晓凤,张福锁.铵态氮抑制向日葵生长的作用机制初步探讨.植物营养与肥料学报,2004,10(1):82-85
    邹燕,程智慧,程晓兰,等.大蒜紫斑病抗性鉴定方法的研究.园艺学报,2009,36(5):763-770
    Ahmad I, Hellebust J A. The relationship between inorganic nitrogen metabolism and proline accumulation in osmoregulatory responses of two euryhaline microalgae. Plant Physiology,1988, 88(2):348
    Albert A, Martinezz M, Espinosa-Ruiz A, et al. The X-ray structure of the FMN-binding protein AtHal3 provides the structural basis for the activity of a regulatory subunit in volved in signal transduction. Struct Fold Design,2000,8:961-969
    Ali Z, Salam A, Azhar F M, et al. Genotypic variation in salinity tolerance among spring and winter wheat (Triticum aestivum L.) accessions. South African Journal of Botany,2007,73:70-75
    Allakhverdiev S I, Sakamoto A, Nishiyama Y, et al. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology,2000,123:1047-1056
    Amnon B, Shabtai C, Yoel D M, et al. Effects of timing and duration of brackish irrigation water on fruit yield and quality of late summer melons. Agricultural Water Management,2005,74:123-134
    Amor N B, Jimenez A, Megdiche W, et al. Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Plant Physiology,2006,126:446-457
    Amtmann A, Sanders D. Mechanisms of Na uptake by plant cells. Advance Botany Research,1999,29, 75-112
    Anjum F, Rishi V, Ahmed F. Compatibility of osmolytes with Gibbs energy of stabilization of protein. Biochim Biophys Acta,2000,1476:75
    Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annual Review Plant Biology,2004,55:373-399
    Arakawa N, Tsutsu M I, Sanceda N G, et al. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. Agricultural and Biological Chemistry,1981, 45(5):1289-1290
    Arakawa T, Timasheff S N. The stabilization of proteins by osmolytes. Biophysical Journal,1985,47: 411
    Asada K. The water-water cycle in chloroplasts:scavenging of active oxygen species and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50: 601-639
    Ashraf M, Foolad M A. Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environmental and Experimental Botany,2007,59: 206-216
    Ashraf M, Leary J W. Distribution of cations in leaves of salt-tolerant and salt-sensitive lines of sunflower under saline conditions, Journal of Plant Nutrition,1995,18,2379-2388
    Athar H, Khan A, Ashraf M. Exogenous applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and Experimental Botany,2007 63:224-231
    Ball L, Accotto G P, Bechtold U, et al. Evidence for a direct link glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell,2004,16(9):2448-2462
    Banu M, Hoque M, Megumi W S, et al. Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology,2009,166:256-271
    Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water stress studies. Plant Soil,1973,39:205-207
    Beale S I. Enzymes of chlorophyll biosynthesis. Photosynthesis Research,1999,60:43-73
    Billard J P. Effeets of salt stress on proline content and ornithine aminotransferase activity in radish cotyledons. Russian Journal of Plant Physiology,1997,44:541-546
    Binzel M L, Hess F D, Bressan R A, et al. Intracellular of ion in salt adapted tobacco cells. Plant Physiology,1988,86:607-614
    Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage oxygen deprivation stress:a review. Annual Botany,2003,91(2):179-194
    Blum A, Ebercon A. Genotypic responses in sorghum to drought stress.Free praline accumulation and drought resistance. Crop Science,1976,16:428
    Bohnert H J, Jensen R G. Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology,1996,14:89-97
    Bor M, Ozdemir F, Tilrkan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet (Beta vulgaris L.) and wild beet (Beta maritime L.). Plant Science,2003,164:77-84
    Borsani O, Valpuesta V, Botella M A. Developing salt tolerant plants in a new century:a molecular biology approach. Plant Cell, Tissue and Organ Culture,2003,73:101-115
    Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance. Annual Review Plant Physiology and Plant Molecular Biology,1992,43:83-116
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Annual Biology chemical,1976,72:248-254
    Bray E A. Plant responses to water deficit. Trends Plant Science,1997,2:48-54
    Brugiere N, Dubois F, Limami A M, et al. Glutamine Synthetase in the Phloem Playsa Major Role in Controlling Proline Production.The Plant Cell,,1999,11:1995-2011
