基于固体脂质体纳米粒的新型磁共振大肠成像方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     本课题以固体脂质纳米粒(SLN)为载体,负载钆喷替酸葡甲胺(Gd-DTPA)而制备纳米化MR对比剂。通过纳米化MR对比剂直肠给药后,大肠壁吸收纳米化对比剂后于T1WI的MR上增强显示及有助于大肠癌的显示,以建立基于固体脂质体纳米粒的新型MR大肠成像方法。
     材料与方法
     1.主要以硬脂酸及Gd-DTPA为原料,采用乳化-溶剂挥发法合成Gd-DTPA-SLN、FITC-Gd-DTPA-SLN及SLN三种纳米粒,并对纳米粒进行检测、体外释放及体外MR成像。
     2.基于纳米化对比剂的正常小鼠大肠MR成像方法的建立及组织细胞学定位30只正常小鼠随机分5组(Gd-DTPA-SLN、FITC-Gd-DTPA-SLN、SLN、Gd-DTPA及水),每组各6只。分别进行小鼠乙状结肠及直肠灌药前、保留灌肠中及灌药后20分钟MR扫描。测量每只动物灌药前后大肠壁的T1值及大肠壁与周围正常肌肉C及CNR。此外,选择2只正常小鼠进行静脉注射Gd-DTPA作为对照。最后处死动物,取正常大肠壁进行组织细胞学分析。
     3.基于纳米化对比剂的大肠癌MR成像方法的初步应用2只大肠癌小鼠乙状结肠及直肠灌药(Gd-DTPA-SLN)前、保留灌肠中及灌药后20分钟MR扫描。然后处死动物,取正常大肠壁进行组织学分析。
     结果
     1.采用乳化-溶剂挥发法合成Gd-DTPA-SLN、FITC-Gd-DTPA-SLN及SLN三种纳米粒平均粒径40.8nm-300.8nm,Gd-DTPA-SLN及FITC-Gd-DTPA-SLN中Gd-DTPA包封率分别为55.8%和55%。Gd-DTPA-SLN纳米粒在pH7.4的PBS中1h释放约32%,8h才达到平衡。体外MR成像显示Gd-DTPA-SLN、FITC-Gd-DTPA-SLN中的Gd-DTPA与Gd-DTPA溶液中T1驰豫时间相当。
     2.基于纳米化对比剂的正常小鼠大肠MR成像方法的建立及组织细胞学定位Gd-DTPA-SLN及FITC-Gd-DTPA-SLN纳米粒保留灌肠T1WI的MR可以获得与Gd-DTPA保留灌肠MR成像类似的明腔MR结肠成像。由Gd-DTPA-SLN纳米粒及FITC-Gd-DTPA-SLN纳米粒保留灌肠20分钟后T1WI的FLAIR的MR图像与保留灌肠前相比,所有小鼠大肠壁全层明显均匀强化,然而SLN纳米粒、Gd-DTPA及蒸馏水对照组小鼠大肠壁信号强度则无明显变化。与MR图像一致,Gd-DTPA-SLN纳米粒及FITC-Gd-DTPA-SLN纳米粒组大肠壁T1驰豫时间保留灌肠20分钟后较灌肠前明显降低,而大肠壁与周围正常肌肉C及CNR保留灌肠20分钟后较灌肠前明显升高。FITC-Gd-DTPA-SLN保留灌肠20分钟后大肠壁荧光显微镜及激光共聚焦荧光显微镜显示大肠壁各层细胞核外部分包括细胞浆及细胞外间隙内均匀分布的由FITC发射的高浓度绿荧光。Gd-DTPA-SLN、SLN、Gd-DTPA及蒸馏水组保留灌肠20分钟后大肠壁内未见荧光物质。对照组则未见上述MR及组织细胞学表现。
     3.基于纳米化对比剂的大肠癌MR成像方法的初步应用Gd-DTPA-SLN保留灌肠中T1WI的MR成像可以获得肿瘤明腔MR结肠成像。Gd-DTPA-SLN保留灌肠20分钟后T1WI的MR成像检查显示正常肠壁明显均匀强化,而大肠癌病灶的主体部分强化程度较轻,病灶与正常肠壁对比鲜明。
     结论
     1.采用乳化-溶剂挥发法合成负载Gd-DTPA的固体脂质体纳米粒具备肠道易吸收、Gd-DTPA负载量大及包封率高、粒径适宜及不改变Gd-DTPA的高顺磁性等特点。
     2.本研究发挥MR及纳米技术的优势而建立了基于纳米的新型大肠成像方法,其主要特点:经直肠给药,而不需要静脉用药;一次灌药后可以获得明腔大肠MR成像及大肠壁吸收增强成像;FITC-Gd-DTPA-SLN纳米粒即可用于MR成像,又可用于组织细胞学的定位;纳米颗粒进入细胞内而实现细胞水平的显像;可能实现大肠吸收功能的评价。
     3.基于固体脂质体纳米粒的新型MR大肠成像方法在大肠癌中的初步应用表明该方法具有可行性并有助于肿瘤病变的显示。
     4.基于纳米化对比剂MR大肠成像方法的建立还可能成为结肠定位释药系统的新型体内评价方法。
     5.临床上所用的3T MR扫描仪配置一小鼠专用线圈完全可以应用小鼠腹盆腔成像,并可获得高质量的MR图像。
Purpose
     We attempted to develop a novel nanoparticle-based magnetic resonance (MR) colonography technique, which enabled to generate contrast-enhanced MRI of the colonic walls and demonstrate the colorectal carcinoma via a transrectal administration of solid lipid nanoparticle (SLN) loaded with gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA).
     Materials and Methods
     1. We synthesized three different SLNs, including blank SLNs, Gd-DTPA-loaded SLNs (Gd-DTPA-SLNs), and Gd-DTPA-SLNs conjugated with FITC (FITC-Gd-DTPA-SLNs) by solvent diffusion method. Physicochemical properties of different SLNs were characterized by using Zetasizer, fluorescence spectrophotometer and MR. In vitro release study of Gd-DTPA was performed.
     2. Validation of the feasibility of the novel concept—nanoparticle-based MR colonography in normal mice and histological confirmation of the ability of transrectally-infused SLNs infiltrating to the colonic walls in normal mice.
