基于关键地矿因子的开采沉陷分层传递预计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭开采过程会产生一系列的地质环境问题,尤以开采沉陷最为突出。明确影响开采沉陷的关键因子,研究更为准确的开采沉陷预计方法是贯彻“预防为主”理念首要解决的问题。本文以陕北榆神府煤矿区为研究区,通过灰色关联和逐步回归分析法筛选了影响开采沉陷的关键地矿因子;研究了煤系覆岩层状结构及特征影响开采沉陷的基本规律;提出了“分层传递”的预计方法,构建了基于关键地矿因子的开采沉陷分层传递预计模型,并通过实例验证了模型的可靠性和准确性。主要结论如下:
     (1)筛选出榆神府矿区影响开采沉陷的关键地矿因子,并构建了基于关键地矿因子的下沉系数预计模型。以下沉系数为参照系,运用灰色关联分析和逐步回归分析两种方法分别对影响开采沉陷的关键地矿因子进行筛选,最终确定扰动系数(n)、覆岩综合硬度(Q)、深厚比(R0)、宽深比(1)4个影响因子为关键地矿因子。运用多元统计回归方法,构建了基于关键地矿因子的下沉系数预计模型,模型检验结果表明:平均误差为10%,精度满足应用要求。
     (2)建立了2-2煤层覆岩层状结构框架模型,构建了18种等深且基岩等厚条件下不同的覆岩层状结构类型。在分析钻孔资料的基础上,建立了研究区2-2煤层覆岩层状结构框架模型和划分了基岩段岩层结构,以砂岩层数、砂岩平均厚度和砂泥比作为变量,构建了等深且基岩等厚条件下18种不同类型的覆岩层状结构模型。
     (3)运用岩体基本质量指标分级法、结构力学分析和数值模拟实验三种方法研究了等深且基岩等厚条件下砂岩层数对下沉系数影响的基本规律。研究结果表明:第一,在基岩总厚度恒定的条件下,随着岩层数量的增加,岩体质量和整体稳定性变差,抗干扰能力随之变弱;第二,在弹性变形和相同荷载作用下,砂层系数的增加会增大整个岩体内最大拉应力和最大挠度,从而放大荷载对岩体的影响强度和效应;第三,在既定砂泥比条件下,下沉系数表现出随砂层系数增加而增大的变化规律,并存在迅速增大、缓慢增大和趋于稳定三段式变化过程;第四,当砂层系数达到或超过70%时,下沉系数基本趋于稳定,此时可以忽略砂岩层数对下沉系数的影响。并建立了不同砂泥比条件下砂层系数与下沉系数的拟合方程。
     (4)研究了等深且基岩等厚条件下砂岩平均厚度对下沉系数的影响规律。研究结果表明:第一,在基岩总厚度恒定的条件下,砂岩平均厚度越大,岩体基本质量和整体稳定性就越大,抗干扰能力也越强;第二,在相同荷载作用下,砂岩平均厚度的增加会降低整个岩体内最大拉应力和最大挠度,从而缩小荷载对岩体的影响强度和效应;第三,下沉系数表现出随砂岩平均厚度增大而减小的变化规律,并存在迅速减小和趋于稳定两段式变化过程。建立了砂岩平均厚度与下沉系数的拟合方程。
     (5)研究了等深且基岩等厚条件下砂泥比对下沉系数的影响规律。第一,在基岩总厚度恒定的条件下,砂泥比的增大可以提高岩体基本质量和岩体稳定性;第二,在相同荷载作用下,砂泥比的增大会降低岩体内最大拉应力和最大挠度,从而缩小荷载对岩体的影响强度和效应;第三,在既定砂层系数条件下,下沉系数表现出随砂泥比的增大而减小的变化规律;第四,当砂层系数达到或超过90%时,不同砂泥比所对应的下沉系数表现出明显的收敛、趋同特征,此时可以忽略砂泥比对下沉系数的影响。
     (6)针对煤系覆岩层状结构在开采沉陷发生发展的作用,提出了分层传递预计思想和方法。基于煤系覆岩层状结构特点,认为地表的下沉移动实际上是岩层通过传递叠加效应将井下采煤扰动最终反映在地表的结果,并由此提出了开采沉陷分层传递预计方法的客观依据、基本思路和条件假设。
     (7)构建了基于关键地矿因子的开采沉陷走向主断面下沉分层传递预计模型和全结构模型。在“分层传递”预计思想和方法的指导下,以概率积分法模型和“关键层—砌体梁”理论模型为基础,并依据关键地矿因子、砂层系数、砂岩平均厚度、砂泥比等对下沉系数进行修正,构建了基于关键地矿因子的开采沉陷走向主断面下沉分层传递预计模型。并通过理论分析将该模型扩展至全结构模型。
     (8)建立了基于关键地矿因子的地表移动与变形分层传递预计模型。在“分层传递”预计思想和方法的指导下,建立了基于关键地矿因子的地表移动与变形分层传递预计模型体系,包括:下沉盆地主断面任意点下沉、倾斜、曲率、水平移动、水平变形、扭曲变形和剪切变形预计模型。
     (9)通过工程实例验证了基于关键地矿因子的开采沉陷分层传递预计模型的可靠性和准确性。以位于不同地域、不同矿区的3个煤矿为实例,对基于关键地矿因子的开采沉陷走向主断面下沉分层传递预计模型进行了实证研究。结果表明:该模型不仅具有较高的精度(平均误差率一般在15%左右,最小误差率可达1%以下),而且相对于概率积分法模型,在下沉盆地走向主断面边界预计精度可明显提高。
A series of geological environment problems occur during coal exploitation and themining subsidence is the most prominent. Confirming the key factors of the mining subsidenceand finding more accurate method are the most important problems to be resolved for carryingout the idea of prevention first. Taking the Yushenfu coal mining area in northern Shaanxiprovince as our study area, this article selected the key geological and mining impact factors ofthe mining subsidence with grey correlation analysis method and stepwise regression analysismethod; it studied the basic law of layered structure and characteristics of overburdenimpacting the mining subsidence; it proposed stratification transfer prediction method,constructed the stratification transfer prediction model of the mining subsidence based on thekey geological and mineral factors, and verified the reliability and accuracy of the modelthrough engineering examples. The main conclusions are as follows:
     (1) The research confirmed the key geological and mining impact factors of the miningsubsidence in the Yushenfu coal mining area and constructed the prediction model of thesubsidence factor based on the key geological and mining factors. Taking the subsidence factoras reference system, the paper screened the key geological and mining impact factors of themining subsidence with grey correlation analysis method and stepwise regression analysismethod and selected four key geological and mining impact factors which are perturbationcoefficient, syntheical protodyakonov hardness of overburden, the ratio of mining depth andheight, width-depth ratio finally. With the multivariate statistical analysis method, theprediction model of the subsidence factor based on the key geological and mining factors isconstructed in the passage, and the test results show that the average error is10%, so theprecision of the model can meet application requirement.
