一株栅藻的分离培养及其应用于养猪废水处理的潜力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
养猪业的快速发展导致养猪废水的大量产生,给地区生态环境和居民健康带来了严重危害,实现养猪废水的无害化、资源化和减量化处理是保证产业可持续发展的基础,而现有的常规污水处理技术仅仅作为一种处理工艺实现废水的无害化处理,忽略了废水的资源化利用;另一方面,为缓解当前资源匮乏、能源紧缺的形势,微藻生物能源成为生物质能研究领域的热点之一,但如何降低微藻培养成本是实现微藻燃料商业化发展的关键。基于微藻培养的污水处理技术的出现,为同时实现养猪废水的无害化处理、资源化利用和降低微藻培养成本提供了可能,它将水质净化与高价值生物质生产相耦合,实现污水处理由处理工艺向生产工艺转变,所获得的微藻生物质可以用作生产生物柴油的原料,给养猪场创造经济效益,保障养猪场的可持续发展。但藻种的筛选和培养体系的构建是成功实现此处理技术的关键。本实验室从养猪场废水处理池内分离纯化了一株微藻,因此,课题主要围绕此徽藻的分离培养及其在养猪废水处理中应用的基础条件进行了探讨,为构建基于微藻培养的养猪废水处理技术体系提供基础依据,论文通过对微藻的分离鉴定及其理化性质测定、微藻培养条件的优化、微藻处理养猪废水的可行性及强化微藻处理养猪废水条件的研究,获得了以下主要结果:
     (1)借助形态学和分子生物学手段,鉴定此微藻为栅藻,命名为Desmodesmus sp. CHX1,相关纯化藻株和序列基因已提交至中国微生物菌种保藏管理委员会普通微生物中心(保藏受理号:CGMCC No.6649)和Genebank (登录号:JX255841);栅藻(Desmodesmus sp. CHX1)最佳光密度值为OD690,但OD690测定值不易超过0.7,在此测定范围内,光密度值与藻体干重间呈线性正相关关系(R2=0.9942);正常培养条件下,栅藻(Desmodesmus sp. CHX1)在BG-11培养液中生长45天后达到生长稳定期,最高浓度达4.54g/1;培养4周后,栅藻(Desmodesmus sp. CHX1)细胞内C、N、H和Zn含量分别为45.7%、7.13%、7.90%知79.7mg/kg,Cu含量低于最低检测浓度;藻体总叶绿素含量为4.92mg/1,其中叶绿素a占总叶绿素含量的78.5%,类胡萝卜素含量为1.67mg/1;藻细胞总脂含量为12.1%-14.6%,脂肪酸成分中以C16-C18含量为主,占总脂肪酸含量的70.7%,适合作为生物柴油生产原料。此外,藻体粗蛋白含量为49.3%,在所测定的16种氨基酸成分中含有人体所必需的7种氨基酸,其中天冬氨酸含量最高,达27.2mg/g,总氨基酸含量为198.4mg/g,其中总必需氨基酸含量为5931mg/g,占总氨基酸含量的29.9%,也可作为养猪场部分蛋白饲料的替代品。
     (2)混养培养方式最利于栅藻(Desmodesmus sp. CHX1)生长,而葡萄糖和NO3-N分别作为碳源和氮源时,最适宜于栅藻(Desmodesmus sp. CHX1)生物产量和Ch1(a+b)的积累;正交优化试验结果表明,在所测定的四个因素中,葡萄糖添加浓度对栅藻(Desmodesmus sp. CHX1)生长和油脂产率的影响最大,其次为藻细胞初始接种浓度,结合正交试验和单因子试验结果,筛选出最利于栅藻(Desmodesmus sp. CHX1)生长和油脂生产的培养条件组合为:葡萄糖浓度3g/l、培养液初始pH=10、细胞接种浓度5%(初始OD69o=0.08)、硝酸盐浓度2g/l;在此培养条件下,栅藻(Desmodesmus sp. CHX1)从适应期结束到稳定期只需5天左右,大大缩短了藻细胞培养时间;此外,曝气能显著增加栅藻(Desmodesmus sp. CHX1)细胞的生物产量、Chl(a+b)含量和油脂产量,且在所研究的曝气量范围内(16-160l/h,随曝气量的增加,上述指标均显著增加,培养7天后,在曝气量为160l/h,栅藻(Desmodesmus sp. CHX1)细胞的生物量浓度、Ch1(a+b)含量和油脂产率分别达到7.26g/l、60.5mg/l和128.7mg/1/d,这说明在栅藻(Desmodesmus sp. CHX1)培养过程中,适当的曝气利于微藻生长和油脂的生产。
     (3)栅藻(Desmodesmus sp. CHX1)能在适度稀释的灭菌后养猪废水中存活并生长,培养12天后,最大生物量产率和比生长率分别达到196.7mg/1/d和0.279/d,对NH/4+-N、TP和COD的最大去除率分别为98.2%、80.4%和37.1%。因此,该栅藻(Desmodesmus sp. CHX1)具备应用于养猪废水处理的潜力,但在处理前,对养猪废水进行适当的稀释是保证栅藻(Desmodesmus sp. CHX1)快速生长和有效去除营养物质的前提,而在现今的商业运作模式中,稀释是商业化应用过程中的一大限制,因此,降低养猪废水对栅藻(Desmodesmus sp. CHX1)的抑制效应,寻找其他低成本的预处理方式以强化其商业化应用的可行性成为必要。
     (4)直接空气吹脱可以作为一种简单有效的预处理方法应用于基于微藻培养的养猪废水处理技术体系中,以降低养猪废水中过高氨氮对微藻的生长抑制作用;而向不灭菌养猪废水中泵入含5%CO2的空气(即混养培养)时,栅藻(Desmodesmus sp. CHX1)的生长、油脂积累和废水中NH4+-N、TN、TP和COD、Cu、Zn等去除均得到显著加强。培养8天后,栅藻(Desmodesmus sp. CHX1)的生物量浓度、生物量产率和油脂产率分别高达7.91g/l、869.0mg/l/d和132.1mg/l/d(总脂含量15.2%),而废水中NH4+-N、TN、TP、COD、Cu和Zn等去除率分别为97.3%、87.9%、93.2%、41.8%、50.1%和30.1%。元素流分析结果表明,栅藻(Desmodesmus sp. CHX1)的直接吸收利用是废水中N、P和Cu、Zn去除的主要原因。混养培养后,栅藻(Desmodesmus sp. CHX1)细胞内N、P含量、C16-C18脂肪酸含量、粗蛋白含量和氨基酸含量均得到显著提高,其中N、P含量分别为9.55%和0.79mg/kg,粗蛋白和总氨基酸含量分别为59.7%和315.9μg/g (EAA/TAA为30.5%),C16-C18脂肪酸占总脂肪酸成分的83.11%。
Owning to the rapid development of pig husbandry, there is a dramatic increase in the swine wastewater, which brings a severe damage to the local ecological environment and health of the residents. It is a foundation for the sustainable development of the pig husbandry to realize the innocent, resourceful and reduction treatment of the swine wastewater. However, the current regular wastewater treatment technologies only focus on the innocent treatment of the wastewater, but neglect the resourceful utilization of the wastewater. On the other hand, in order to alleviate the situation in which there is a shortage of resource and energy, the microalgal bio-energy turns to be one of the hot spots in the research field of biomass energy, and how to lower the cost for microalgal cultivation is a key to realize the commercial development of the microalgal biofuel. The occurrence of wastewater treatment technology based on the microalgal cultivation makes it possible to realize the innocent treatment and resourceful utilization of swine wastewater and to lower the cost for microalgal cultivation. It couples the water purification with the production of valuable biomass, which realizes the transformation of wastewater treatment from treatment process to production technology, and the microalgal biomass obtained can act as the raw materials for producing the biodiesel, which can create economic benefit and guarantee the sustainable development of the pig farm. However, the selection of algae and construction of cultivation system are the keys to realize the treatment technology successfully. In this experiment, a microalgal in the wastewater treatment tank of the pig farm was separated and purified. Therefore, the project focused on the discussion about the isolated cultivation of microalgal and the basic conditions for its application in the swine wastewater treatment, which provided the information basis for the swine wastewater treatment technology based on the microalgal cultivation. The research contents mainly included the isolation and identification of the microalgal and determination of its physicochemical characteristics, the optimization of the microalgal cultivation conditions, feasibility of swine wastewater treatment based on microalgae as well as the strengthening in the condition of the microalgal swine wastewater treatment, etc. The following results have been obtained through experimental research:
     (1) With the help of morphology and molecular biology approaches, this microalgal was identified as the Scenedesmus and named as Desmodesmus sp. CHX1. The related purified strain and gene sequence has already been submitted to the China General Microbiological Culture Collection Center (Accepted No. of the preservation: CGMCC No.6649) and Genebank (accession number:JX255841). The best optical density of the Desmodesmus sp. CHX1was OD690, but the measured value of OD690could not exceed0.7easily. Within this measuring range, there was a linear positive correlation between the optical density and the dry weight of the cells (R=0.9942). Under normal cultivation, the Desmodesmus sp. CHX1reached stable growth phase after growing in the BG-11culture solution for45days, with the maximum density4.54g/1. After four weeks, the contents of the C, N, H and Zn in the cell of Desmodesmus sp. CHX1were45.7%,7.13%,7.90%and79.7mg/kg, respectively, and the content of Cu was lower than the minimum detectable concentration. The total Chlorophyll was4.92mg/l, in which the Chlorophyll a accounted for78.5%of the total chlorophyll, while the content of carotenoid was1.67mg/l. The total lipid of the isolated alga was the range of12.1%-14.6%, and the content of C16-C18dominated in the fatty acid, accounting for70.7%of the fatty acid content, which could be used as the raw materials for the biodiesel. In addition, the crude protein content was49.3%, and there were7kinds of amino acid which were essential for the human body among the16kinds of amino acid, in which the content of aspartic acid was the highest, about27.2mg/g; the content of total amino acid was198.4mg/g, in which the content of essential amino acids were59.31mg/g, accounting for29.9%of the total amino acid. Also it could be taken as the substitutes of some protein feed in the pig farm.
     (2) The mixotrophic cultivation was favorable for the growth of Desmodesmus sp. CHX1most. When the glucose and NO3-N were taken as the carbon and nitrogen source, respectively, it was favorable for the biological yield of the Desmodesmus sp. CHX1and the accumulation of Chl (a+b). The orthogonal optimization test had shown that within the four factors measured, the additive concentration of glucose had the biggest influence on the growth and oil production rate of the Desmodesmus sp. CHX1and the initial inoculation concentration ranked the second. According to the results of orthogonal test and single factor experiment, the combination of cultures that was most favorable for the growth and oil production rate of the Desmodesmus sp. CHX1had been selected, namely, the concentration of glucose was3g/1, the initial pH of the medium was10, the cell inoculation concentration was5%(initially, OD690=0.08) and the concentration of the nitrate was2g/1. In such a culture, it only took5days for the Desmodesmus sp. CHX1to reach the stable phase from the end of adaptive phase, which shortened the cultivation period greatly. As a result, the culture of Desmodesmus sp. CHX1seed could be prepared in the optimized cultivation condition. In addition, the aeration ccould increase the biological yield of the Desmodesmus sp. CHX1, the content of Chl (a+b) and oil production dramatically. Within the research scope (16-1601/h), the above mentioned index increased with the aeration quantity. After7days of cultivation, the biomass concentration of the Desmodesmus sp. CHX1cell, the Chl (a+b) content and oil production reached7.26g/1,60.5mg/1and128.7mg/l/d, respectively, when the aeration was1601/h, suggesting that during the cultivation of Desmodesmus sp. CHX1, proper aeration is favorable for the growth of microalgae and the accumulation of valuable additional materials.
     (3) Desmodesmus sp. CHX1could survive and grow in the properly-diluted swine wastewater after sterilization. After12days of cultivation, the maximum biomass yield and growth rate reached196.7mg/l/d and0.279/d, respectively, while the maximum removal rate of NH4+-N, TP and COD reached98.2%,80.4%and37.1%, respectively. Therefore, Desmodesmus sp. CHX1has the potential of being applied into the swine wastewater. But before treatment, proper dilution of swine wastewater is a premise of guaranteeing the fast growth of Desmodesmus sp. CHX1and effective removal of nutritional ingredients. However, in the current commercial operation model, dilution is limited in the commercial application. Therefore, to decrease the inhibiting effect of swine wastewater on Desmodesmus sp. CHX1, other low-cost pre-treatment methods can be sought to strengthen the feasibility of its commercial application.