     The sigmoid-rectal colons of 30 normal mice were locally infused with various SLNs and control agents via a transrectal enema approach. The SLNs and control agents included Gd-DTPA-SLNs (n=6), FITC-Gd-DTPA-SLNs (n=6), blank SLNs (n=6), Gd-DTPA (n=6), and water (n=6). In the first phase of the study to validate the feasibility of MR colonography, the mice in each group were imaged with colonic MR imaging using a series of T1-weighted fluid-attenuated inversion-recovery (FLAIR) sequences, which were performed before, during and 20 min after transrectal enema with different SLNs and control agents. Then, the quantitative analyses were performed. The quantitative criteria were T1 relaxation times of the colorectal wall, colorectal wall-to-surrounding muscle contrast (C) and colorectal wall-to-surrounding muscle contrast-to-noise ratio (CNR). MR colonography in 2 normal mice were performed with intravenous injection of Gd-DTPA. In the second phase of the study, all mice were scarified to histologically confirm the novel concept after MR examination.
     3. Validation of the feasibility of the novel nanoparticles-based MR colonography in DMH-induced colorectal tumor model.
     Two mice in DMH-induced colorectal tumor model were imaged with colonic MR imaging using a T1-weighted fluid-attenuated inversion-recovery (FLAIR) sequence, which were performed before, during and 20 min after transrectal enema with Gd-DTPA-SLNs. Then, the mice were scarified for histological examination.
     Results
     1. Gd-DTPA-SLNs, FITC-Gd-DTPA-SLNs and blank SLNs displayed a size distribution of 40.8-300.8 nm with high Gd-DTPA entrapment efficiency at 55%-55.8%. In vitro MR showed that the T1 relaxation times of Gd-DTPA-SLN and FITC-Gd-DTPA-SLN were similar to that of Gd-DTPA. 32% Gd-DTPA was released from Gd-DTPA-SLNs at PH 7.4 buffer in 1 h. The release o Gd-DTPA reached a balance in 8 h.
     2. The bright lumen MR Colonography was obtained when a T1-weighted FLAIR sequence was performed during transrectal enema with Gd-DTPA-SLNs and FITC-Gd-DTPA-SLNs. T1-weighted FLAIR MRI showed bright enhancement of colorectal wall, with the decrease of T1 relaxation time and the increase of colorectal wall-to-surrounding muscle C and CNR in all mice 20 min after transrectal enema with Gd-DTPA-SLNs and FITC-Gd-DTPA-SLNs. Of the colonic tissues treated with FITC-Gd-DTPA-SLNs, confocal laser-scanning microscope and fluorescence microscope demonstrated highly-concentrated green fluorescence (due to FITC emission), which localized in both extracelluar spaces and cytoplasms at various layers of the colorectal walls, including mucosa, submucosa, tunica muscularis, and serosa. These histological and MRI findings were not visualized in the control animal groups.
     3. The bright lumen MR Colonography showed the masses when a T1 -weighted FLAIR sequence was performed during transrectal enema with Gd-DTPA-SLNs. MR colonography showed marked homogeneous enhancement of normal colorectal walls and mild inhomogeneous enhancement of the mass. The signal intensity in the lesion was much lower than that in the colorectal walls. There was a great contrast between the tumor and surrounding colorectal walls.
     Conclusion
     1. SLNs loaded Gd-DTPA by solvent diffusion method exhibit intestinal absorbablity, a suitable particle size, high loading efficiency, stability of paramagnetic properties of Gd-DTPA.
     2. This study establishes the "proofs-of-principle" of a novel imaging technique—nanoparticle-based MR colonography by combining the advantages of both MR technology and nanotechnology. The properties of the novel MR colonography include that (i) MR colonography is based on transrectal enema with SLNs loaded Gd-DTPA without introvenous administration; (ii) the bright lumen MR Colonography and the similar dark lumen MR Colonography were obtained after transrectal enema with SLNs loaded Gd-DTPA; (iii) a useful imaging tool is provided for basic science to precisely establish MRI and histological correlation by using the Gd-FITC-SLNs we have produced; (iv) nanoparticles can penetrate into the cells of the colorectal walls in large quantities and cellular imaging is obtainable; and (v) a functional MRI can be potentially developed to assess colorectal absorption.
     3. Validation of the feasibility of the novel nanoparticles-based MR colonography in DMH-induced colorectal tumor model demonstrates that the visualization of colorectal carcinoma based on colorectal absorption of Gd-DTPA-carrying nanoparticles on MR colonography is possible.
     4. Nanoparticle-based MR colonography can become a novel in vivo evaluation method of colon delivery of drug.
     5. Abdominal magnetic resonance imaging in mice using a clinical 3T MR scanner with a small coil is feasible and provides images of high quality.
引文
1.Parkin DM,Bray F,Ferlay J,Pisani P.Global Cancer Statistics.2002,CA Cancer J Clin,2005,55:74-108.
    2.Yang L,Parkin DM,Li L,Chen YD.Time trends in cancer mortality in China.1987-1999.Int J Cancer,2003,106(5):771-783.
    3.黄莛庭.提高大肠癌早期诊断的水平.大肠肛门病外科杂志,2002,8(2):66.
    4.边俊彦.多因素回归生存分析探讨影响大肠癌病人术后生存期的因素.实用医学杂志,2002,28(6):597-598.
    5.Angtuaco TL,Banaad-Omniotek GD,Howden CW.Differing attitudes toward virtual and conventional colonoscopy for colorectal cancer screening:surveys among primary care physicians and potential patients.Am J Gastroenterol,2001,96:887-893.
    6.Torres C,Szomstein S,Wexner SD.Virtual colonoscopy in colorectal cancer screening.Surg Innov.2007,14(1):27-34.
    7.Kung JW,Levine MS,Glick SN,Lakhani P,Rubesin SE and Laufer I.Colorectal Cancer:Screening Double-Contrast Barium Enema Examination in Average-Risk Adults Older Than 50 Years.Radiology,2006,240:725-735.
    8.Gluecker TM,Johnson CD,Harmsen WS,Offord KP,Harris AM,Wilson LA and Ahlquist DA.Colorectal cancer screening with CT colonography,colonoscopy,and double-contrast barium enema examination:prospective assessment of patient perceptions and preferences.Radiology,2003,227(2):378-384.