     (2) The passage established framework model of layered structure of2-2coal seamoverburden and constructed18different types of layered structure in the condition of samedepth and bedrock thickness. On the basis of analyzing borehole data, the paper establishedframework model of layered structure of2-2coal seam overburden and bedrock. Taking thequantity of sandstone layers, the average thickness of sandstone and sand-shale ratio asvariables, the paper constructed18different types of layered structure under the condition.
     (3) The article researched the basic law of sandstone layers quantity impacting thesubsidence factor with three different methods which are classification of rock mass basicquality index, structure mechanics analysis and numerical simulation test, under the conditionof same depth and bedrock thickness. The research results show that: firstly, in the condition ofsame bedrock thickness, with the increase of the quantity of sandstone layers, the basic qualityand whole stability of rock mass become worse, so does the anti-interference ability of rockmass; secondly, under the effect of elastic deformation and same loads, the increase ofsandstone layer coefficient may increase the maximum tensile stress and maximum deflectionof the whole rock, which would magnify the intensity caused by the same loads; thirdly, in thecondition of fixed sand-shale ratio, the law that subsidence factor increases with the increaseof sandstone layer coefficient is discovered, and its change process includes three stages whichare rapid increase, slow increase and tendency of stability; fourthly, when the sandstone layercoefficient is more than70%, the subsidence factor tended to be stable, the effect of thequantity of sandstone layers can be neglected. Then the fitted equations of sandstone layercoefficient and subsidence factor under different sand-shale ratio are established.
     (4) The paper studied the basic law of the average thickness of sandstone impacting thesubsidence factor under the condition of same depth and bedrock thickness. The researchresults show that: firstly, in the condition of same bedrock thickness, with the increase of theaverage thickness of sandstone, the basic quality and whole stability of rock mass increase,and the anti-interference ability of rock mass is stronger; secondly, under the same loads, withthe increase of the average thickness of sandstone, the maximum tensile stress and maximumdeflection are decreased so that the affecting intensity caused by the same loads is reduced;thirdly, the law that subsidence factor decreases while the average thickness of sandstoneincreases is discovered, and its change process includes two stages which are rapid decreasedand tendency of stability. The fitted equation of the average thickness of sandstone andsubsidence factor is established.
     (5) The paper studied the basic law of the sand-shale ratio impacting the subsidencefactor in the condition of same depth and bedrock thickness. The research results show that: firstly, in the condition of same bedrock thickness, with the increase of the sand-shale ratio, thebasic quality and whole stability of rock mass increase; secondly, under the same loads, withthe increase of the sand-shale ratio, the maximum tensile stress and maximum deflection aredecreased so that the affecting intensity caused by the same loads is reduced; thirdly, in thecondition of fixed sand-shale ratio, the law that subsidence factor decreases while thesand-shale ratio increases is discovered; fourthly, when the sandstone layer coefficient is morethan90%, the subsidence factors corresponding to the different sand-shale ratios areconvergence, in this case the effect of the sand-shale ratio can be neglected.