    Cengiz K A. Levent T, Hakan A. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany,2007,60:397-403
    Chadalavada S V, Rajendrakumar Reddy B V B, Reddy A R. Proline-protein interactions:Protection of structural and functional integrity of M4 lactate dehydrogenase. Biochemistry Biophysiology Resource Communication,1994,201:957
    Chance M, Maehly A C. Assay of catalases and peroxidases. Methods Enzymol,1955,2:764-817
    Chaudhuri K, Choudhuri M A. Effect of short-term NaCl stress on water relations and gas exchange of two jute species. Biologia Plantarum,1997,40:373-380
    Cheeseman J M. Mechanism of salinity tolerance in plants. Plant Physiology,1988,87:547-550
    Chen Z, Gallie D R. The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell,2004,16:1143-1162
    Cherian S, Reddy M P, Pandya J B. Studies on salt tolerance in Avicennia marina (Forstk.) Vierh.:effect of NaCl salinity on growth, ion accumulation and enzyme activity. Indian Journal of Plant Physiology,1999,4:266-270
    Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science,2005,45,437-448
    Chrominski A, Halls S, Weber D J et al. Proline affects ACC to ethylene conversion under salt and water stresses in the halophyte Allenrolfea occidentalis. Environmental and Experimental Botany, 1989,29:359-363
    Cramer G R, Lauchli A, Polito V S. Displacement of Ca2+ by Na+ from the plasmalemma of root cells. Plant Physiology,1985,79:207-211
    Csonka L N, Hanson A D. Prokaryotic osmoregulation:genetics and physiology. Annu.Rev Microbiol, 1991,45:569-606
    Dasgan H Y, Aktas H, Abak K, et al. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Science,2002,163:695-703
    Davenport S B, Gallego S M, Benavides M P, et al. Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells. Plant Growth Regul,2003,40(1): 81-88
    Davey M W, Montagu M V, Inze D, et al. Plant L-Ascorbic acid:chemistry, function, metabolism, bioavailability and effects of processing. JSci Food Agric,2000,80(7):825-860
    David R, Sangita H, Ray A B. Metabolic changes associated with adapion of plant cell to water stress. Plant Physiology,1986,82:890-903
    De Gara L, Paciolla C, De Tullio M C, et al. Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of a highly productive maize hybrid:evidence of an improved detoxification mechanism against reactive oxygen species. Plant Physiology,2000,109: 7-13
    Del Rio L A, Corpas F J, Sandalio L M, et al. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany,2002,53:1255-1272
    de-Lacerda C F, Cambraia J, Oliva M A, et al. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany,2003,49:107-120
    Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants. Journal of Plant Physiology,1993,4:215-223
    Delauney A J, Hu C A A, Kishor P B K,et al. Cloning of ornithine-aminotransferase cDNA from Vigna aconitifolia by trans-complementation in Escherichia coli and regulation of proline biosynthesis. Journal of Biological Chemistry,1993,268:18673-18678
    Demiral T, Turkan I. Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? Journal of Plant Physiology,2004,161:1089-1100
    Deuschle K, Funck D, Forlani G, et al. The role of △1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell,2004,16:3413-3425
    Dionisio-Sese M L, Tobita S. Antioxidant responses of rice seedlings to salinity stress. Plant Science, 1998,135:1-9
    Duan J J, Guo S R, Kang Y Y. Effects of Exogenous Spermidine on Reactive Oxygen Species Levels and Antioxidant Enzymes Activities of Cucumber Seedlings under Salt Stress. Acta Horti Sinica, 2006,33:634-639
    Duan J J, Li J, Guo S R,et al. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Journal of Plant Physiology, 2008,165:1620-1635
    Ehsanpour A A, Fatahian N. Effects of salt and proline on Medicago sativa callus. Plant Cell Tiss Org Cult,2003,73:53-56
    Elsamad H M A. Salt tolerance of soybean cultivars. Biologia Plantarum,1977,39(2):263-269
    Elstner E F, Heupel A. nhibition of nitrate formation from hydroxylammonium chloride:a simple assay for superoxide dismutase. Anal Biochem,1976,70:616-620
    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology,1982,33:317-345
    Fath A, Bethke P C, Jones R L. Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiology,2001, 126:156-166
    Fenandez J C, Kaplowitz N, Carcia, et al. GSH transport in mitochondria:defense against TNF induced oxidation stress and alcohol induced defect. A MJPhysiol,1997,273:7-17