    9.Ajaj W,Lauenstein TC,Pelster G,Holtmann G,Ruehm SG,Debatin JF,Goehde SC.MR colonography in patients with incomplete conventional colonoscopy.Radiology,2005,234(2):452-459.
    10.Schwartz EE,Glick SN,Foggs MB,Silverstein GS.Hypersensitivity reactions after barium enema examination.Am J Roentgenol 1984;143:103-104.
    11.Johansen JG.Assessment of a non-ionic contrast medium(Amipaque) in the gastrointestinal tract.Invest Radiol 1978;13:523-527.
    12.Laniado M,Kommesser W,Hamm B,Clauss W,Weimann HJ,Felix R.MR imaging of the gastrointestinal tract:value of Gd-DTPA.Am J Roentgenol 1988;150:817-821.
    13.Luboldt W,Bauerfeind P,Steiner P,Fried M,Krestin GP,Debatin JF.Preliminary assessment of three-dimensional magnetic resonance imaging for various colonic disorders.Lancet,1997,349:1288-1291.
    14.Florie J,Jensch S,Nievelstein RA,Bartelsman JF,Baak LC,van Gelder RE,Haberkorn B,van Randen A,van der Ham MM,Snel P,van der Hulst VP,Bossuyt PM,Stoker J.MR colonography with limited bowel preparation compared with optical colonoscopy in patients at increased risk for colorectal cancer.Radiology,2007,243(1):122-131.
    15.Ajaj W,Ruehm SG,Gerken G,Goyen M.Strengths and weaknesses of dark-lumen MR colonography:clinical relevance of polyps smaller than 5 mm in diameter at the moment of their detection.J Magn Reson Imaging,2006,24(5):1088-1094.
    16.Rodriguez Gomez S,Pages Llinas M,Castells Garangou A,De Juan Garcia C,Bordas Alsina JM,Rimola Gibert J,Ayuso Colella JR,Ayuso Colella C.Dark-lumen MR colonography with fecal tagging:a comparison of water enema and air methods of colonic distension for detecting colonic neoplasms.Eur Radiol,2008,18(7):1396-1405.
    17.Saar B,Meining A,Beer A,Settles M,Helmberger H,Frimberger E,Rummeny EJ and Rosch T.Prospective study on bright lumen magnetic resonance colonography in comparison with conventional colonoscopy.Br J Radiol,2007,80,235-241.
    18.Weissleder R,Mahmood U.Molecular imaging.Radiology,2001,219:316-333.
    19.Perez-Mayoral E,Soler-Padros J,Negri V,Cerdan S,Ballesteros P.Synthetic approaches to heterocyclic ligands for Gd-based MRI contrast agents.Molecules,2007,12(8):1771-1795.
    20.Jun YW,Jang JT,Cheon J.Magnetic nanoparticle assisted molecular MR imaging.Adv Exp Med Biol,2007,620:85-106.
    21.Song Y,Morikawa S,Morita M,Inubushi T,Takada T,Torii R,Tooyama I.Magnetic resonance imaging using hemagglutinating virus of Japan-envelope vector successfully detects localization of intra-cardially administered microglia in normal mouse brain.Neurosci Lett,2006,395(1):42-45.
    22.Allen M,Bulte JW,Liepold L,Basu G,Zywicke HA,Frank JA,Young M,Douglas T.Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents.Magn Reson Med,2005,54(4):807-812.
    23.Ferrari M.Cancer nanotechnology:opportunities and challenges.Nat Rev Cancer.2005,5:161-171.
    24.Couvreur P.and Vauthier C.Nanotechnology:intelligent design to treat complex disease.Pharm Res,2006,23:1417-1450.
    25.Nasongkla N,Bey E,Ren J,Ai H,Khemtong C,Guthi JS,Chin SF,Sherry AD,Boothman DA,Gao J.Multifunctional polymeric micelles as cancer-targeted,MRI-ultrasensitive drug delivery systems.Nano Lett,2006,6:2427-2430.
    26.Maeda H,Sawa T,Konno T.Mechanism of tumor-targeted delivery of macromolecular drugs,including the EPR effect in solid tumor and clinical overview of the prototype polylmeric drug SMANCS.J Controlled Rel,2001,74:47-61.
    27.Mulder WJ,Strijkers GJ,van Tilborg GA,Griffioen AW,Nicolay K.Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging.NMR Biomed,2006,19:142-164.
    28.Taylor KM,Kim JS,Rieter WJ,An H,Lin W,Lin W.Mesoporous silica nanospheres as highly efficient MRI contrast agents.J Am Chem Soc,2008, 130:2154-2155.
    29.Pinkemelle J,Teichgraber U,Neumann F,Lehmkuhl L,Ricke J,Scholz R,Jordan A,Bruhn H.Imaging of single human carcinoma cells in vitro using a clinical whole-body magnetic resonance scanner at 3.0 T.Magn Reson Med,2005,53:1187-1192.
    30.Kobayashi H,Kawamoto S,Sakai Y,Choyke PL,Star RA,Brechbiel MW,Sato N,Tagaya Y,Morris JC,Waldmann TA.Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent.J Natl Cancer Inst,2004,96:703-708.
    31.Cai W,Chen X.Multimodality molecular imaging of tumor angiogenesis.J Nucl Med,2008,49 Suppl 2:113S-128S.
    32.Anderson SA,Glod J,Arbab AS,Noel M,Ashari P,Fine HA,Frank JA.Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model.Blood,2005,105:420-425.
    33.Caravan P,Ellison JJ,McCurry TJ,Lauffer RB.Gadolinium(Ⅲ) chelates as MRI contrast agents:structure,dynamics and applications.Chem Rev,1999,99:2293-2352.
    34.Yuan H,Huang LF,Du YZ,Ying XY,You J,Hu FQ,Zeng S.Solid lipid nanoparticles prepared by solvent diffusion method in a nanoreactor system.Colloids and Surfaces B:Biointerfaces,2008,61(2):132-137.