     (6) According to the function of layered structure of overburden in the occurrence anddevelopment of mining subsidence, the research proposed the idea and method of thestratification transfer prediction. Considering the characteristics of layered structure ofoverburden, the paper holds that surface subsidence is the final result of mining disturbancethrough the effect of transfer and superposition by stratum, therefore, it proposed the objectivebasis, basic thinking and conditions of the stratification transfer prediction method.
     (7) The research constructed the stratification transfer prediction model and the wholestructure model of the mining subsidence based on the key geological and mining factors inthe trend main section of subsidence basin. Under guidance of the idea and method of thestratification transfer prediction, taking the models of probability integral method and “keystratum-voussoir beam” theory as the foundation, the paper constructed the stratificationtransfer prediction model of the mining subsidence based on the key geological and miningfactors in the trend main section of subsidence basin, and meanwhile corrected the subsidencefactor in the new model according to the key geological and mining factors, the quantity ofsandstone layers, the average thickness of sandstone and sand-shale ratio. Through theoreticalanalysis, the model was extended to the whole structure model.
     (8) The stratification transfer prediction model of the surface movement and deformationbased on the key geological and mining factors was established. Under guidance of the ideaand method of the stratification transfer prediction, the stratification transfer prediction modelof the surface movement and deformation based on the key geological and mining factors wasestablished, including subsidence, incline, curvature, horizontal movement, horizontaldeformation, distortion deformation and Shear deformation of any point in the main section ofsubsidence basin.
     (9) Through engineering examples, the research verified the reliability and accuracy ofthe stratification transfer prediction model of the mining subsidence based on the keygeological and mining factors. Taking three coal mines located in different regions and mining areas as examples, an empirical study on the stratification transfer prediction model of themining subsidence based on the key geological and mining factors in the trend main section ofsubsidence basin was done. The results show that: not only does the model have high precision(the average error rate is about15%normally, the minimum error rate is less than1%), butalso the prediction precision of the model can be improved on the boundary of the trend mainsection of the subsidence basin relative to the model of probability integral method.
引文
[1]中华人民共和国国土资源部.2010年中国国土资源公报[R].2011.
    [2]高新民,赵生茂,余子彤.立足煤炭资源发展学循环经济[J].工作研究,2006,(2):1-3.
    [3]郁钟铭,李奕樯.煤矿井工开采技术现状问题及发展[J].中国矿业,2005,14(9):1-2.
    [4]赵淑英.煤炭过度开采对生态环境的破坏及防治措施[J].问题探讨,2004,(1):25-27.
    [5]宋世杰.煤炭开采对煤矿区生态环境损害分析与防治对策[J].煤炭加工与综合利用,2007,(3):44-48.
    [6]孙学阳.陕西铜川矿区采煤沉陷灾害预警基础研究[D].西安科技大学,2010.
    [7] Jiang J, Cheng J G. Establish of the target system for resources exploitation an decologicalprotection in coal mining [J]. Coal Mine Environmental Protection,2002,(16):16-18.
    [8]中国矿业学院,阜新矿业学院,焦作矿业学院编.煤矿岩层与地表变形[M].北京:煤炭工业出版社,1981.
    [9]煤炭科学研究院北京开采研究所编.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [10]Litwiniszyn, J. The theories and model research of movement of ground [J]. Collieryengineering,1958,(1):1125-1136.
    [11]何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].北京:中国矿业大学出版社,1991.
    [12]孙钧,侯学渊.地下结构[M].北京:科学出版社,1991.
    [13]方从启,孙钧.软土地层中隧道开挖引起的地面沉降[J].江苏理工大学学报,1999,20(2):5-8.
    [14]Bourdeau, P.L., Harr, M.E.. Stoehastic theory of settlement of loose cohensionless soils [J].Geotechnique,1989,39(4):641-654
    [15]袁礼明,王金庄.条带开采法岩层移动机理分析[J].岩石力学与工程学报,1990,19(2):147-153.
    [16]吴戈.岩层与地表移动问题的力学模型选择[J].山东矿业学院学报,1994,13(3):229-234.
    [17]余学义.预测地表变形与岩层移动变形的数学模型[J].西安矿业学院学报,1993,(3):97-105.
    [18]Knothe, S.. Effects of underground mining on the rock mass model testing with the loosemedium[J]. Archives of Mining Science,1994,39(3):265-282.
    [19]Jan, L.. Selected problems of the rock mechanics in the light of the modeled investigation[J]. Archives of Mining Science,1989,34(l):256-298.
    [20]郭惟嘉,刘立民,施德芳,等.矿层开采后的地面沉陷和应力分析[J].岩土工程学报,1996,18(2):75-81.
    [21]Liu Baochen, Lin Dezhang. The application of stochastic medium theory to the problem ofsurface movements due to open pit mining [J].Stability in Surface Mining,1982,3(16):407-416.
    [22]Liu Baochen. Theory of stochastic medium and its application in surface subsidence dueto excavation[J]. Transactions of Nf so,1992,(2):17-24.
    [23]刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965.