     (4) Direct air stripping could be taken as a simple and effective pre-treatment applied in the swine wastewater treatment technology system based on the microalgal cultivation to decrease the inhibition of high ammonia and nitrogen in the swine wastewater on the microalgal. Besides, to pump the air with5%CO2(namely as the mixotrophic cultivation) into the unsterilized swine wastewater, the growth of Desmodesmus sp. CHX1, the accumulation of oil and the removal rate of NH4+-N, TN, TP, COD, Cu and Zn in the wastewater were strengthened remarkably. After8days of cultivation, the biomass concentration, biomass yield and oil production rate of Desmodesmus sp. CHX1were as high as7.91g/1,869.0mg/1/d and132.1mg/l/d (the content of the total oil is15.2%), while the removal rate of NH4+-N, TN, TP, COD, Cu and Zn in the wastewater was97.3%,87.9%,93.2%,41.8%,50.1%and30.1%respectively. The elementary stream analysis results had shown that, direct absorption and utilization of Desmodesmus sp. CHX1were the main causes of the removal of N and P, as well as Cu and Zn in the wastewater. After the mixotrophic cultivation, the content of N, P, fatty acid content of C16-C18, crude protein content and amino acid content in the cell of Desmodesmus sp. CHX1were improved greatly, in which the content of N and P was9.55%and0.79mg/kg respectively, while the crude protein content and total amino acid content are59.7%and315.9μg/g, respectively (EAA/TAA is30.5%), and the fatty acid content of C16-C18accounted for83.11%of the total fatty acid.
引文
Abreu A P, Fernandes B, Vicente A A, Teixeira J, Dragone G. Mixotrophic cultivation of Chlorella vulgar is using industrial dairy waste as organic carbon source. Bioresource Technology,2012,118:61-66.
    An J Y, Sim S J, Lee J S, Kim B W. Hydrocarbon production from secondary treated piggery wastewater by the green alga Botryococcus braunii. Journal of Applied Phycology,2003,15(2-3):185-191.
    Andrade M R and Costa J A V. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculure,2007,264:130-134.
    APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater.20th ed. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, 2008.
    Aravindhan R, Rao J R, Nair B U. Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. Journal of Hazardous Materials,2007,142(1-2):68-76.
    Behrenfeld M J, Worthington K, Sherrell R M, Chavez F P, Strutton P, McPhaden M, Shea D M. Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature,2006,442:1025-1028.
    Behzadi S, Farid M M. Review:examining the use of different feedstock for the production of biodiesel. Asia-Pacific Journal of Chemical Engineering,2007,2: 480-486.
    Bernet N and Beline F. Challenges and innovations on biological treatment of livestock effluents. Bioresource Technology,2009,100:5431-5436.
    Bhatnagar A, Chinnasamy S, Singh M, Das K C. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy,2011,88:3425-3431.
    Bhola V, Desikan R, Santosh S K, Subburamu K, Sannivasi E, Bux F. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. Journal of Bioscience and Bioengineering,2011,111(3):377-382.
    Boelee N C, Temmink H, Janssen M, Buisman C J N, Wijffels R H. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research,2011,45:5952-5933.
    Bonmati A and Flotats X. Air stripping of ammonia from pig slurry:characterization and feasibility as a pre-or post-treatment to mesophilic anaerobic digestion. Waste Management,2003,23:261-272.
    Brennan L and Owende P. Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews,2010,14:557-577.
    Chang D K, An J Y, Park T H. Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochemical Engineering Journal,2006,31:234-238.
    Chang Y Y, Wu Z C, Bian L, Feng D L, Leung D Y C. Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Applied Energy,2012,102:427-431.
    Chen C Y, Yeh K L, Aisyah R. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production:A Critical Review. Bioresource Technology, 2011,102:71-81.
    Cheng Y, Lu Y, Gao C F, Wu Q Y. Alga-based biodiesel production and Optimization using sugar cane as the feedstock. Energy & Fuel,2009,23:4166-4173.
    Chesapeake Bay Foundation. A guide to preserving agricultural lands in the Chesapeake Bay region:Keeping stewards on the land, http://www. cbf.org/site /DocServer/CbFPreserving Farmland_Finalpd f?docID=5934. Accessed 26 June 2006.
    Cheunbarm S and Peerapompisal Y. Cultivation of Spirulina platensis using anaerobically swine wastewater treatment effluent. International Journal of Agriculture & Biology,2010,12:586-590.
    Chinnasamy S, Bhatnagar A, Hunt R W, Das K C. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technology,2010,101:3097-3105.
    Chisti Y. Biodiesel from microalgae. Biotechnology Advances,2007,25:294-306.
    Chistis Y. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology,2008, 26:126-131.
    Chiu S Y, Kao C Y, Chen C H, Kuan T C, Ong S C, Lin C S. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology,2008,99:3389-3396.
    Chiu S Y, Kao C Y, Tsai M T. Lipid accumulation and CO2 utilization of Nannochioropsis oculata in response to CO2 aeration. Bioresource Technology, 2009,100:833-838.
    Cho S J, Luong T T, Lee D H, Oh Y K, Lee T. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresource Technology,2011,102:8639-8645.
    Converti A, Casazza A A, Ortiz E Y, Perego P, Del Borghi M. Effect of temperature and nitrofen concentration on the growth and lipid content of Nannochioropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing,2009,48(6):1146-1151.
    Costa J A V and de Morais M G. The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology,2011,102:2-9.
    de-Bashan L E, Moreno M, Hernandez J P, Bashan Y. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Research,2002,36:2941-2948.
    de-Godos I, Bianco S, Garcia-Encina P A, Becares E. Munoz R. Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresource Technology,2009,100:4332-4339.
    De la Pena M R. Cell growth and nutritive value of the tropical benthic diatom, Amphora sp., at varying levels of nutrients and light intensity, and different culture location. Journal of Applied Phycology,2007,19:647-655.
    de-Morais M G and Jorge-Alberto V C. Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and Management,2007,48:2169-2173.
    Dean A P, Sigee D C, Estrada B, Pittman J K. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology,2010,101:1611-1627.
    de-Bashan L E and Bashan Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology,2010,101:1611-1627.
    Demirbas A. Biofuels securing the planet's future energy needs. Energy Conversion and Management,2009,50:2239-2249.
    Deng L P, Su Y Y, Su H, Wang X T, Zhu X B. Biosorption of copper(Ⅱ) and lead (Ⅱ) from aqueous solutions by nonliving green alga Cladophora fascicularis: equilibrium, kinetics and environmental effects. Adsorption,2006,12:267-277.
    Deng L P, Zhu X B, Su Y Y, Su H, Wang X T. Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis. Chinese Journal of Oceanology Limnology,2008,26(1):45-49.