    35.Pedersen N,Hansen S,Heydenreich AV,Kristensen HG,Poulsen HS.Solid lipid nanoparticles can effectively bind DNA,streptavidin and biotinylated ligands.Eur J Pharm Biopharm,2006,62:155-162.
    36.Bargoni A,Cavalli R,Caputo O,Fundaro A,Gasco MR and Zara GP.Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats.Pharm Res,1998,15:745-750.
    37.Yuan H,Chen J,Du YZ,Hu FQ,Zeng S and Zhao HL.Studies on oral absorption of stearic acid SLN by a novel fluorometric method.Colloid Surface B,2007,58:157-164.
    38.Mtiller RH,Mader K and Gohla S.Solid lipid nanoparticles(SLN) for controlled drug delivery-a review of the state of the art.Eur J Pharm Biopharm,2000,50:161-177.
    39.Morel S,Terreno E,Ugazio E,Aime S and Gasco MR.NMR relaxometric investigations of solid lipid nanoparticles(SLN) containing gadolinium(Ⅲ) complexes.Eur J Pharm Biopharm,1998,45:157-163.
    40.Jihong Sun,Shizheng Zhang,Dingyao Jiang,Dejun Zhang,Xiufang Xu.Application of Turbo Fluid-Attenuated Inversion-Recovery MRI in Evaluation of Intraspinal Tumors.Clinical Imaging,2008,32(2):103-108.
    41.Thurnherr N,Deschner EE,Stonehill EH,Lipkin M.Induction of adenocarcinomas of the colon in mice by weekly injections of 1,2-dimethylhydrazine.Cancer Res,1973,33:940-945.
    42.Thorek DL,Chen AK,Czupryna J,Tsourkas A.Superparamagnetic iron oxide nanoparticle probes for molecular imaging.Ann Biomed Eng,2006,34(1):23-38.
    43.Kim T,Murakami T,Hori M,Onishi H,Tomoda K,Nakamura H.Effect of superparamagnetic iron oxide on tumor-to-liver contrast at T2*-weighted gradient-echo MRI:comparison between 3.0T and 1.5T MR systems.J Magn Reson Imaging,2009,29(3):595-600.
    44.Runge VM,Stewart RG,Clanton JA,James AE,Partain CL.Work in progress:potential oral and intravenous paramagnetic NMR contrast agents.Radiology,1983,147:789-791.
    45.Brasch RC,London DA,Wesbey GE,Tozer TN,Nitecki DE,Williams RD,Doemeny J,Tuck LD,Lallemand DP.Work in progress:nuclear magnetic resonance study of a paramagnetic nitroxide contrast agent for enhancement of renal structures in experimental animals.Radiology,1983,147:773-779.
    46.Runge VM.Safety of approved MR contrast media for intravenous injection.J Magn Reson Imaging,2000,12:205-213.
    47.Weinmann HJ,Brasch RC,Press WR,Wesbey GE.Characteristics of gadolinium-DTPA complex:a potential NMR contrast agent.Am J Roentgenol,1984,142:619-624.
    48.Briley-Saebo KC,Amirbekian V,Mani V,Aguinaldo JG,Vucic E,Carpenter D,Amirbekian S,Fayad ZA.Gadolinium mixed-micelles:effect of the amphiphile on in vitro and in vivo efficacy in apolipoprotein E knockout mouse models of atherosclerosis.Magn Reson Med,2006,56(6):1336-1346.
    49.Ayyagari AL,Zhang X,Ghaghada KB,Annapragada A,Hu X,Bellamkonda RV.Long-circulating liposomal contrast agents for magnetic resonance imaging.Magn Reson Med,2006,55(5):1023-1029.
    50.Brioschi A,Zenga F,Zara GP,Gasco MR,Ducati A,Mauro A.Solid lipid nanoparticles:could they help to improve the efficacy of pharmacologic treatments for brain tumors?Neurol Res,2007,29(3):324-330.
    51.Shidhaye SS,Vaidya R,Sutar S,Patwardhan A,Kadam VJ.Solid lipid nanoparticles and nanostructured lipid carriers--innovative generations of solid lipid carriers.Curr Drug Deliv.2008,5(4):324-331.
    52.Uner M.Preparation,characterization and physico-chemical properties of solid lipid nanoparticles(SLN) and nanostructured lipid carriers(NLC):their benefits as colloidal drug carrier systems.Pharmazie,2006,61(5):375-386.
    53.Westesen K,Bunjes H,Koch MHJ.Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential.Journal of controlled release,1997,48:223-236.
    54.Desai MP,Labhasetwar V,Amidon GL,Levy RJ.Gastrointestinal uptake of biodegradable microparticles:effect of particle size.Pharm Res,1996,13:1838-1845.
    55.Chourasia MK,Jain SK.Pharmaceutical approaches to colon targeted drug delivery systems.J Pharm Pharm Sci,2003,6(1):33-66.
    56.Rouge N,Buri P,Doelker E.Drug absorption sites in the gastrointestinal tract and dosage form for site-specific delivery.Int J Pharm,1996,136:117-139.
    57.万英,邹梅娟,郝秀华,刘丰,于杰,程刚.卡马西平大鼠在体肠吸收动力学.沈阳药科大学学报,2006,23:136-138.
    58.Aldridge A J,Simson JN.Histological assessment of colorectal adenomas by size:are polyps less than 10 mm in size clinically important? Eur J Surg,2001,167:777-781.
    59.Dachman AH,Kuniyoshi JK,Boyle CM,Samara Y,Hoffmann KR,Rubin DT,Hanan I.CT colonography with three-dimensional problem solving for detection of colonic polyps.A JR Am J Roentgenol,1998,171:989-995.
    60.Ajaj W,Lauenstein TC,Pelster G,Goehde SC,Debatin JF,Ruehm SG.MR Colonography:How Does Air Compare to Water for Colonic Distention? J Magn Reson Imaging,2004,19(2):216-221.
    61.Pappalardo G,Polettini E,Frattaroli FM,Casciani E,D'Orta C,D'Amato M,Gualdi GF.Magnetic resonance colonography versus conventional colonoscopy for the detection of colonic endoluminal lesions.Gastroenterology,2000,119:300-304.
    62.Luboldt W,Steiner P,Bauerfeind P,Pelkonen P,Debatin JF.Detection of mass lesions with MR colonography:preliminary report.Radiology,1998,207:59-65.