    [24]钱鸣高,石平五,许家林.矿山压力与岩层控制(第二版)[M].徐州:中国矿业大学出版社,2010.
    [25]He Guoqing, Gu Qiang. A study of evaluation of ecological environmental impacts of coalmining subsidence[J]. Journal of China University of Mining&Technology.1990,(1):25-30.
    [26]何国清.岩移预计的威布尔分布法[M].中国矿业大学学报,1988,(1):1-20.
    [27]何国清,马伟民,王金庄.威布尔分布型影响函数在地表移动计算中的应用—用碎块体理论研究岩移基本规律的探讨[J].中国矿业大学学报,1982,(1):1-20.
    [28]李增琪.用傅式变换计算开挖引起的地表移动[J].煤炭学报,1982,(2):20-25.
    [29]杨伦,于光明.采矿下沉的再认识[A].第七届国际矿测学术会文集[C].北京:中国煤炭工业出版社,1987,46-48.
    [30]张玉卓,仲维林,姚建国.岩层移动的位错理论解及边界元法计算[J].煤炭学报,1987,(2):27-33.
    [31]宋振琪.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988.
    [32]邓喀中.开采沉陷中的岩体结果效应研究[D].徐州:中国矿业大学,1993.
    [33]吴立新,王金庄.建(构)筑物下压煤条带开采理论与实践[M].徐州:中国矿业大学出版社,1994.
    [34]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究[M].徐州:中国矿业大学出版社,2000.
    [35]吴侃,王悦汉,邓喀中.采空区上覆岩层移动破坏动态力学模型的应用[J].中国矿业大学学报,2000,29(1):29-36.
    [36]余学义,张恩强.开采损害学[M].北京:煤炭工业出版社,2004.
    [37]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [38]钱鸣高.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [39]Pimenov, A. About possibility of using generalized functions for determining stress fieldand convergence of single mining opening under condition of forming destruction zonearound it [J]. Fiziko-Tekhnickeskie Problemy Razrabotki Poleznykh Iskopaemykh.1991,4:48-51.
    [40]Singh, R., Singh, T., Dhar, N.,etal. Coal pillar loading in shallow mining conditions [J].International Journal of Rock Mechanics Sciences&Geomechanics Abstracts.1996,33:757-768.
    [41]Begley, R., Beheler, P.,Khair, A. W.. A windows based mechanistic subsidence predictionmodel for long-wall mining[J].Proceedings of the5th Conference on the Use of Computersin the Coal Industry.1996,74-82.
    [42]Donnelly, L. J., Delacruz, H., Asmar, I. O., etal. The monitoring and prediction of miningsubsidence in the Amagam, Angelopolis, Venecia and Bolombolo Regions, Antioquia,Colombia[J].Engineering Geology,2001,59,2(1):103-114.
    [43]钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.
    [44]Rao, V.S.. Analysis of development of surface subsidence at Indian Coal[A].Proceedingsof International Symposium on Mining Science and Technology[C]. Xuzhou (China).1996,429-435.
    [45]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与土程学报,2005,24(5):787-791.
    [46]刘瑾,孙占法,张永波.采深和松散层厚度对开采沉陷地表移动变形影响的数值模拟研究[J].水文地质工程地质,2007,(4):88-92.
    [47]腾永海,唐志新.综采放顶煤地表沉陷规律研究及应用[M].北京:煤炭工业出版社,2009.
    [48]戴华阳,易四海,鞠文君,等.急倾斜煤层水平分层综放开采岩层移动规律[J].北京科技大学学报,2006,28(5):410-414.
    [49]张玉卓,仲惟林,姚建国.断层影响下地表移动规律的统计和数值模拟研究[J].煤炭学报,1983,(1):23-31.
    [50]赵海军,马凤山,李国庆,等.断层上下盘开挖引起岩移的断层效应[J].岩土工程学报,2008,30(9):1372-1375.
    [51]邓喀中.开采沉陷中的岩体结构效应[M].徐州:中国矿业大学出版社,1998.
    [52]Chamine, H.I., Bravo, P.. Geological contribution towards the study of mining subsidenceat the Germunde Coal Mine (NW Portugal)[J]. Cuadernos do Laboratorio Xeollgicl deLaxe.1993,281-287.
    [53]Kirzhner, F. M.. Influence o tectonic conditions in coal mining [A].Proceeding of the7thInternational Congress International Association of Engineering Geology.1994,6:44-29.
    [54]Kang Lixun. Different roof behavior under different upper mining boundary condition inDatong[J]. Journal of coal science and engineering.1997,3(2):36-40.
    [55]Doglioni, C., Dagostino, N., Mariotti, G.. Normal faulting vs regional subsidence andsedimentation rate [J]. Marine and Petroleum Geology,1998,15(8):737-750.
    [56]郭文兵,邓喀中,白云峰.受断层影响地表移动规律的研究[J].辽宁工程技术大学学报,2002,21(6):713-715.
    [57]郭迅,戴君武.采煤沉陷与断层相互作用引起地表建筑破坏特点分析[J].辽宁工程技术大学学报,2006,25(6):852-854.