    Floyd R A, Nagy I. Formation of long-lived hydroxyl free radical adducts of proline and hydroxyproline in a Fenton reaction. Biochim Biophys Acta,1984,790(1):94
    Foster J G, Hess J L. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiology,1980,66:482-487
    Foyer C H, Noctor G. Photosynthetic nitrogen assimilation:inter-pathway control and signaling. In: Foyer CH, NoctorG, eds. Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism. Dordrecht:Kluwer Academic Publishers,2002.1-22
    Foyer C H, Noctor G. Redox sensing and signaling associated with reactive oxygen chloroplasts, peroxisomes and mitochondria. Plant Physiology,2000,119(3):355-364
    Frensch J, Hsiao T C, Transient Responses of Cell Turgor and Growth of Maize Roots as Affected by Changes in Water Potential. Plant Physiology,1994,104:247-254
    Fu H H, Luan S. A dual affinity K+ transporter from Arabidopsis. Plant Cell,1998,10:63-73
    Fujita T, Maggio A, Garcia-Rios M. Comparative analysis of the regulation of expression and struerures of two evolutionarily divergent genes for △1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiology,1999,118 (2):661-667
    Gadallah M A A, Effects of proline and glycinebetaine on Vicia faba response to salt stress. Biol Plant, 1999,42:249-257
    Ganege D K K, Xia Y P, Zhu Z J, et al. Effects of exogenous salicylic acid on antioxidative enzyme activities and physiological characteristics in gerbera (Gerbera jamesonii L.) grown under NaCl stress. Journal of Zhejiang University.2010,36(6):591-601
    Ge Q P, Lin P. Effect of salinity on genetic differentiation of Kandelia candel population. Acta Ecologica Sinica,2004,24(4):730-735
    Ghonlam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany,2002,47(1):39-50
    Giannopolitis C N, Ries S K. Superoxide dismutases occurrence in higher plants. Plant Physiology, 1977,59,309-314
    Gilbert A G, Gadush M V, Wilson C, Madore M A. Amino acid accumulation in sink and source tissues of Coleus blumei Benth During salinity stress. Journal of Experimental Botany,1998,49:107-114
    Girousse C, Bournoville R, Bonnemain J L. Water deficit induced changes in concentrations in praline and some other amino acids in the phloem sap of alfalfa. Plant Physiology,1996,111:109-113
    Gisbert C, Rus A M, Bolarin M C, et al. The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiology,2000,123:393-402
    Gomez J M, Hernandez J A, Jimdnez A, et al. Differential response of antioxidative enzymes of chloroplast and mitochondria to long-term NaCl stress of pea plants. Free Radical Res,1999,31: 11-18
    Gong M, Li Y J, Chen S Z. Abscisic acid-induced the rmotolerance in maize seedlings is mediated by calcium and associated with antioxidant system. Journal of Plant Physiology,1998,153(4): 488-496
    Grattan S R, Grieve C M. Mineral element acquisition and growth response of plant grown in saline enviroment. Agric Ecosyst Environ,1992,38:275-300
    Greenway H, Munns R. Mechanism of salt tolerance in non-halophytes. Ann Rev Plant physiol,1980,31: 149-190
    Griffiths O W. Determination of glutathione and glutathione disulphide using glutathione reductase and 2-vinylpyridine. A nalytical Biochemistry,1980,106:207-212
    Gulati A, Jaiwal P K. Effect of NaCl on Nitrate Reductase Glutamate Dehydrogenase and Glutamate in Vigna Radiata Calli. Bio Plant,1996,38:177-183
    Halliwell B, Gutteridge J M C. Free radicals in biology and medicine. Oxford:Oxford University Press, 2000
    Handa S, Handa A K, Hasegawa P M, et al. Proline accumulation and the adaptation of cultured plant cells to water stress. Plant Physiology,1986,80:938-945
    Hare P D, Cress W A. Metabolic implications of stress-induced Proline accumulation in Plants. Plant Growth Regul,1997,21:79-102
    Hare P D, Cress W A, Staden JV. Disruptive effects of exogenous proline on chloroplast and mitochondrial ultrastructure in Arabidopsis leaves.South African JBot,2002,68:393-396
    Hare P D, Cress W A, van Staden J.Proline synthesis and degradation:a model system for elucidating stress-related signal transduction. Journal of Experimental Botany,1999,50:413-434
    Harinasut P, Poonsopa D, Roengmongkol K, et al. Salinity effects on antioxidant enzymes in mulberry cultivar. Science Asia,2003,29:109-113
    Hayashi F, Ichino T, Osanai M, et al. Oscillation and regulation of proline content by P5CS and ProDH gene expressions in the light/dark cycles in the Arabidopsis thaliana L. Plant cell physiol,2000,41: 1096-1111