    63.Hartmann D,Bassler B,Schilling D,Adamek HE,Jakobs R,Pfeifer B,Eickhoff A,Zindel C,Riemann JF,Layer G.Colorectal Polyps:Detection with Dark-Lumen MR Colonography versus Conventional Colonoscopy.Radiology,2006,238:143-149.
    64.Ajaj W,Pelster G,Treichel U,Vogt FM,Debatin JF,Ruehm SG,Lauenstein TC.Dark lumen magnetic resonance colonography:comparison with conventional colonoscopy for the detection of colorectal pathology.Gut,2003,52:1738-1743.
    65.Tugrul T Kararli.Comparison of the gastrointestinal anatomy,physiology,and biochemistry of humans and commonly used laboratory animals.Biopharm Drug Dispos,1995,16:351-380.
    66.Van den Mooter G,Samyn C,Kinget R.In vivo evaluation of a colon-specific drug delivery system:an absorption study of theophylline from capsules coated with azo polymers in rats,Pharm Res,1995,12(2):244-247.
    67.Takaya T,Ikeda C,Imagawa N,Niwa K,Takada K.Development of a colon delivery capsule and the pharmacological activity of recombinant human granulocyte colony-stimulating factor(rhG-CSF) in beagle dogs.J Pharm Pharmacol,1995,47:474-478.
    68.Watts PJ,Barrow L,Steed KP,Wilson CG,Spiller RC,Melia CD,Davies MC.The transit rate of different-sized model dosage forms through the human colon and the effects of a lactulose-induced catharsis.Int J Pharm,1992,87:215-221.
    69.Adkin DA,Davis SS,Sparrow RA,Wilding IR.Colonic transit of different sized tablets in healthy subjects.J Control Release,1993,23:147-156.
    70.Pozzi F,Furlani P,Gazzaniga A,Davis SS,Wilding IR.The TIME CLOCK system:a new oral dosage form for fast and complete release of drug after a predetermined lag time.J Control Release,1994,31:99-108.
    71.Garbow JR,Kataoka M,Flye MW.MRI measurement of liver regeneration in mice following partial hepatectomy.Magn Reson Med,2004,52(1):177-180.
    72.Chaabane L,Pellet N,Bourdillon MC,Desbleds Mansard C,Sulaiman A,Hadour G,Thivolet-Bejui F,Roy P,Briguet A,Douek P,Canet Soulas E.Contrast enhancement in atherosclerosis development in a mouse model:in vivo results at 2 Tesla.Magma,2004,17(3-6):188-195.
    73.Chen F,Sun X,De Keyzer F,Yu J,Peeters R,Coudyzer W,Vandecaveye V,Landuyt W,Bosmans H,Van Hecke P,Marchal G,Ni Y.Liver tumor model with implanted rhabdomyosarcoma in rats:MR imaging,microangiography,and histopathologic analysis.Radiology,2006,239(2):554-562.
    74.Fan YD,Vanzieleghem B,Achten E,De Deene Y,Defreyne L,Praet M,Van Huysse J,Kunnen M,de Hemptinne B.T1 relaxation times for viability evaluation of the engrafted and the native liver in a rat model of heterotopic auxiliary liver transplantation:a pilot study.NMR Biomed,2001,14(6):350-359.
    75.Cassidy PJ,Schneider JE,Grieve SM,Lygate C,Neubauer S,Clarke K.Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields.J Magn Reson Imaging,2004,19(2):229-237.
    76.Schneider JE,Bamforth SD,Farthing CR,Clarke K,Neubauer S,Bhattacharya S.High-resolution imaging of normal anatomy,and neural and adrenal malformations in mouse embryos using magnetic resonance microscopy.J Anat,2003,202(2):239-247.
    77.Herborn CU,Yang F,Robert P,Lacledere C,Violas X,Bara J,Corot C,Debatin JF,Ruehm SG.Dark lumen magnetic resonance colonography in a rodent polyp model:initial experience and demonstration of feasibility.Invest Radiol,2004,39(12):723-727.
    1.Weissleder R,Mahmood U.Molecular imaging.Radiology,2001,219(2):316-333.
    2.龚英,汪登斌.分子影像学对比剂的研究进展.国外医学临床放射学分册,2006,29:294-298.
    3.Weissleder R.Molecular imaging:exploring the next frontier.Radiology,1999,212:609-614.
    4.王霄英.分子影像学进展及其应用.北京大学学报医学版,2007,39:555-556.
    5.梁治平,曾旭文.Gd(Ⅲ)类分子探针在 MRI 分子影像学中的研究进展.临床放射学杂志,2006,25:782-784.
    6.居胜红,陈峰,郑凯尔.MR 分子影像学研究的进展.中华放射学杂志,2002,36:747-750.
    7.Saji H.Development of radiopharmaceuticals for molecular imaging.International congress series,2004,1264:139-147.
    8.Yang X.Nano-and Microparticle-based Imaging of Cardiovascular Interventions:Overview.Radiology,2007,243(2):340-347.
    9.P(?)rez-Mayoral E,Soler-Padr6s J,Negri V,Cerd(?)n S,Ballesteros P.Synthetic approaches to heterocyclic ligands for Gd-based MRI contrast agents.Molecules,2007,12:1771-1795.
    10.Jun YW,Jang JT,Cheon J.Magnetic nanoparticle assisted molecular MR imaging.Adv Exp Med Biol,2007,620:85-106.
    11.Song Y,Morikawa S,Morita M,Inubushi T,Takada T,Torii R,Tooyama I.Magnetic resonance imaging using hemagglutinating virus of Japan-envelope vector successfully detects localization of intra-cardially administered microglia in normal mouse brain.Neurosci Lett,2006,395:42-45.
    12.Allen M,Bulte JW,Liepold L,Basu G,Zywicke HA,Frank JA,Young M,Douglas T.Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents.Magn Reson Med,2005,54:807-812.
    13.张龙江,祁吉.分子影像学探针的研究与进展.国外医学临床放射学分册,2006,29:289-293.
    14.Thorek DL,Chen AK,Czupryna J,Tsourkas A.Superparamagnetic iron oxide nanoparticle probes for molecular imaging.Ann Biomed Eng,2006,34(1):23-38.