    [58]谢和平,于广明,杨伦,等.节理化岩体开采沉陷的损伤统计研究[J].力学与实践,1998,20(6):7-9.
    [59]于广明,张春会,赵建锋.初始节理对岩体内部沉陷范围的影响研究与实验验证[J].岩石力学与工程学报,2002,21(10):1478-1482.
    [60]隋惠权,于广明.地质动力引起岩层移动变异及突变灾害研究[J].辽宁工程技术大学学报(自然科学版),2002,21(1):25-27.
    [61]方建勤,彭振斌,颜荣贵.构造应力型开采地表沉陷规律及其工程处理方法[J].中南大学学报(自然科学版),2004,35(3):506-510.
    [62]胡海峰.不同岩土比复合介质地表沉陷规律及预测研究[D].太原理工大学,2012.
    [63]夏玉成.构造环境对煤矿区采动损害的控制机理研究[D].西安:西安科技大学,2003.
    [64]夏玉成.煤矿区地质环境承载能力研究[J].煤田地质与勘探,2003,31(1):5-8.
    [65]夏玉成,孙学阳,孔令义,等.“构造控灾”理论与“绿色矿区”建设[J].西安科技大学学报,2008,28(2):331-335.
    [66]孙学阳,夏玉成.构造控灾”机理的理论框架及其应用[J].中国矿业,2008,17(7):40-42.
    [67]罗峥.榆神府矿区开采沉陷主控因子及农业生态恢复关键技术研究[D].西安科技大学,2009.
    [68]张世雄.固体矿物资源开发工程[M].武汉:汉理工大学出版社,2005.
    [69]徐永圻.煤矿开采学[M].徐州:中国矿业大学出版社,1999.
    [70]邹友峰,马伟民.条带地表沉陷的主控因素[J].矿山压力与顶板管理,1996,(1):27-31.
    [71]Wang Yuehan, Wang Caigen, Ma Wending et al. Feasibility study on cemented backfill inlongwall coal mine for surface subsidence control[C]. Proceedings of the6th InternationalSymposium on Mining with Backfill,1998.
    [72]杨宝贵,崔希民,孙恒虎,等.煤矿采空区胶结充填控制采动损害的可行性探讨[J].煤炭学报,2000,25(4):361-365.
    [73]刘长友,杨培举,侯朝炯,等.充填开采时上覆岩层的活动规律和稳定性分析[J].中国矿业大学学报,2004,33(2):166-169.
    [74]谢文兵,史振凡,陈晓祥,等.部分充填开采围岩活动规律分析[J].中国矿业大学学报,2004,33(2):162-165.
    [75]常庆粮.膏体充填控制覆岩变形与地表沉陷的理论研究与实践[D].中国矿业大学,2009.
    [76]Zhang Yujun, Li Fengming. Monitoring analysis of fissure development evolution andheight of overburden failure of high tension fully-mechanized caving mining [J]. ChineseJournal of Rock Mechanics and Engineering.2011,30(Supp.1):2994-3001.
    [77]Guo Wenbing, Huang Chengfe, Chen Junjie. Observation and study on surface groundsubsidence speed of fully mechanized top coal caving mining in thick seam [J]. CoalScience and Technology,2011,39(4):114-117.
    [78]滕永海,王金庄.综采放顶煤地表沉陷规律及机理[J].煤炭学报,2008,33(3):264-267.
    [79]Zhu Jiasheng, Yang Shuangsuo, Zhang Xuyan. The analysis method of ground surfacesubsidence caused by longwall mining [J]. Journal of Taiyuan university of technology,2008,39(Spec.Issu):230-232.
    [80]任艳芳.浅埋煤层长壁开采覆岩结构特征研究[D],煤炭科学研究总院,2008.
    [81]冯尊德,卢秀山.基于PLS回归分析建立岩移参数预测模型[J].煤炭工程,2004,(5):64-66.
    [82]仲惟林,朱仁诒.提高地表移动预计精度的新途径[C].国际矿山测量会议论文集[A],北京:煤炭工业出版社,1995:15-19.
    [83]李明,李琰庆,王红梅.任意形状工作面开采沉陷预计系统开发[J].矿业安全与环保,2008,35(5):18-21.
    [84]李德海,陈祥恩,李东升.厚松散层下开采地表移动预计及岩移参数分析[J].矿山压力与顶板管理,2002,(1):90-92.
    [85]陈祥恩.厚松散层薄基岩下开采地表移动特征[J].煤炭工程,2001,(8):11-13.
    [86]赵启峰,孟祥瑞,赵光明,等.厚松散层下开采沉陷预测模型的研究及应用[J].中国煤炭,2008,34(2):36-43.
    [87]陈祥恩,李德海,勾攀峰.巨厚松散层下开采及地表移动[M].中国矿业大学出版社,2001,(9):222-223.
    [88]李凤明,梁京华.厚冲积层矿区地表移动参数与地质采矿条件之间的关系及特点[J].煤炭科学技术,1996,24(3):29-33.