    Diez B, Pedros-Alio C, Marsh T L, Massana R. Application of denaturing gradient gel eletrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Applied Environmental Microbiology,2001,67:2942-2951.
    Dougherty M C, Thevahasan N V, Kort H L J. Nitrate and Escherichia coli NAR analysis in tile drain effluent from a mixed tree intercrop and monocrop system. Agriculture, Ecosystem & Environment,2009,131(1-2):77-84.
    Faraloni C, Ena A, Pintucci C, Torzillo G. Enhanced hydrogen production by means of sulfur-deprived Chlamydononas reinhardtii cultures grown in pretreated olive mill wastewater. International Journal of Hydrogen Energy,2011,36(10): 5920-5931.
    Feng Y J, Li C, Zhang D W. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technology,2011,102:101-105.
    Flotats X, Bonmati A, Fernandez B, Magri A. Manure treatment technologies:on farm versus centralized strategies, NE Spain as case study. Bioresource Technology, 2009,100:5519-5526.
    Gao C F, Zha I Y, Ding Y. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoid.es. Applied Energy,2010,87: 756-761.
    Ge Y M, Liu J Z, Tian G M. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresource Technology.2011, 102(1):130-134.
    Gonzalez C, Marciniak J, Villaverde S, Garcia-Encina PA, Munoz R. Microalgae-based processes for the biodegradation of pretreated piggery wastewaters. Applied Microbiology and Biotechnology,2008,80:891-898.
    Gouveia L, Oliveira A C. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology,2009,36(2):269-274.
    Griffiths M J and Harrison S T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 2009,21:493-507.
    He S B and Xue G. Algal-based immobilization process to treatment the effluent from a secondary waste water treatment plant (WWTP). Journal of Hazardous Material, 2010,178:895-899.
    Heredia-Arroyo T, Wei W, Ruan R, Hu B. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass & Bioenergy,2011,35:2245-2253.
    Ho S H, Chen C Y, Chang J S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology,2012,113:244-252.
    Ho S H, Chen W M, Chang J S. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresource Technology, 2010,101:8752-8760.
    Hu B, Min M, Zhou W G, Li Y C, Chen P, Ruan R. Influence of Exogenous CO2 on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Applied Biochemistry Biotechnology,2012,166:1661-1673.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Mciroalgal as feedstocks for biofuel production:Perspectives and advances. The Plant Journal,2008,54:621-39.
    Hu Q. Environmental effects on cell composition. In:Richmond A (Ed.), Handbook of Microalgal Culture:Biotechnology and Applied Phycology. Blackwell Science, Victoria,2007, pp.83-93
    Hwang T S, Min K S, Choi E, et al. Resource recovery and nitrogen removal from piggery waste using the combined anaerobic processes. Water Science and Technology,2007,54(8):229-236.
    Ji L, Xie S L, Feng J, Li H Y, Chen L. Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. Journal of Applied Phycology,2012, 24(4):979-983.
    Jimenez-Perez M V, Sanchez-Castillo P, Romera O, Fernandez-Moreno D, Perez-Martinez C. Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzyme and Microbial Technology,2004, 34:392-398.
    Johnson M B and Wen Z. Development of an attached microalgal growth system for biofuel production. Applied Microbiology and Biotechnology,2010,85:525-534.
    Kebede-Westhead E, Pizarro C, Mulbry W. Treatment of swine manure effluent using freshwater algae:Production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. Journal of Applied Phycology,2006, 18:41-46.
    Kitaya Y, Azuma H, Kiyota M. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae Euglena gracilis. Advances in Space Research,2005,35:1584-1588.
    Kong Q X, Li L, Martinez B, Chen P, Ruan R. Culture of microalgae Chlamydomonas reinbardtii in wastewater for biomass feedstock production. Applied Biochemistry and Biotechnology,2010,160(1):9-18.
    Kong W B, Song H, Hua S F, Yang H, Yang Q, Xia C G. Enhancement of biomass and hydrocarbon productivities of Botryococcus braunii by mixotrophic cultivation and its application in brewery wastewater treatment. African of Journal Microbiology Research,2012,6:1489-1496.
    Krapac I G, Dey W S, Roy W R, Smyth C A, Storment E, Sargent S L, Steele J D. Impacts of swine manure pits on groundwater quality. Environmental Pollution, 2002,120:475-492.
    Kulandaivel S, Prakash R, Anitha R. Comparative studies on biochemical profile of Spirulina platensis and Oscillatoria sp. on synthetic medium and dairy effluent. Journal of Pure & Applied Microbiology,2007,1(1):109-112.
    Kumar M S, Miao Z H H, Wyatt S K. Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Bioresource Technology,2010,101:6012-6018.
    Li X, Hu H Y, Gan K, Yang J. Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecological Engineering,2010,36:379-381.
    Li X, Hu H Y, Yang J. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnology,2010,27(1):59-63.
    Li X, Hu H Y, Gan K, Sun YX. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp.LX1. Bioresource Technology,2010,101: 5494-5500.
    Li Y C, Chen Y F, Chen P, Min M, Zhou W G, Martinez B, Zhu J, Ruan R. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology,2011,102:5138-5144.
    Li Y C, Zhou W G, Hu B, Min M, Chen P, Ruan R R. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment:strains screening and significance evaluation of environmental factors. Bioresource Technology,2011,102:10861-10867.
    Li Y G, Xu L, Huang Y M, Wang F, Chen G, Liu C Z. Microalgal biodiesel in China: opportunities and challenges. Applied Energy,2011,88:3432-3437.
    Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letter,2009,31:1043-1049.
    Lim S L, Chu W L, Phang S M. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology,2010,101:7314-7322.
    Lin L, Chan G Y S, Jiang B L, Lan C Y. Use of ammoniacal nitrogen tolerant microalgae in landfill leachate treatment. Waste Management,2007,27: 1376-1382.
    Liu J Q, Lewitus A J, Brown P, Wilde S B. Growth-promoting effects of a bacterium on algal growth in eutrophic lakes with limited available phosphorus. Ecological Engineering,2012,42:107-111.
    Liu Z Y, Wang G C, Zhou B C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology,2008,99:4717-4722.
    Lv J M, Cheng L H, Xu X H, Zhang L, Chen H L. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology,2010,101:6797-6804.
    Mandal S, Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology,2009,84: 281-291.
    Mark E, Huntley T, Donald G CO2 mitigation and renewable oil from photosynthetic microbes:a new appraisal. Mitigation and Adaption Straegies for Global Change, 2007,12:573-608.
    Markou G, Chatzipavlidis I, Georgakakis D. Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresource Technology,2012,112:234-241.