    15.Kim T,Murakami T,Hori M,Onishi H,Tomoda K,Nakamura H.Effect of superparamagnetic iron oxide on tumor-to-liver contrast at T2~*-weighted gradient-echo MRI:comparison between 3.0T and 1.5T MR systems.J Magn Reson Imaging,2009,29(3):595-600
    16.Shen T,Weissleder R,Papisov M,Bogdanov A Jr,Brady TJ.Monocrystalline iron oxide nanocompounds(MION):physicochemical properties.Magn Reson Med,1993,29(5):599-604.
    17.Runge VM.Safety of approved MR contrast media for intravenous injection.J Magn Reson Imaging,2000,12:205-213.
    18.Caravan P,Ellison J J,McCurry T J,Lauffer RB.Gadolinium(Ⅲ)chelates as MRI contrast agents:structure,dynamics and applications.Chem Rev,1999,99:2293-2352.
    19.Weinmann H J,Brasch RC,Press WR,Wesbey GE.Characteristics of gadolinium-DTPA complex:a potential NMR contrast agent.Am J Roentgenol,1984,142:619-624.
    20.Aime S,Cabella C,Colombatto S,Geninatti Crich S,Gianolio E,Maggioni F.Insights into the use of paramagnetic Gd(Ⅲ)complexes in MR-molecular imaging investigations.J Magn Reson Imaging 2002;16:394-406.
    21.Briley-Saebo KC,Amirbekian V,Mani V,Aguinaldo JG,Vucic E,Carpenter D,Amirbekian S,Fayad ZA.Gadolinium mixed-micelles:effect of the amphiphile on in vitro and in vivo efficacy in apolipoprotein E knockout mouse models of atherosclerosis.Magn Reson Med,2006,56(6):1336-1346.
    22.Ayyagari AL,Zhang X,Ghaghada KB,Annapragada A,Hu X,Bellamkonda RV.Long-circulating liposomal contrast agents for magnetic resonance imaging.Magn Reson Med,2006,55(5):1023-1029.
    23.Ferrari M.Cancer nanotechnology:opportunities and challenges.Nat Rev Cancer,2005,5:161-171.
    24.Couvreur P,Vauthier C.Nanotechnology:intelligent design to treat complex disease.Pharm Res,2006,23:1417-1450.
    25.Nasongkla N,Bey E,Ren J,Ai H,Khemtong C,Guthi JS,Chin SF,Sherry AD,Boothman DA,Gao J.Multifunctional polymeric micelles as cancer-targeted,MRI-ultrasensitive drug delivery systems.Nano Lett,2006,6:2427-2430.
    26.Maeda H,Sawa T,Konno T.Mechanism of tumor-targeted delivery of macromolecular drugs,including the EPR effect in solid tumor and clinical overview of the prototype polylmeric drug SMANCS.J Controlled Rel,2001,74:47-61.
    27.Miiller RH,Mader K and Gohla S.Solid lipid nanoparticles(SLN) for controlled drug delivery-a review of the state of the art.Eur J Pharm Biopharm,2000,50:161-177.
    28.Brioschi A,Zenga F,Zara GP,Gasco MR,Ducati A,Mauro A.Solid lipid nanoparticles:could they help to improve the efficacy of pharmacologic treatments for brain tumors?Neurol Res,2007,29(3):324-330.
    29.Stark DD,Weissleder R,Elizondo G,Hahn PF,Saini S,Todd LE,Wittenberg J,Ferrucci JT.Superparamagnetic iron oxide:clinical application as a contrast agent for MR imaging of the liver.Radiology,1988,168(2):297-301.
    30.Bellin MF,Zaim S,Auberton E,Sarfati G,Duron JJ,Khayat D,Grellet J.Liver metastases:safety and efficacy of detection with superparamagnetic iron oxide in MR imaging.Radiology,1994,193(3):657-663.
    31.Semelka RC,Helmberger TK.Contrast agents for MR imaging of the liver.Radiology,2001,218(1):27-38.
    32.Ros PR,Freeny PC,Harms SE,Seltzer SE,Davis PL,Chan TW,Stillman AE,Muroff LR,Runge VM,Nissenbaum MA,et al.Hepatic MR imaging with ferumoxides:a multicenter clinical trial of the safety and efficacy in the detection of focal hepatic lesions.Radiology,1995,196(2):481-488.
    33.Weissleder R,Stark DD,Engelstad BL,Bacon BR,Compton CC,White DL,Jacobs P,Lewis J.Superparamagnetic iron oxide:pharmacokinetics and toxicity.AJR Am J Roentgenol,1989,152(1):167-173.
    34.Wang YX,Hussain SM,Krestin GP.Superparamagnetic iron oxide contrast agents:physicochemical characteristics and applications in MR imaging.Eur Radiol,2001,11(11):2319-2331.
    35.Koh DM,Cook GJ,Husband JE.New horizons in oncologic imaging.N Engl J Med,2003,348(25):2487-2488.
    36.Weissleder R,Bogdanov A,Neuwelt EA,Papisov M.Long-circulating iron oxides for MR imaging.Advanced Drug Delivery Reviews,1995,16:321-334.
    37.Bellin MF,Beigelman C,Precerti-Morel S.Iron oxide-enhanced MR lymphography:initial experience.Eur J Radiol,2000,34(3):257-264.
    38.Harisinghani MG,Barentsz J,Hahn PF,Deserno WM,Tabatabaei S,van de Kaa CH,de la Rosette J,Weissleder R.Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.N Engl J Med,2003,348:2491-2499.
    39.Rogers JM,Lewis J,Josephson L.Visualization of superior mesenteric lymph nodes by the combined oral and intravenous administration of the ultrasmall superparamagnetic iron oxide,AMI-227.Magn Reson Imaging,1994,12(8):1161-1165.
    40.Anzai Y,McLachlan S,Morris M,Saxton R,Lufkin RB.Dextran-coated superparamagnetic iron oxide,an MR contrast agent for assessing lymph nodes in the head and neck.AJNR Am J Neuroradiol,1994,15(1):87-94.