    Hayashi H, Alia K Y, Mustardy L, et al. Transformation of Arabidopsis thaliana with the conA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J,1997,12:133-142
    Heath R L, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetic and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys,1968,125:189-198
    Hellmann H, Funck D, Rentsch D, et al. Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiology,2000,122:357-368
    Hernandez J A, Ferrer M A, Jimenez A, et al. Antioxidant systems and O2-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiology,2001,127:817-831
    Hernandez J A, Almansa M S. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Plant Physiology,2002,115:251-257
    Hernandez J A, Campillo A, Jimenez A, et al. Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New phytol,1999,141:214-251
    Heuer B. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science,2003,165:693-699
    Heyser J W, de-Bruin D, Kincaid M L et, al. Inhibition of NaCl-induced proline biosynthesis by exogenous proline in halophilic Distichlis spicata suspension cultures. Journal of Experimental Botany,1989,40:225-232
    Holmberg N, Bufow L. Improving stress tolerance in plants by gene transfer. Trends Plant Science, 1998,3(2):61-66
    Holmstrom K O, Somersalo S, Mandal A, et al. Improved tolerance to salinity and low temperatures in transgenic tobacco producing glycine betaine. Journal of Experimental Botany,2000,51:177-185
    Hong Z, Lakkineni K, Zhang Z, et al. Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology,2000,122,1129-1136
    Hoque M A, Banu M N A, Nakamura Y, et al. Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology,2007a,165:813-824
    Hoque M A, Banu M N A, Okuma E, et al. Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells. Journal of Plant Physiology,2007b,164:1457-1468
    Hoque M A, Okuma E, Banu M N A,et al. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology,2007c,164:553-561
    Hossain M A, Nakano Y, Asada K. Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol, 1984,25:385-395
    Hu C A A, Delauney A J, Verma D P S. A bifunerional enzyme (△1-pyrroline-5-carboxyalte synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA, 1992,89:9354-9358
    Hua B, Guo W Y. Effect of exogenous proline on SOD and POD activity of soyabean callus under salt stress. Acta Agric. Boreali-Sinica,2002,17:37-40
    Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterixation of the gene for △1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oyza sativa L. Plant Mol Biol,1997,33:857-865
    Ines S, Messedi D. Effects of water deficit on growth and proline metabolism in Sesuvium portulacastrum. Enviro Exp Bot,2006,56(3):231-238
    Jimenez A, Hernandez J A, del Rio L A, et al. Evidence for the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology,1997,114:275-284
    Jin Y H, Tao D L, Hao Z Q, et al. Environmental stresses and redox status of ascorate. Acta Botanica Sinica,2003,45(7):795-801
    Juan M, Rivero R M, Romero L, et al. Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environmental and Experimental Botany,2005,54:193-201
    Kao W Y, Tsai T T, Shih C N. Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica,2003,41:415-419
    Kasukabe Y, He L X, Watakabe Y, et al. Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol,2006,23:75-83
    Kavi P B. Salt stress in cultured rice cells:effects of proline and abscisic acid. Plant Cell Environ,1989, 12:629-635
    Kaya C, Tunab A L, Ashraf M, et al. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany,2007,60, 397-403
    Khatun S, Flowers T J. Effects of salinity on seed set in rice. Plant Cell Environment,1995,18:61-67
    Khavarinejad R A, Mostofi Y. Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica,1998,35:151-154
    Khavarinejad R A, Chaparzadeh N. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica,1998,35:461-466
    Khedr A H A, Abbas M A, Wahid A A A,et al. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. Journal of Experimental Botany,2003,54:2553-2562
    Kim H R, Rho H W, Park J W, et al. Assay of ornithine aminotransferase with ninhydrin. Analytical Chemistry,1994,223:205-207
    Kiyosue T, Yoshiba Y, Yamaguchi-Shimozaki K, et al. A nuclar gene ecoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but down regulated by dehydration in Arabidopsis. Plant Cell,1996,8:1323-1335