    Mata M T, Martins A A, Castano N S. Microalgae for biodesel production and other applications:A review. Renewable and Sustainable Energy Reviews,2010,14: 217-232.
    Melis A. Green alga hydrogen production:progress, challenges and prospects. International Journal of Hydrogen Energy,2002,27:1217-1228.
    Meng X, Yang J, Xu X, Zhang L. Biodiesel production from oleaginous micro-organisms. Renewable Energy,2009,34(1):1-5.
    Miao X and Wu Q. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology,2007,97:841-846.
    Miao X and Wu Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology,2004,110: 85-93.
    Min M, Wang L, Li YC, Mohr M J, Hu B, Zhou W G, Chen P, Ruan R. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Applied Biochemistry and Biotechnology,2011,165:123-137.
    Molina E, Fernandez J, Acien-Fernandez G, Chisti Y. Tubular photobioreactor design for algal cultures. Journal of Biotechnology,2001,92:113-131.
    Mostafa S S M, Shalaby E A, Mahmoud G I. Cultivating microalgae in domestic wastewater for biodiesel production. Notulae Scientia Biologicae,2012,4(1): 56-65.
    Mouget J L, Dakhama A, Lavoie M C, De la Noue J. Algal growth enhancement by bacteria:is consumption of photosynthetic oxygen involved? FEMS Microbiology Ecology,1995,18:35-43.
    Mulbry W, Kebede-Westhead E, Pizarro C, Sikora L. Recycling of manure nutrients: use of algal biomass from diary manure treatment as a slow release fertilizer. Bioresource Technology,2005,96:451-458.
    Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E. Treatment of dairy manure effluent using freshwater algae:Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresource Technology,2008,99: 8137-8142.
    Munoz R and Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants:A review. Water Research,2006,40:2799-2815.
    Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kaya K. Optimization of culture conditions of the thraustochtrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresource Technology,2012,109:287-291.
    Ndegwa P M, Hamilton D W, Lalman J A. Effect of cycle-frequency and temperature on the performance of anaerobic sequencing batch reactors (ASBRs) treating swine waste. Bioresource Technology,2008,99:1972-1980.
    Obaja D, Mace S, Mata-Alvarez J. Biological nutrient removal by a sequencing batch reactor (SBR) using an internal organic carbon source in digested piggery wastewater. Bioresource Technology,2005,96(1):7-14.
    Oswald W J and Golueke C G Biological transformation of solar energy. Advances in Applied Microbiology,1960,2:223-262
    Park J M, Jin H F, Lim B R, Park K Y, Lee K. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp.. Bioresource Technology,2010,101:8649-8657.
    Patil V, Kallqvist T, Olsen E, Vogt G, Gislerod HR. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International,2007, 15:1-9.
    Peer M, Schenk, Skye R. Second generation biofuels:high-efficiency microalgae for biodiesel production. BioEnergy Research,2008,1:20-43.
    Perez-Garcia O, Escalante F M E, de-Bashan L E, Bashan Y. Heterotrophic cultures of microalgae:Metabolism and potential products. Water Research,2011,45: 11-36.
    Pittman J K, Dean A P, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology,2011,102(1): 17-25.
    Qian P, Schoenau J J, Wu T. Copper and zinc amounts and distribution in soil as influenced by application of animal manure in east-central Saskatchewan Can. Journal of Soil Science,2003,83:197-202.
    Rathinam A, Jonnalagadda R R, Balachandran U N. Application of a chemically modified green macro alga as a biosorbent for phenol removal. Journal of Environmental Management,2009,90(5):1877-1883.
    Rawat I, Kumar R R, Mutanda T, Bux F. Dual role of microalgae:phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy,2011,88(10):3411-3424.
    Rodolfi L, Zittelli G C, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M R. Microalgae for oil:strain selection, induction of lipid synthsis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 2009,102:100-112.
    Rouhibakhsh A, Priya J, Periasamy M, Haq Q M I, Malathi V G. An improved DNA isolation method and PCR protocol for efficient detection of multicomponents of begomovirus legumes. Journal of Virological Methods,2008,147:37-42.
    Ruiz-Marin A, Mendoza-Espinosa L G, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology,2010,101:58-64.
    Scott S A, Davey M P, Dennis J S, Horst I, Howe C J, Lea-Smith D J. Biodiesel from algae:challenges and prospects. Current Opinion in Biotechnology,2010,21: 277-286.
    Searching T, Ralph H, Houghton R A. "Use of U.S. croplands for biofuels increase greenhouse gases through emissions from land-use change". Science,2008,319: 1238-1240.
    Singh A, Nigam P S, Murphy J D. Renewable fuels from algae:an answer to debatable land based fuels. Bioresource Technology,2011,102:10-18.
    Singh Y. Botryococcus:a hydrocarbon producing microalga. In:Gupta RK, Pandey VD (Eds). Advances in Applied Phycology. Daya Publishing House. Delhi,2007, pp.115-130.
    Song M, Shin S G, Hwang S. Methanogenie population dynamics assessed by real-time quantitative PCR in sludge granule in upflow anaerobic sludge blanket treating swine wastewater. Bioresource Technology,2010,101:523-528.
    Song Y, Hahn H H, Hoffmann E. Effect of solution conditions on the precipitation of phosphate for recovery:a thermal dynamic evaluation. Chemosphere,2002,48: 1029-1034.
    Su C H, Giridhar R, Chen C W, Wu W T. A novel approach for medium formulation for growth of a microalga using motile intensity. Bioresource Technology,2007, 98:3012-3016.
    Su Y Y, Mennerich A, Urban B. Municipal wastewater treatment and biomass production with a wastewater-born and settle algal-bacterial culture. Water Research,2011,45:3351-3358.
    Su Z F, Li X, Hu H Y, Wu Y H, Noguchi T. Culture of Scenedesmus sp.LXl in the modified effluent of a wastewater treatment plant of an electric factory by photo-membrane bioreactor. Bioresource Technology,2011,102:7627-7632.
    Sun C, Liang W. Status of biodiesel development and production in China. Sino-Global Energy 2008,13:23-28.
    Suneerat R. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresource Technology,2012,109:261-265.
    Sydney E B, de Silva T E, Tokarski A, Novak A C, de Carvalho J C, Woiciecohwski A L, Larroche C, Soccol C R. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Applied Energy, 2011,88(10):3291-3294.
    Tam N F Y and Wong YS. Effect of ammonia concentrations on growth of Chlorella vulgar is and nitrogen removal from media. Bioresource Technology,1996,57: 45-50.