    41.Bellin MF,Roy C,Kinkel K,Thoumas D,Zaim S,Vanel D,Tuchmann C,Richard F,Jacqmin D,Delcourt A,Challier E,Lebret T,Cluzel P.Lymph node metastases:safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles--initial clinical experience.Radiology,1998,207(3):799-808.
    42.Nishimura H,Tanigawa N,Hiramatsu M,Tatsumi Y,Matsuki M,Narabayashi I.Preoperative esophageal cancer staging:magnetic resonance imaging of lymph node with ferumoxtran-10,an ultrasmall superparamagnetic iron oxide.J Am Coll Surg,2006,202(4):604-611.
    43.Deserno WM,Harisinghani MG,Taupitz M,Jager GJ,Witjes JA,Mulders PF,Hulsbergen van de Kaa CA,Kaufmann D,Barentsz JO.Urinary bladder cancer:preoperative nodal staging with ferumoxtran-10-enhanced MR imaging.Radiology,2004,233(2):449-456.
    44.Corot C,Robert P,Idee JM,Port M.Recent advances in iron oxide nanocrystal technology for medical imaging.Adv Drug Deliv Rev,2006,58(14):1471-1504.
    45.Corot C,Petry KG,Trivedi R,Saleh A,Jonkmanns C,Le Bas JF,Blezer E,Rausch M,Brochet B,Foster-Gareau P,Baleriaux D,Gaillard S,Dousset V.Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging.Invest Radiol,2004,39(10):619-625.
    46.Nahrendorf M,Jaffer FA,Kelly KA,Sosnovik DE,Aikawa E,Libby P,Weissleder R.Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis.Circulation,2006,114(14):1504-1511.
    47.Kooi ME,Cappendijk VC,Cleutjens KB,Kessels AG,Kitslaar PJ,Borgers M,Frederik PM,Daemen MJ,van Engelshoven JM.Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging.Circulation,2003,107(19):2453-2458.
    48.Trivedi RA,U-King-Im JM,Graves MJ,Cross JJ,Horsley J,Goddard MJ,Skepper JN,Quartey G,Warburton E,Joubert I,Wang L,Kirkpatrick PJ,Brown J,Gillard JH.In vivo detection of macrophages in human carotid atheroma:temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI.Stroke,2004,35(7):1631-1635.
    49.Lutz AM,Seemayer C,Corot C,Gay RE,Goepfert K,Michel BA,Marincek B,Gay S,Weishaupt D.Detection of synovial macrophages in an experimental rabbit model of antigen-induced arthritis:ultrasmall superparamagnetic iron oxide-enhanced MR imaging.Radiology,2004,233(1):149-157.
    50.Simon GH,von Vopelius-Feldt J,Wendland MF,Fu Y,Piontek G,Schlegel J,Chen MH,Daldrup-Link HE.MRI of arthritis:comparison of ultrasmall superparamagnetic iron oxide vs.Gd-DTPA.J Magn Reson Imaging,2006,23(5):720-727.
    51.Gellissen J,Axmann Ch,Prescher A,Bohndorf K,Lodemann KP.Extra-and intracellular accumulation of ultrasmall superparamagnetic iron oxides(USPIO) in experimentally induced abscesses of the peripheral soft tissues and their effects on magnetic resonance imaging.Magn Reson Imaging,1999,17(4):557-567.
    52.Kaim AH,Wischer T,O'Reilly T,Jundt G,Fr(?)hlich J,von Schulthess GK,Allegrini PR.MR imaging with ultrasmall superparamagnetic iron oxide particles in experimental soft-tissue infections in rats.Radiology,2002,225(3):808-814.
    53.Bj(?)rnerud A,Johansson LO,Ahlstrom HK.Pre-clinical results with Clariscan(NC100150 Injection);experience from different disease models.Magma,2001,12(2-3):99-103.
    54.Reimer P,Bremer C,Allkemper T,Engelhardt M,Mahler M,Ebert W,Tombach B.Myocardial perfusion and MR angiography of chest with SH U 555 C:results of placebo-controlled clinical phase i study.Radiology,2004,231(2):474-481.
    55.Corot C,Violas X,Robert P,Gagneur G,Port M.Comparison of different types of blood pool agents(P792,MS325,USPIO) in a rabbit MR angiography-like protocol.Invest Radiol,2003,38(6):311-319.
    56.Vanduffel W,Fize D,Mandeville JB,Nelissen K,Van Hecke P,Rosen BR,Tootell RB,Orban GA.Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys.Neuron,2001,32(4):565-577.
    57.Dubowitz DJ,Bernheim KA,Chen DY,Bradley Jr WG,Andersen RA.Enhancing fMRI contrast in awake-behaving primates using intravascular magnetite dextran nanopartieles.Neuroreport,2001,12(11):2335-2340.
    58.Leite FP,Tsao D,Vanduffel W,Fize D,Sasaki Y,Wald LL,Dale AM,Kwong KK,Orban GA,Rosen BR,Tootell RB,Mandeville JB.Repeated fMRI using iron oxide contrast agent in awake,behaving macaques at 3 Tesla.Neuroimage,2002,16(2):283-294.
    59.Tsao DY,Freiwald WA,Tootell RB,Livingstone MS.A cortical region consisting entirely of face-selective cells.Science,2006,311(5761):670-674.
    60.Pan B,Cui D,Sheng Y,Ozkan C,Gao F,He R,Li Q,Xu P,Huang T.Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system.Cancer Res,2007,67(17):8156-8163.
    61.Shidhaye SS,Vaidya R,Sutar S,Patwardhan A,Kadam VJ.Solid lipid nanopartieles and nanostructured lipid carriers--innovative generations of solid lipid carriers.Curr Drug Deliv,2008,5(4):324-331.
    62.Josephson L,Tung CH,Moore A,Weissleder R.High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates.Bioconjug Chem,1999,10(2):186-191.
    63.Bulte JW,Zhang S,van Gelderen P,Herynek V,Jordan EK,Duncan ID,Frank JA.Neurotransplantation of magnetically labeled oligodendrocyte progenitors:magnetic resonance tracking of cell migration and myelination.Proc Natl Acad Sci USA,1999,96(26):15256-15261.