    [89]李凤明.厚冲积层矿区地表移动参数的特点及数值模拟[J].辽宁工程技术大学学报,2001,20(4):535-537.
    [90]耿德庸,仲惟林.用岩性综合评价系数P确定地表移动的基本参数[J].煤炭学报,1990,(4):13-24.
    [91]夏玉成,孙学阳,汤伏全.煤矿区构造控灾机理及地质环境承载能力研究[M].北京:科学出版社,2008.
    [92]夏玉成.构造应力对煤矿区采动损害的影响探讨[J].西安科技学院学报,2004,24(1):72-74.
    [93]夏玉成,雷通文.构造应力与采动损害关系的数值试验研究[J].辽宁工程技术大学学报,2006,25(4):527-529.
    [94]夏玉成,杜荣军.节理倾角对采煤沉陷影响的数值实验研究[J].矿业安全与环保,2008,35(6):1-3.
    [95]夏玉成,杜荣军,孙学阳.铜川矿区采煤沉陷的对应分析及其回归预计[J].煤炭科学技术,2008,36(10):89-92.
    [96]宋世杰,赵晓光,管园园.榆神府矿区开采沉陷损害影响因素的灰色关联分析[J].工业安全与环保,2010,36(2):9-10.
    [97]宋世杰,赵晓光,刘源,等.榆神府矿区开采沉陷的灰色关联分析及其回归预计[J].煤矿安全,2010,(8):138-140.
    [98]赵晓光,宋世杰,管园园.基于灰色关联度的煤矿区开采沉陷关键控制因子分析—以榆神府矿区为例[J].中国煤炭,2010,36(9):124-127.
    [99]Song Shijie, Zhao Xiaoguang, Xie Juan, et al. The Damage Evaluation of MiningSubsidence of Coal Mining Area Based on Fuzzy Comprehensive Evaluation: A CaseStudy in YuShenfu Mining Area[C]. Proceedings of RSETE,2011,1:849-852.
    [100]Song Shijie, Zhao Xiaoguang. Grey Correlation Analysis and Regression Estimation ofMining Subsidence in Yu-Shen-Fu Mining Area [J]. Procedia Environmental Sciences.2012,10:1747-1752.
    [101]R. Begley, P. Beheler, A.W. Khair. A Windows Based Mechanistic Subsidence PredictionModel for Longwall Mining [C]. Proceedings of the5th Conference on the Use ofComputer in the Coal Industry.1996,74-82.
    [102]Z. Agioutantis, M. Karmis. Correlation of Subsidence Parameters and Damage Assess-ment due to Underground Mining [C]. Proceedings of the5th International Symposiumon Environmental Issues and Waste Management in Energy and Mineral Production.1998,195-201.
    [103]L.J. Donnelly, H.De La Cruz, I.Asmar et al. The monitoring and prediction of miningsubsidence in the Amaga, Angelopolis, Venecia and Bolombolo Regions, Antioquia,Colombia[J]. Engineering Geology.2001,59:103-114.
    [104]郭增长.开滦集团公司建筑物下压煤可持续开采研究[R].中国矿业大学(北京),2002.
    [105]郭文兵,陈俊杰,张文志,等.开滦矿区岩层与地表移动和变形规律研究[R].河南理工大学,2009.
    [106]温吉洋,刘海义.大雁矿区地表移动规律分析[J].内蒙古煤炭经济,2002,(增刊):4-6.
    [107]侯志鹰,张英华.大同矿区采煤沉陷地表移动特征[J].煤炭科学技术,2004,32(2):50-53.
    [108]张铁民.大屯矿区地表移动变形参数规律研究[J].工程科学,2003,22(2):117-118.
    [109]张跃,谭志祥,邓喀中.许疃矿地表移动变形规律实测研[J].矿山测量,2007,12(4):7-10.
    [110]程东全,李德海,尹士献.永夏矿区开采沉陷规律研究[J].河南科学,2008,26(7):826-830.
    [111]吴侃,黄珍珍.山区地表移动变形规律分析[J].煤炭科技,2007,(1):26-29.
    [112]胡荣明,李大伟,张勇.林盛煤矿岩移参数研究[J].西安科技学院学报,2002,22(3):39-44.
    [113]白志辉,阎跃观,杜青龙.峰峰矿区不同开采条件下地表沉陷规律[J].煤矿安全,2002,(2):33-35.
    [114]柴学周.对潞安矿区综采岩移规律的研究[J].煤,1994,4(2):54-59.
    [115]张文志.开采沉陷预计参数与角量参数综合分析的相似理论法研究[D].河南理工大学,2011.
    [116]Garcia A.B.Mere J.O.Parameter optimization of influence functions in mining subsidence[J]. International Journal of Rock Mechanics and Mining Sciences.1997,34(7):1125-1131.
    [117]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].徐州:中国矿业大学出版社,2003.
    [118]Rafeal, T.R., Javier, T.L.. Hypothesis of the Multiple Subsidence Trough Related to VerySteep and Vertical Coal Seams and Its Prediction Through Profile Functions [J].Geotechnical and Geological Engineering,2000,18(4):289-311.