    Tang D H, Han W, Li P L. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology,2011,102:3071-3076.
    Teresa M M, Antonio A M, Nidia S C. Microalgae for biodiesel production and other applications:A review. Renewable & Sustainable Energy Reviews,2010,14: 217-232.
    Ugwu CH, Aoyagi H, Uchiyama H. Influence of irradiance, dissolved oxygen concentration and temperature on the growth of Chlorella sorokiniana. Photosynthetica,2007,45:309-311.
    Vansudevan P T and Briggs M. Biodiesel production-current state of the art and challenges. Journal of Industrial Microbiology & Biotechnology,2008,35: 421-430.
    Vieira J G, da S. Manetti A G, Jacob-Lopes E, Queiroz M I. Uptake of phosphorus from dairy wastewater by heterotrophic cultures of cyanobacteria. Desalination and Water Treatment,2012,40:224-230.
    Waki M, Yokoyama H, Ogino A. Nitrogen removal from purified swine wastewater using biogas by semi-partitioned reactor. Bioresource Technology,2007,99(13): 5335-5340.
    Wang B, Li YQ, Wu N. CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology,2008,79:707-718.
    Wang G, Gavala H N, Skiadas I V. Wet explosion of wheat straw and co-digestion with swine manure:Effect on the methane productivity. Waste Management, 2009,29:2830-2835.
    Wang H Y, Xiong H R, Hui Z L, Zeng X B. Mixotrophic cultivation, of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresource Technology,2012,104:215-220.
    Wang L, Li Y C, Chen P, Min M, Chen Y F, Zhu J, Ruan R. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp.. Bioresource Technology,2010,101:2623-2628.
    Wang L, Zhu J, Miller C. Nitrite accumulation from swine wastewater in sequencing batch reactor. Trans, ASABE,2009,52:1363-1370.
    Wang Y J, Gao P, Fan M H, Jin H B. Preliminary study of purification for livestock wastewater of immobilized microcystis Aeryginosa. Procedia Environmental Science,2011,11:1316-1321.
    Wijffels R and Barbosa M. An outlook on microalgal biofuels. Science,2010, 329(5993):796
    Wilkie A C and Mulbry W W. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresource Technology,2002,8,4;.81-91.
    Woertez I, Feffer A, Lundquist T, Nelson Y. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering,2009,135:1115-1122.
    World Bank. Managing the livestock revolution:Policy and Technology to address the negative impacts of a fast-growing sector. Washington, DC, WB,2005,89.
    Xiong W, Li X F, Xiang J Y, Wu Q Y. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology,2008,78:29-36.
    Xu H, Miao X L, Wu Q Y. High quality biodiesel production from a microalgae Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology,2006,126:499-507.
    Xue S, Su Z, Cong W. Growth of Spirulina platensis enhanced under intermittent illumination. Journal of Biotechnology,2011,151:271-277.
    Yeesang C and Cheirsilp B. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology,2011,102:3034-3040.
    Yoo C, Jun S Y, Lee J Y, Ahn C Y, Oh H M. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology,2010, 101(1):S71-74.
    Zhao G Y, Du J J, Jia Y, Lv Y N, Han G M, Tian X J. The importance of bacteria in promoting algal growth in eutrophic lakes with limited available phosphorus. Ecological Engineering,2012,42:107-111.
    Zhila N, Kalacheva G, Volova T. Effect of salinity on the biochemical composition of the alga Botryococcus branuii Kutz IPPAS H-252. Journal of Applied Phycology, 2011,23:47-52.
    Zhou W G, Li Y C, Min M, Hu B, Chen P, Ruan R. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technology,2011,102:6909- 6919.
    Zhou W G, Min M, Li Y C, Hu B, Ma X C, Cheng Y L, Liu Y H, Chen P, Ruan R. A hetero- photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technology, 2012,110:448-455.
    鲍士旦.土壤农化分析方法(第三版).中国农业出版社,北京,2005.
    曹吉祥,李德尚,王金秋.10种淡水常见浮游藻类营养组成的研究.中山大学学报(自然科学版),1997,36(2):22-27.
    曹榕,谢丽,黄燕,周琪,周娘,龚浩.猪粪废水的厌氧处理工艺研究进展.水处理技术,2012,38(1):10-16.
    陈春云,庄源益,方圣琼.小球藻对养殖废水中N、P的去除研究.海洋环境科学,2009,28(1):9-11.
    陈林.小球藻回收电解废液中铜的性能研究.资源再生,2009,9:58-59.
    陈小玲,李金城,孙鑫,吴蕾,阙光龙,李文文.吹脱法对垃圾渗滤液中的氨氮预处理研究.井冈山大学学报(自然科学版),2012,33(1):44-46.
    陈晓峰,颜润润.竞争条件下光照对两种淡水藻生长的影响.环境科学与技术,2009,32(6):6-11.
    程丽华,张林,陈欢林.微藻固定C02研究进展.生物工程学报,之005,21(2):177-181.
    戴旭明.浙江生态养猪业发展模式.兽医导刊(特别关注),2011,9.
    邓良伟.规模化畜禽养殖废水处理技术现状探析.中国生态农业学报,2006,14(2):23-26.
    邓旭,魏斌,胡章立.利用固定化藻菌耦合系统同步去除污水中的COD和氮磷.环境科学,2011,32(8):2311-2316.
    邓旭,魏斌,胡章立.利用莱茵衣藻去除污水中氮磷的研究.环境科学,201 0,31(6):1489-1493.
    董黎明,汪苹,李金穗,孙阳.异养小球藻主要营养成分及氨基酸组成分析.食品科学,2012,3(3):232-237.
    段妮娜,董滨,何群彪,陈洪斌.规模化养猪废水处理模式现状和发展趋势.净 水技术,2008,27(4):9-15.
    方涛,贺心然,冯志华,张兵之.光照对微藻在海水中吸收氮磷营养盐的影响.淮海工学院学报(自然科学版),2012,21(2):80-83.
    葛亚明.葡萄球藻在废弃物中培养的适应性及调控研究.浙江大学,博士论文,2012.
    官雪芳,林斌,方志坚,徐庆贤,钱午巧.福建省养猪业的环境问题与防治对策.能源与环境,2009,4:59-61.
    浩云涛,李建宏,潘欣,马宇翔,王雪锋.椭圆小球藻(Chlorella ellipsoidea)对4种重金属的耐受性及富集.湖泊科学,2001,13(2):158-161.