    Knight H, Knight M R. Abiotic stress signaling pathways:specificity and cross-talk. Trends in Plant Science,2001,6:262-267
    Kocsy G, Galiba G, Brunold C. Role of glutathione in adaptation and signaling during chilling and cold acclimation in plants. Plant Physiology,2001,113:158-164
    Krishnamurthy R, Bhagwat K A. Effect of foliar application of proline on the salt stressed rice seedlings. Acta Agron Hung,1993,42:267-272
    Kurban H, Saneoka H, Nehira K, et al. Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alagi pseudoalhagi.Soil Sci. Plant Nutr,1999,45:851-886
    Kurth E, Cramer G R, Lauchli A, et al. Effects of NaCl and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiology,1986,82:1102-1106
    Lao J C. Manual of chemical analysis in soil. Beijing:Agricultural Press,1988,656-657
    Lechno S, Zamski E, Tel-Or E. Salt stress-induced responses in cucumber plants. Journal of Plant Physiology,1997,150:206-211
    Lefevre I, Gratia E, Lutts S. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice(Oryza sativa L.). Plant Science,2001,161:943-952
    Lei Y, Yin C. Effect of osmotic stress and sodium nitroprusside pretreatment on proline metabolism of wheat seedlings. Biologia Plantrum,2007,51(2):390-396
    Levitt J. Response of plant to environmental stress, Academic press. NY.1980, p.365
    Li H Z, Zhang Z J, Xu L, et al. Effect of salinity on chlorophyll contents, proline accumulation and antioxidant enzyme activities of plantletsin vitroin potato. Journal of Zhejiang University,2006, 32(3):300-306
    Li W X, YAO T M, Wang P, et al. Studies of Glycine Betaine on Physiology of Two Varieties of Pumpkin Seedlings under NaCl Stress. Agricultural Science & Technology,2010,11(2):106-108
    Lone M I, Kueh J S H, Wyn R G, et al. Influence of proline and glycine betaine on salt tolerance of cultured barley embryos. Journal of Experimental Botany,1987,38:479-490
    Loupassaki M H, Chartzoulakis K, Digalaki N, et al. Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium and sodium in leaves, shoots and roots of six olive cultivars. Journal of Plant Nutrition,2002,25(11):2457-2482
    Luo Q, Yu B, LiuY. Differential sensitivity to chloride and sodium ions in seedlings of Glycinemax and G. Soja under NaCl stress. Journal of Plant Physiology,2005,162:1003-1012
    Lutts S, Majerus V, Kinet J M. NaCl Effects on Proline Metabolism in Rice(Oryza sativas L.) Seedings. Plant Physiology,1999,105:450-458
    Lynch J A. Salinity stress increase cytoplasmic activity in maiz root protolasts. Plant Physiology,1989, 90:127-180
    Ma Q Q, Wang W, Li Y H, et al. Alleviation of photo inhibition in drought-stressed wheat (Triticum aestivum L.) by foliar applied glycinebetaine. Journal of Plant Physiology,2006,163:165-175
    Maathuis F J M, Sanders D. Contrasting roles in ion transport of two K+-channel types in root cells of Arabidopsis thaliana. Planta,1995,197:456-464
    Maathuis F J M, Amtmann A. K+ nutrition and Na+ toxicity:The basis of cellular K+/Na+ ratios. Annals of Botany,1999,84:123-133
    Madhava R K V, Sresty T V S. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Science,2000,157:113-128
    Mani S, Cotte B, Montagu M, et al. Altered levels of proline dehydrogennase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiology,2002,128:73
    Mansour M. Protection of plasma membrane of onion epidermal cells by glycine betaine and proline against NaCl stress. Plant Physiology and Biochemistry,1998,36:767-772
    Markino A, Mae T, Ohiro K. Relation between nitrogen and ribulose-1,5-bisphosphate carboxylase in rice leaves from emergence through senescence. Plant and Cell Physiology,1984,25(3):429-437
    Maslenkova L T, Zanev Y, Popova L P. Oxygen-Evolving Activity of Thylakoids from Barley Plants Cultivated on Different Concentration of Jasmonic Acid. Plant Physiology,1990,93:1316-1320
    Matysik J, Alia Bhalu B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci,2002,82:525
    May M J, Vernoux T, Leaver C, et al. Glutathione horn eostasis in plants:implications for environmental sensing and plant development. Journal of Experimental Botany,1998,49(321): 649-667
    Md A H, Eiji O, Mst N A B, et al. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal of Plant Physiology,2007,164:553-561
    Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and ability of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany,2003,49:69-76
    Mendlinger S. Effect of increasing plan density and salinity on yield and fruit quality in muskmelon. Scientia Hort,1994,57:41-49
    Meneguzzo S, Navari-Izzo F, Izzo R. Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. Journal of Plant Physiology,1999,155:274-280
    Misra A N, Sahu S M, Misra M, et al. Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biol Plant,1997,39:257-262
    Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002,7:405-410
    Mittova V, Guy M, Tal M, et al. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. Journal of Experimental Botany,2004,55:1105-1113
    Mittova V, Tal M, Volokita M, et al. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ,2003,26:845-856
    Mittova V, Volokita M, Guy M, et al. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant,2000,110:42-51
    Munns R, Guo J M, Passioura J B, et al. Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Australian Journal of Plant Physiology,2000,27:949-957
    Munns R, Termaat A. Whole plant responses to salinity. Australian Journal of Plant Physiology,1986, 13:143-160
    Munns R. Comparative physiology of salt and water stress. Plant Cell Environ,2002,25:239-250
    Munns R. Physiological progresses limiting plant growth in saline soils:Some dogmas and hypotheses. Plant Cell Environ,1993,16:15-24
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-speci?c peroxidase in spinach chloroplasts. Plant Cell Physiol,1981,22:867-80
    Nanjo T, Fujita M, Seki M, et al. Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol,2003,44:541-548
    Niu X, Bressan R A, Hasegawa P M, et al. Ion homeostasis in NaCl stress environments, Plant Physiology,1995,109:735-742
    Noctor G, Arisi A C M, Jouanin L, et al. Glutathione:biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany,1998,49:623-637
    Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279
    Okuma E, Murakami Y, Shimoishi Y, et al. Effects of exogenous application of proline and betaine on the growth of tobacco cultured cells under saline conditions. Soil Sci Plant Nutr,2004,50: 1301-1305
    Okuma E, Soeda K, Tada M, et al. Exogenous proline mitigates the inhibition of growth of Nicotiana tabacum cultured cells under saline conditions. Soil Sci Plant Nutr,2000,46:257-263
    Ott J C, Birks K, Johnson C. Regulation of the photosynthetic eleetron transport chain. Planta,1999, 209:250-258
    Papadakis A K, Siminis C I, Roubelakis-Angelakis K A. Reduced activity of antioxidant machinery is correlated with suppression of totipotency in plant protoplasts. Plant Physiology,2001,126: 434-444
    Parida A K, Das A. Salt tolerance and salinity effects on plants:A review. Ecotoxi and Enviro Safety, 2005,60:324-349
    Patterson B D, Mackae E A, Ferguson I B. Estimation of hydrogen peroxide in plant extracts using titanium. Anal Biochem,1984,139:487-492
    Peng Z, Lu Q, Verma D P S. Reciprocal regulation of △1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet,1996,253:334-341
    Piaaza G J, Gibbs M. Influence of adenosine phosphates and magnesium on photosynthesis in chloroplasts from peas, Sedum and spinach. Plant Physiology,1983,71:680-687
    Plaut Z, Heuer B. Adjustment, growth, photosynthesis and transpiration of sugar beet plants exposed to saline conditions. Field crop Res,1985,10:1-13
    Poustini K, Siosemardeh A. Ion distribution in wheat cultivars in response to salinity stress. Field Crops Research,2004,85:125-133
    Prasad K, Sharmila P, Kumar P A, et al. Transformation of Brassica juncea L. Czern.with bacterial codA gene enhances its tolerance to salt stress. Mol Breed,2000,6:489-499
    Pukacka S, Ratajczake E. Antioxidative response of ascorbate glutathione pathway enzymes and metabolites to desiccation of recalcitrant A cer saccharinum seeds. Journal of Plant Physiology, 2006,163:1259-1266
    Ramoliya P J, Patel H M, Pandey A N. Effectofsalinization ofsoilon growth and macro-and micro-nutrient accumulation in seedlings of Salvadora persica(Savadoraceae). Forest Ecology and Management,2004,202:181-193
    Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet,2005,37:1141-1146
    Roosens N, Thu T T. Isolation of the omithine-S-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiology,1998,117:263-271