    [119]Kulakov, V.N.. Geomechanical Conditions of Steeply Inclined Coal Seam Mining[J].Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskkopaemykh.1995,(2):48-51.
    [120]Yu Xueyi.Studying theory of displacement and deformation in the mountain areas underthe influence of underground exploitation [J]. AGH Poland,1999,55-72.
    [121]J. Toran n o, R. Rodr guez, P. Ram rez-Oyanguren, Probabilistic analysis ofsubsidence-induced strains at the surface above steep seam mining [J] International Journalof Rock Mechanics&Mining Sciences,2000,(37):1161-1167.
    [122]Kalendra, B., Singh, B., Harat, B., et al. Sinkhole subsidence due to mining [J]Geotechnical and Geological Engineering,1997,(15):327-341.
    [123]M.I.A′lvarez-Ferna′ndez, C.Gonza′lez-Nicieza, A. Mene′ndez-D′az, Generalization ofthe n–k influence function to predict mining subsidence [J] Engineering Geology,2005(80):1-36.
    [124]Susistowicz A. Gorotwor jako osrodek sperzysto-lepki [J]. Arch. Gor.1953, T3. z2.
    [125]Litwinszy J. Application of the equation of stochastic processes to mechanics of loosebodies [J]. Archium Mechaniki Stoso.1956, T8.
    [126]Liu Baochen, Liao Kouhua, Yan Roungui. Research in the surface ground movement dueto mining [J]. Proc,4th Cong. Of ISRM. Montreux, Swiss: Band3,1979.
    [127]Liu Baochen. Stochastic method for subsidence due to excavation[C]. Porc. Inter. Symp.On Application of Computer Method in Rock Mechanics and Engineering. Xi’an, China.1993.
    [128]Liu Baochen. Ground surface movements due to underground excavation in the People’sRepublic of China[J].Comprehensive Engineering,1993,(29):212-218.
    [129]Yu Xueyi. Mechanism and Application of Grouting in separate in Separated-bed toReduce Subsidence [J]. International Mining Forum Krakow,2002,21:123-130.
    [130]Yu Xueyi. Studying theory of displacement and deformation in the mountain areas underthe influence of underground exploitation [D]. Dissertation. Krakow (in Poland): AGHUniversity of Science and Technology,1999.
    [131]Zhang Yuzhuo. An estimation of fuzzy reliability of distinct element method in predictionof surface subsidence due to coal mining[J].Journal of coal science&engineering,1998,4(2):7-12.
    [132]Zhang Yuzhuo. Simulation of strata movements due to underground mining using anautomated measurement system for equivalent material modeling facility[J].Journal of coalscience&engineering,1996,2(1):10-15.
    [133]谢和平,陈至达.非线性大变形有限元及在岩层移动中应用[J].中国矿业大学学报,1988,(2):94-98.
    [134]何满潮.国家自然科学基金重点项目讨论会讲话材料[R].1996.
    [135]邓喀中.开采沉陷中的岩体结果效应研究[D].徐州:中国矿业大学,1993.
    [136]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北大学出版社,1988.
    [137]Mandelbrot, B. B.. The Fractal Geometry of Nature [M]. NewYork: W H Freeman andCompany,1982,25-50.
    [138]Takayuki, H.. Fractal dimension of fault systems in Japan: fractal structure in rock fractalfracture geometry at various scales[J]. Pageoph,1989,1(2):157-170.
    [139]Turcotte, D.. Fractal and fragmentation [J]. J. Geophys. Res.,1986,91:1921-1926.
    [140]谢和平.分形-岩石力学导论[M].北京:科学出版社,1996.
    [141]谢和平.岩石类材料损伤演化的分形特征[M].岩石力学与工程学报,1991,10(1):74-82.
    [142]于广明.矿山开采沉陷的非线性理论与实践[M].北京:煤炭工业出版社,1998.
    [143]于广明,杨伦.非线性科学在开采沉陷中的应用研究(1)[J].辽宁工程技术大学学报,1997,16(4):385-390.
    [144]于广明,杨伦.非线性科学在开采沉陷中的应用研究(2)[J].辽宁工程技术大学学报,1997,16(5):520-525.
    [145]于广明.分形及损伤力学在开采沉陷中的应用研究[D].徐州:中国矿业大学,1997.
    [146]于广明,谢和平,杨伦,等.岩体采动沉陷的损伤效应[J].中国有色金属学报,1999.9(1):185-188.
    [147]于广明,孙洪泉,赵建锋.采矿引起地表动态下沉的分形增长规律研究[J].岩石力学与工程学报,2001,20(1):34-37.
    [148]张东明,尹光志,代高飞.地表下沉的分形特征及其预测[J].成都理工大学学报(自然科学版),2003,30(1):92-85.
    [149]Singh, R., Singh, T., Dhar, N., et al. Coal pillar loading in shallow mining conditions [J].International Journal of Rock Mechanics Sciences&Geomechanics Abstracts.1996,33:757-768.