    何洁,刘瑀,张立勇,刘长发.三种大型海藻吸收营养盐的动力学研究.渔业现代化,2010,37(1):1-5.
    何岩,赵由才,周恭明.高浓度氨氮废水脱氮技术研究进展.工业水处理,2008,28(1):1-4.
    胡洪营,李鑫,杨佳.基于微藻细胞培养的水质深度净化与高价值生物质生产耦合技术.生态环境学报,2009,18(3):1122-1127.
    胡洪营,李鑫.利用污水资源生产微藻生物柴油的关键技术及潜力分析.生态环境学报,2010,19(3):739-744.
    胡鸿钧,魏印心.中国淡水藻类-系统、分类及生态.北京:科学出版社,2006,p650-659.
    胡晓莲,王西峰,杨民.改良式两段内循环厌氧反应器处理养猪废水.中国给水排水,2010,26(14):71-74.
    胡雪芹,王强,马明睿,徐春燕,由文辉.淀山湖叶绿素a分布特征及其与浮游植物密度的相关性.华东师范大学学报(自然科学版),2012,4:149-156.
    黄利伟.分散式养猪废水处理技术工艺研究.西安建筑科技大学,博士论文,2011.
    黄若涵.我国规模化猪场的现状和未来.猪业科学,2012,7:32-35.
    黄微,徐顺来.中国养猪业现状与发展方向.畜禽总业,2011,269:4-8.
    黄雄超,牛荣丽.利用海洋微藻制备生物柴油的研究进展.海洋科学,2012,36(1):108-116.
    黄莹莹,陈雪初,孔海南,李春杰,丁炜,王艳.曝气对遮光条件下藻类消亡的影 响.环境污染与防治,2008,30(10):44-47.
    贾璇,闫海,肖宝清,马莹.原核小球藻USTB-01去除化肥厂废水中总氮的研究.环境工程学报,2010,4(4):737-740.
    贾越研,孟睿,何连生,席北斗.净化水产养殖废水的藻种筛选.环境科学与技术,2010,33(6):67-70.
    姜宏波,田相利,董双林,缪国荣,邹吉新,包杰.鼠尾藻生长、藻体成分及其生境的初步研究.海洋湖沼通报,2009,2:60-66.
    姜维,王小佳,贾仁勇,夏四清.吹脱法预处理皮革废水的实验研究.环境工程学报,2010,4(4):769-794.
    李超,冯玉杰,张大伟,初晓婉.以市政污水为底物的微藻油脂积累和碳流分析.可再生能源,2012,30(6):93-96.
    李俊柱.中国养猪业发展趋势及模式分析.生产管理,2011,5:38-40.
    李鑫,胡洪营,杨佳.LED红光/蓝光对栅藻LX1生长及产油特性的影响.环境科学,2010,31(2):244-250.
    梁东美,喻文凯,阳铁建.序批式活性污泥法处理养猪场废水.广东化工,2009,37(1):133-135.
    林东教,唐淑军,何嘉文.漂浮栽培雍菜和水葫芦净化猪场污水的研究.华南农业大学学报,2004,25(3):14-17.
    刘斌,陈大明,游文娟.微藻生物柴油研发态势分析.生命科学,2008,20(6):991-996.
    刘波,崔丽凤,刘载文.北京市城区地表水体叶绿素a与藻密度相关性研究.环境科学与技术,2008,31(8):29-33.
    刘丽.超声吹脱法去除养猪场废水中氨氮的试验研究.湖南农业大学,硕士学位论文,2011.
    刘平怀,杨勋,时杰,郝宗娣,张森.有机碳源对单针藻细胞生长、油脂积累和光合作用的影响.食品工业科技,2012,18:224-226.
    刘永红,陈菊兰,张洪荣,肖金玉,傅华.阿拉善荒漠草地牧草氨基酸组成特点与营养价值研究.草业学报,2008,17(6):25-33.
    刘玉环,阮榕生,孔庆学,刘成梅,罗杰,虞飞.利用市政废水和火电厂烟道气大规模培养高油微藻.生物加工过程,2008,6(3):29-33.
    刘振强,陆向红,晏荣军,敖慧,梅晓冬,高婷,计建炳.高密度高含油率微藻培养研究进展农业工程学报,2011,27(1):210-217.
    卢丽娜,孙利芹,田焕玲,任蒙,王长海.32株海洋微藻总脂含量及其脂肪酸组成的研究冲国油脂,2009,34(11):68-73.
    吕洪刚,张锡辉,郑振华,欧阳二明.原水藻与叶绿素a定量关系的研究.给水排水,2005,31(2):26-30.
    马红芳,李鑫,胡洪营,于茵,巫寅虎.栅藻LX1在水产养殖废水中的生长、脱氮除磷和油脂积累特性.环境科学,2012,33(6):1891-1896.
    马宏瑞,王蓬,蔡明杰.吹脱法去除制革脱灰废水中氨氮的研究.中国皮革,2010,23(39):43-46.
    马帅,胡小文,付莉莉,弓淑芬,谭德冠,张家明.不同碳源、氮源对优势藻株Hhw总脂含量及脂肪酸成分的影响.中国农学通报,2011,27(12):232-237.
    闵恩泽,张利雄.生物柴油产业链的开拓-生物柴油炼油化工厂..北京:中国石化出版社,2006,5-17.
    孟范平,宫艳艳,马冬冬.基于微藻的水产养殖废水处理技术研究进展.微生物学报,2009,49(6):691-696.
    欧阳峥嵘,温小斌,耿亚红,梅洪,胡鸿钧,张桂艳,李夜光.光照强度、温度、pH、盐度对小球藻(Chlorella)光合作用的影响.武汉植物学研究,2010,28(1):49-55.
    齐学斌,钱炬炬,樊向阳.污水灌溉国内外研究现状与进展.中国农村水利水电,2006,1:13-15.
    邱廷省,尹艳芬,蔡鲁晟.含锌重金属废水藻类吸附处理技术.水资源保护,2009,25(5):70-73.
    荣宏伟,彭永臻,张朝升,方茜。曝气量对SBBR生物除磷的影响研究。中国给水排水,2008,24(5):72-76.
    任健,李军,苏雷,范伟,吕志国,理轶璞.酸化液对厌氧释磷好氧吸磷速率的影响研究.环境工程,2011,29:103-107.
    陶亮亮,李鹏,张虹,丁敬敏,李琛.城市污水培育藻类用作饲料的可行性分析及研究现状.江西饲料,2012,1:26-30.