    Roy D, Basu N, Bhunia A, et al. Counteraction of exogenous L-proline with NaCl in salt-sensitive cultivar of rice. Biol Plant,1993,35:69-72
    Roy P, Niyogi K, SenGupta DN, et al. Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Science,2005,168:583-591
    Roy M, Wu R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Science,2001,160:869-875
    Rubio F, Gassmann W, Schroeder J I. Sodium driven potassium uptake by the plant potassium transporter HKT land mutations conferring salt tolerance. Science,1995,270:1660-1663
    Rudolph A S, Crowe J H, Crowe L M. Effects of three stabilizing agentsproline, betaine, and trehaloseon membrane phospholipids. Arch Biochem Biophys,1986,245(1):134
    Ruiz D, Martinez V, Cerda A. Citrus response to salinity:Growth and nutrient uptake.Tree Physiol, 1997,17:141-150
    Sagi M, Dovrat A, Kipnis T. Ionic balance, biomass production, and organic nitrogen as affected by salinity and nitrogen source in annual ryegrass. J Plant Nutr,1997,20(10):1291-1316
    Saijo Y, Hata S, Kyozuka J, et al. Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt P drought tolerance on rice plants. Plant J,2000,23:319-327
    Sairam R K, Srivastava G C. Changes in antioxidant activity in sub-cellular fractions of tolerance and susceptible wheat genotypes in response to long term salt stress. Plant Science.2002,162(6): 897-904
    Sanchez D H, Cuevas J C, Chiesa M A, et al., Free spemidine and spermine content in Lotus glaber under long-term salt stress. Plant Science,2005,168:541-546
    Santa A, Acosta M, Rus A, et al. Short term salt tolerance mechanisms in differelltially salt tolerant tomato species. Plant Physiology and Biochemistry,1999,37(1):65-71
    Santarius K A. Freezing of isolated thylakoid membranes in complex media. VIII. Differential cryoprotection by sucrose, proline and glycerol. Physiol Plant,1992,84:87-93
    Santos M A, Camara T, Rodriguez P, et al. Influence of exogenous proline on embryogenic and organogenic maize callus subjected to salt stress. Plant Cell, Tissue and Organ Culture,1996,47: 59-65
    Saradhi P, Alia P, Arora S, et al. Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochemistry Biophysiology Resource Communication, 1995,209:1-5
    Sentenac H, Bonneaud N, Minet M, et al. Cloning and expression in yeast of a plant pot assiumion transport system. Science,1992,256:663-665
    Shabala S N, Shabala S I, Martynenko A I, et al. Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves:a comparative survey and prospects for screening. Australian Journal of Plant Physiology,1998,25:609-616
    Shalata A, Mittova V, Volokita M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:the root antioxidative system. Plant Physiology,2001,112:487-494
    Shalata A, Tal M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Plant Physiology,1998, 104:169-174
    Shinozaki K, Yam A, Mizoguchi T, et al. Molecular responses to water stress in Arabidopsis thaliana. Plant Res,1998,111:345-351
    Shruti M, Rama S D. Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: Role of proline as enzyme protectant. Journal of Plant Physiology,2006,163:927-936
    Singh S, Singh M. Genotypic basis of response to salinity stress in some crosses of spring wheat Triticum aestivum L. Euphytica,2000,115:209-214
    Siripornadulsil S, Train S, Verma D P S, et al. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell,2002,14:2837-2847
    Sivakumar P, Sharmila P, Saradhi P P, et al. Proline alleviates salt-stress induced enhancement in ribulose-1,5-biphosphate oxygenase activity. Biochemistry Biophysiology Resource Communication,2000,279:512
    Smirnoff N. Ascorbate biosynthesis and function in photo protection. Biology science,2000,355: 1455-1465
    Smirnoff N. Ascorbate, tocopherol and carotenoids:metabolism, pathway engineering and functions. In: Smirnoff, N. (Ed). Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd., Oxford, UK,2005, pp:53-86
    Smirnoff N. The function and metabolism of ascorbic acid in plants. Annual Botany,1996,78(6): 661-669
    Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist,1993,125:27-58
    Song J. Root morphology is related to the phenotypic variation in water logging tolerance of two populations of Suaeda salsa under salinity. Plant and Soil,2009,324,231-240
    Song S Q, Lei Y B, Tian X R. Proline metabolism and cross-tolerance to salinity and heat stress in germinating wheat seeds. Russian Journal of Plant Physiology,2005,52(6):793-800