    [150]Petre, B., Cristian, M.. Mining Subsidence Forecasting by Structural and GeomechanicalAnalysis [J]. Bulletin of Engineering Geology and the Environment,1993,47(1):71-77.
    [151]尹光志,谭钦文,魏作安.基于混沌优化神经网络的冲击地压预测模型[J].煤炭学报,2008,33(8):871-875.
    [152]尹光志,代高飞,阎河,等.冲击地压预测的遗传神经网络方法[J].岩土力学,2003,24(6):1016-1020.
    [153]董春胜,刘浜葭,杨金明.改进的BP神经网络预测地表沉陷[J].辽宁工程技术大学学报(自然科学版),2001,20(5):721-723.
    [154]麻凤海,杨帆.地层沉陷的数值模拟应用研究[J].辽宁工程技术大学学报(自然科学版),2001,20(3):257-261.
    [155]麻凤海.岩层移动及动力学过程的理论与实践[M].北京:煤炭工业出版社,1997.
    [156]王卫华,丁德馨.开采沉陷反分析的神经网络方法研究[J].南华大学学报(理工版),2001,15(1):10-14.
    [157]丁德馨,毕忠伟,王卫华.开采地面沉陷预测的神经网络方法研究[J].南华大学学报(理工版),2002,16(3):2-5.
    [158]丁德馨,张志军,毕忠伟.开采地面沉陷预测的自适应神经模糊推理方法研究[J].中国工程科学,2002,16(3):2-5.
    [159]曹丽文,姜振泉.人工神经网络在煤矿开采沉陷预计中的应用研究[J].中国矿业大学学报,2002,31(1):23-26.
    [160]郭文兵,吴财芳,邓喀中.开采影响下建筑物损害程度的人神经网络预测模型[J].岩石力学与工程学报,2007,9(1):33-39.
    [161]郭文兵,邓喀中,邹友峰.概率积分法预计参数选取的神经网络模型[J].中国矿业大学学报,2004,3(3):322-326.
    [162]郭文兵,邓喀中,邹友峰.条带开采地表移动参数研究[J].煤炭学报,2005,30(2):182-186.
    [163]Kim Kidong, Lee Saro, Oh Hyunjoo. Prediction of ground subsidence in Samcheok City,Korea Using Artificial Neural Networks and GIS[J]. Geological environment,2008,55(3):699-703.
    [164]Tomam AmbromiW, Goran Turk. Prediction of subsidence due to underground mining byartificialneural networks[J]. Computers&Geosciences,2003,(29):627-637.
    [165]尹光志,李贺,鲜学福,等.煤岩体失稳的突变理论模型[J].重庆大学学报,1994,17(1):23-28.
    [166]尹光志,王登科,黄滚.突变理论在开采沉陷中应用[J].矿山压力与顶板管理,2005(4):94-96.
    [167]吴侃,靳建明,戴仔强.概率积分法预计下沉量的改进[J].辽宁工程技术大学学报,2003,22(1):19-22.
    [168]余华中,李海德,李明金.后松散层下开采预计的概率积分法修正模型[J].焦作工学院学报(自然科学版),2004,23(4):255-257.
    [169]张兆江,吴侃,张安夏.基于关键层理论的概率积分法开采沉陷预计[J].煤炭科技,2010,(1):23-26
    [170]汤伏全,姚顽强,夏玉成.薄基岩下浅埋煤层开采地表沉陷预测方法[J].煤炭科学技术,2007,35(6):103-105.
    [171]刘玉成.开采沉陷的动态过程及基于关键层理论的沉陷模型[D].重庆大学,2010.
    [172]宋世杰.榆神府矿区煤炭开采对生态环境损害的定量化评价[D].西安科技大学,2009.
    [173]夏玉成,陈练武,薛喜成.地学信息数字化技术概论[M].西安:陕西科学技术出版社,2003.
    [174]王双明,黄庆享,范立民,等.生态脆弱区煤炭开采与生态水位保护[M].北京:科学出版社,2010.
    [175]王双明,范立民,黄庆享,等.榆神矿区煤水地质条件及保水开采[J].西安科技大学学报,2010,30(1):1-5.
    [176]王双明,黄庆享,范立民,等.生态脆弱矿区含(隔)水层特征及保水开采分区研究[J].煤炭学报,2010,35(1):7-14.
    [177]周剑平. ORIGIN实用教程[M].西安:西安交通大学出版社,2007.
    [178]彭文斌. FLAC3D实用教程[M].北京:机械工业出版社,2007.
    [179]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [180]胡火明.近浅埋煤层保水开采覆岩运动模拟研究与实测[D].西安科技大学,2009.
    [181]王悦.榆树湾井田保水采煤策略的对比研究[D].西安科技大学,2012.
    [182]张志勇,杨祖樱. MATLAB教程(附光盘一张)[M].北京:北京航空航天大学出版社,2010.
    [183]张艳杰.基于分层传递原理的开采沉陷时空预测模型构建[D].西安科技大学,2010.