    64.Taylor KM,Kim JS,Rieter WJ,An H,Lin W,Lin W.Mesoporous silica nanospheres as highly efficient MRI contrast agents.J Am Chem Soc,2008,130:2154-2155.
    65.Esposito G,Geninatti Crich S,Aime S.Efficient cellular labeling by CD44 receptor-mediated uptake of cationic liposomes functionalized with hyaluronic acid and loaded with MRI contrast agents.ChemMedChem,2008,3(12):1858-1862.
    66.Barrett T,Brechbiel M,Bernardo M,Choyke PL.MRI of tumor angiogenesis.J Magn Reson Imaging,2007,26(2):235-249.
    67.Cai W,Chen X.Multimodality molecular imaging of tumor angiogenesis.J Nucl Med,2008,49 Suppl 2:113S-128S.
    68.Winter PM,Morawski AM,Caruthers SD,Fuhrhop RW,Zhang HY,Williams TA,Allen JS,Lacy EK,Robertson JD,Lanza GM,Wickline SA.Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta(3)-integrin-targeted nanoparticles.Circulation,2003,108(18):2270-2274.
    69.Winter PM,Morawski AM,Caruthers SD,Harris TD,Fuhrhop RW,Zhang HY,Allen JS,Lacy EK,Williams TA,Wickline SA,Lanza GM.Antiangiogenic therapy of early atherosclerosis with paramagnetic alpha(v)beta(3)-integrin-targeted fumagillin nanoparticles.J Am Coll Cardiol,2004,43:322-323.
    70.Hetian L,Ping A,Shumei S,Xiaoying L,Luowen H,Jian W,Lin M,Meisheng L,Junshan Y,Chengchao S.A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor.J Biol Chem,2002,277(45):43137-43142.
    71.Morawski AM,Winter PM,Crowder KC,Caruthers SD,Fuhrhop RW,Scott M J,Robertson JD,Abendschein DR,Lanza GM,Wickline SA.Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI.Magn Reson Med,2004,51(3):480-486.
    72.粟波,徐清华,周崧雯,孙希文,吴秋芳,周彩存.靶向肿瘤新生血管的顺磁性纳米脂质体在 MRI 诊断肺癌中的研究,2008,28(6):494-497.
    73.Heckl S,Debus J,Jenne J,Pipkorn R,Waldeck W,Spring H,Rastert R,von der Lieth CW,Braun K.CNN-Gd(3+)enables cell nucleus molecular imaging of prostate cancer cells:the last 600 nm.Cancer Res,2002,62(23):7018-7024.
    74.De Stasio G,Casalbore P,Pallini R,Gilbert B,Sanita F,Ciotti MT,Rosi G,Festinesi A,Larocca L M,Rinelli A,Perret D,Mogk DW,Perfetti P,Mehta MP,Mercanti D.Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy.Cancer Res,2001,61(10):4272-4277.
    75.Hofmann B,Fischer CO,Lavaczeck R,Platzek J,Semmler W.Gadolinium neutron capture therapy(GdNCT)of melanoma cells and solid tumors with the magnetic resonance imaging contrast agent Gadobutrol.Investig Radiol,1999,34:126-133.
    76.Friedman H S,McLendon R E,Kerby T,Dugan M,Bigner S H,Henry A J,Ashley DM.DNA mismatch repair and O~6-alkylguanine-DNA alkyltransferase analysis and response to Temodal in newly diagnosed malignant glioma.J Clin.Oncol,1998,16:3851-3857.
    77.Kobayashi H,Kawamoto S,Sakai Y,Choyke PL,Star RA,Brechbiel MW,Sato N,Tagaya Y,Morris JC,Waldmann TA.Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent.J Natl Cancer Inst,2004,96:703-708.
    78.Shimada M,Yoshikawa K,Suganuma T,Kayanuma H,Inoue Y,Ito K,Senoo A,Hayashi S.Interstitial magnetic resonance lymphography:comparative animal study of gadofluorine 8 and gadolinium diethylenetriamine-pentaacetic acid.J Comput Assist Tomogr,2003,27:641-646.
    79.Misselwitz B,Platzek J,Raduchel B,Oellinger JJ,Weinmann HJ.Gadofluorine 8:initial experience with a new contrast medium for interstitial MR lymphography.Magma,1999,8:190-195.
    80.Misselwitz B,Platzek J,Weinmann HJ.Early MR lymphography with Gadofluorine M in rabbits.Radiology,2004,231:682-688.
    81.Mulder WJ,Strijkers GJ,van Tilborg GA,Griffioen AW,Nicolay K.Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging.NMR Biomed,2006,19(1):142-164.
    82.Lipinski MJ,Amirbekian V,Frias JC,Aguinaldo JG,Mani V,Briley-Saebo KC,Fuster V,Fallon JT,Fisher EA,Fayad ZA.MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor.Magn Reson Med,2006,56(3):601-610.
    83.Ogunrinade O,Kameya GT,Truskey GA.Effect of fluid shear stress on the permeability of the arterial endothelium.Ann Biomed Eng,2002,30:430-446.
    84.Gough PJ,Greaves DR,Suzuki H,Hakkinen T,Hiltunen MO,Turunen M,Herttuala SY,Kodama T,Gordon S.Analysis of macrophage scavenger receptor(SR-A) expression in human aortic atherosclerotic lesions.Arterioscler Thromb Vasc Biol,1999,19:461-471.
    85.Nakata A,Nakagawa Y,Nishida M,Nozaki S,Miyagawa J-i,Nakagawa T,Tamura R,Matsumoto K,Kameda-Takemura K,Yamashita S,Matsuzawa Y.CD36,a novel receptor for oxidized low-density lipoproteins,is highly expressed on lipid-laden macrophages in human atherosclerotic aorta.Arterioscler Thromb Vasc Biol,1999,19:1333-1339.
    86.Choudhury RP,Fuster V,Fayad ZA.Molecular,cellular and functional imaging of atherothrombosis.Nat Rev Drug Discov,2004,3:913-925.
    87.Lipinski MJ,Fuster V,Fisher EA,Fayad ZA.Technology Insight:targeting of biological molecules for evaluation of high-risk atherosclerotic plaques with magnetic resonance imaging.Nat Clin Pract Cardiovasc Med,2004,1:48-55.