    陶秀萍,董红敏.畜禽养殖废弃物资源的环境风险及其处理利用技术现状.现代 畜牧兽医,2009,11:34-38.
    万风,王海燕,周岳溪,许吉现,杨利伟,张娜.养猪废水处理技术研究进展.农业灾害研究,2012,2(1):25-29.
    王翠,李环,王钦琪,韦萍.pH值对沼液培养的普通小球藻生长及油含量积累的影响.生物工程学报,2010,26(8):1074-1079.
    王华,徐百万,孙成友,王淑娟,徐天刚,王志亮.血液传播的人猪共患病研究现状.动物医学进展,2012,33(5):106-111.
    王瑾,韩剑众.饲料中重金属和抗生素对土壤和蔬菜的影响.生态与农村环境学报,2008,24(4):90-93.
    王立柱,温皓程,邹渝,周稳稳,谢通慧,张永奎.产油微藻的分离、筛选及自养培养氮源、碳源的优化.微生物学通报,2010,37(3):336-341.
    王顺昌,王陶,赵世光,吴跃进,余增亮.不同氮源对蛋白核小球藻生长、色素和中性脂肪积累的影响.激光生物学报,2008,17(2):197-201.
    王秀锦,李兆胜,邢冠岚,李卓凝,袁红莉,杨金水.蛋白核小球藻Chlorella pyrenoidosa-15的异养培养条件优化及污水养殖.环境科学,2012,33(8):2735-2740.
    王云中,杨成建,陈兴都,王彬斌.曝气对富营养化景观水体藻类群落结构的影响.水资源与水土工程学报,2011,2(4):66-69.
    王德鸿.微波消解-原子吸收光谱法测定海洋生物样品中重金属元素.现代科学仪器,2010,1:105-108.
    吴阿娜,朱梦杰,汤琳,朱刚,汪琴,张锦平.淀山湖蓝藻水华高发期叶绿素a动态及相关环境因子分析.湖泊科学,2011,23(1):67-72.
    夏金兰,李丽,万民熙,刘鹏,王润民,黄斌,邱冠周.两株微藻的分离鉴定及Fe3+对其生长和脂质积累的影响.武汉大学学报(理学版),2010,56(3):325-330.
    项爱枝,付永胜.高浓度养猪场废水处理工艺.广东农业科学,2008,1:77-79.
    闫振宇,陶建平,徐家鹏.我国生猪规模化养殖发展现状和省际差异及发展对策.农业现代化研究,2012,33(1):13-18.
    严清,孙连鹏.菌藻混合固定化及其对污水的净化实验.水资源保护,2010,26(3):57-60.
    杨朝晖.高浓度有机废水(养猪场废水)处理技术的研究.湖南大学,硕士学位论文,2002.
    杨静,蒋剑春,张宁,卫民.利用工农业废弃物培养微藻的研究进展.化工进展,2010.29:282-287.
    杨静,蒋剑春,张宁.高含油小球藻(Chlorella sp.)培养工艺条件的研究.林产化学与工业,2011,31(3):11-16.
    杨敏,张传光,严谷芬,Jeffery X H.螺旋藻废水处理工艺及其应用.环境科学导刊,2012,31(5):68-70.
    杨忠华,李方芳,曹亚飞,赵燕,陈庚华,周云川,周卫,侯亚利.微藻减排C02制备生物柴油的研究进展.生物加工过程,2012,10(1):70-76.
    杨凯.高油脂微藻筛选及不同培养条件对其脂肪酸含量及组分的影响.苏州大学,硕士论文,2009.
    姚丽贤,操君喜,李国良.连续施用养殖场鸡、鸽粪对土壤养分和重金属含量的影响.环境科学,2007,28(4):819~824.
    姚淑华,张晓艳,石中亮.氨氮废水处理技术及研究进展.化工中间体,2010,11:24-29
    叶美锋,林代炎,林琰.规模化养猪场污水综合治理工艺模式分析.能源与环境,2006,5:60-62.
    易剑锋.初沉-气浮-接触氧化工艺处理养猪废水.广东化工,2011,221(38):267-268.
    殷国梁.普通小球藻对味精废水的净化及其资源化研究.天津大学,硕士学位论文,2007.
    袁程,刘君寒,任晓慧,李福利.锰离子对斜生栅藻DHD-3的生长和油脂积累的调控作用.海洋科学,2012,36(2):62-66.
    张彩英.日本畜产环境污染的现状及其对策.国外农业环境保护,1992,2:68-72.
    张桂艳,温小斌,梁芳,欧阳峥嵘,耿亚红,梅洪,李夜光.重要理化因子对小球藻生长和油脂产量的影响.生态学报,2011,31(8):2076-2085.
    张丽君,杨汝德,肖恒.小球藻的异养生长及培养条件优化研究.广西植物,2001,2 1(4):353-357.
    张丽莉,吴艮,孙建明,王国栋.补充CO2对光生物反应器培养小球藻生长和光 合作用的影响.水产科学,2008,27:530-533.
    张乃弟,沙茜,普劲松.武汉市畜禽养殖污染状况调查及建议.环境科学与技术,2011,3(6):404-410.
    张强,邹华,余云龙,郝女.小球藻处理养殖废水的初步研究.上海环境科学,2011,30(6):249-253.
    张扬,刘亚梦,高苑融,覃丹凤,袁玫,肖泽雨.农村生活污水培养杜氏盐藻的初步研究.黑龙江农业科学,2011,6:39-41.
    赵君怡,刘鸣达,张克强.畜禽养殖废水灌溉对地下水影响的研究进展.节水灌溉,2010,12:13-15.
    赵君怡,张克强,王风,刘鸣达.猪场废水灌溉对地下水中氮素的影响.生态环境学报,2011,20(1):149-153.
    郑洪立,高振,张齐,黄和,纪晓俊,孙洪磊,窦畅.无机碳源对小球藻自养产油脂的影响.生物工程学报,2011,27(3):436-444.
    郑燕清,周建华.除磷工艺中厌氧释磷和好氧吸磷的影响因素.中国市政工程,2007,125(1):48-50.
    郑子英,刘雷,曾慧卿,刘香华.小球藻对氨厂废水的净化及其叶绿素荧光变化.环境工程学报,2011,5(4):856-860.
    周文礼,乔秀亭,肖慧,王悠,曲良.三种抗生素对几种海洋微藻叶绿素a含量影响的初步研究.海洋环境科学,2009,28(3):268-271.
    朱义平,宋东辉,杨国兰.不同氮源对异养小球藻生物量和油脂积累的影响.水生生物学报,2012,36(6):1027-1034.