    Song X S, Hu W H, Mao W H, et al. Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiology and Biochemistry, 2005,43:1082-1088
    Songstad D D, Duncan D R, Widholm J M. Proline and polyamine involvement in chilling tolerance of maize suspension cultures. Journal of Experimental Botany,1990,41:289-294
    Srinivas V, Balasubramanian, D. Proline is a protein-compatible hydrotrope. Langmuir11,1995, 2830-2833
    Strain H H, Svec W A. Extraction, separation, estimation and isolation of chlorophylls. In:Vernon, L.P., Seely, G.R. (Eds.), The Chlorophylls. Academic Press, NY, pp.1966.21-66
    Strogonov B P. Structure and function of plant cell in saline habitats. NewYork:Halsted Press,1973:78-83
    Tachibana S, Konishi N. Diurnal variation of in vivo and in vitro nitrate reductase activity in cucumber plants. Journal of the Japanese Society for Horticultural Science,1991,60:593-599
    Takemura T, Hanagata N, Sugihara K, et al. Physiological and biochemical responses to salt stress in the mangrove Bruguiera gymnorrhiza Aquatical Botany,2000,68:15-28
    Van Breusegem F, Dat J F. Reactive oxygen species in plant cell death. Plant Physiology,2006,141: 384-390
    Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. Journal of Horticultural Science Biotechnology,2000,75:623-627
    Wang Z Q, Ding L, Xu J Y, et al. Effects of pretreatment with sucrose on nitrogen assimilation in wheat seedlings under salt stress. Journal of Henan Agricultural University,2008,42(3):268-272
    Wegner L H, Raschke K. Ion channels in the xylem parenchyma of barley roots. Plant Physiology,1994, 105:799-813
    Wi S J, Kim W T, Park K Y. Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Reproduction,2006,25:1111-1121
    Wu W, Peters J, Berkowitz G A. Surface charge mediated effects of Mg2+on K+flux across the chloroplast envelope are associated with regulation of stromal pH and photosynthesis. Plant Physiology,1991,97:580-587
    Wyn R G, Gorham J. Osmoregulation. In:Lange, O. L. (Ed.), Encyclopedia of Plant Physiology. Springer-Verlag, Berlin, pp.1983,35-58
    Xiang C, Oliver D J. Glutathione metabolish genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell,1998,10:1539-1550
    Xu D, Duan X, Wang B, et al. Exp ression of a late embryo genesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology,1996, 110:249-257
    Yamada M, Morishita H, Urano K, et al. Effects of freeProline accumulation in petunias under drought stress. Journal of Experimental Botany,2005,56(417):1975-1981
    Yan H, Gang L Z, Zhao C Y, et al. Effects of exogenous proline on the physiology of soyabean plantlets regenerated from embryos in vitro and on the ultrastructure of their mitochondria under NaCl stress. Soybean Science,2000,19:314-319
    Yancey P H. Compatible and counteracting solutes. In:Strange, K. (Ed.), Cellular and Molecular Physiology of Cell Volume Regulation. CRC Press, Boca Raton, FL, pp.1994,81-109
    Yang X H, Lu C M. Photosynthesis is improved by exogenous glycine betaine in salt-stressed maize plants. Physiologia Plantarum,2005,124:343-352
    Yeo A R, Flowers T J. Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for salines oil. Australian Journal of Plant Physiology,1986,13:161-173
    Yeo A, Lee K, Izard P, et al. Shor-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). Journal of Experimental Botany,1991,42:881-889.
    Yeo A. Molecular biology of salt tolerance in the context of whole-plant physiology. Journal of Experimental Botany,1998,49:915-929
    Zhang C S, Lu Q, Verma D P S. Removal of feedback inhibition of △1-pyrroline-5-carboxylate synthetase a bifunctional enzyme (△1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps of praline biosynthesis in plants. Journal of Biological Chemistry,1995,270(35): 20491-20496
    Zhao K, Fan H, Zhou S, et al. Study on the salt and drought tolerance ofSuaeda salsaandKalanchoe claigre-montianaunder iso-osmotic salt and water stress. Plant Science,2003,165:837-844
    Zhu J K. Plant salt tolerance. Trends Plant Science,2001,2:66-71
    Zhu J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology,2003,6: 441-445
    Zhu X G, Zhang Q D. Advance in the research on the effects of NaCl on Photosynthesis. Chinese Bulletin of Botany,1999,16:332-338
    Zhu Z J, Wei G Q, Li J, et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber(Cucumis sativus L.). Plant Science,2004,167:527-533