北京市城六区三维绿量估算与分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北京市城六区三维绿量估算与分析研究是区别以往的根据树冠形状选择合适的体积公式来计算树冠的体积,利用地面三维激光扫描系统对单株立木进行扫描,根据树冠的外部点云数据计算体积,得到单株的三维绿量。结合RS和GIS技术,借助数理统计知识,建立三维绿量反演模型,得出北京市城六区的三维绿量并进行相关分析,提出意见和建议,为城区绿地规划营造出能发挥最佳生态效益和其他综合效益的绿色空间提供科学依据。
     本文基于地面三维激光扫描系统对北京市城六区的针叶树和阔叶树进行单株扫描,获得单株的三维绿量,并采用SPOT5遥感影像作为数据源,借助SPSS多元统计软件和遥感及地理信息系统建模及空间分析工具,建立三维绿量模型,对北京市城六区的森林植被三维绿量进行了估算,并进行了相关分析,为快速准确地估算北京市城六区森林植被三维绿量总量提供了一种有效的途径和方法。得出如下结论:
     (1)通过系统抽样和典型抽样,在校园、公园、路旁、住宅小区、停车场等绿化场合运用地面三维激光扫描仪FARO LS880对北京市常见的三十余种绿化树种如侧柏、雪松、白皮松、油松、圆柏、银杏、杨树、梧桐、柳树、国槐、臭椿、栾树、白蜡、元宝枫、栓皮栎等进行单株扫描,每个树种扫描三十余株,共计扫描1000余株。通过FARO SCENE点云处理软件分别提取单株立木的树冠点云,并在逆向工程软件Geomagic中分别量测每株扫描数据的树高、胸径、冠幅、枝高等测树因子;通过程序编写读取单株树冠各个点云的相对三维坐标,分别计算垂直于树干方向多个面上由最外围点构成的不规则面的面积,然后在沿树干方向等距切割计算近似圆台的体积,最后累加得到树冠体积,即获得单株立木冠上部分的三维绿量;
     (2)选择空间分辨率为2.5m的全色波段和空空间分辨率为10m的多光谱波段的SPOT5遥感影像数据,结合Worldview和Google earth影像及地形图等辅助数据,采用监督分类和目视解译相结合的方法对北京市城六区的植被信息进行分类与提取,本文共分了针叶林、阔叶林、草地、农田、水体、建筑用地和其他用地六个地类,总体分类精度达到83%,通过实地调查点的验证,相符率超过93%;通过多个绿化树种的地面扫描数据,结合遥感和GIS信息,应用多元统计分析方法进行自变量的筛选,分别建立针叶树和阔叶树的三维绿量模型,其中针叶树的三维绿量模型是:V=1.149-0.096B1-0.182+0.199SWIR,阔叶树的三维绿量模型是:V=-40.290-0.236B1-0.188B2+0.487SWIR,模型的相关系数为0.946和0.893,显著性显示为极显著,通过回归标准残差和累计概率分布图可以看出模型回归较好,利用检验样本数据与回归估算数据在0.05和0.01置信水平下进行精度评价,结果得知针叶树的精度为96.85%、95.84%,阔叶树的精度为89.29%、85.84%,可以得出利用以上方法建立的三维绿量估算模型是可以使用的。
     (3)由三维绿量模型估算出北京市城六区的总绿量,通过分析得到北京市城六区的总绿量为399129501.69 m3,其中海淀区最大,为141087038.92 m3,西城区最小,为9943012.58 m3;单位面积绿量最大的是石景山区,每平方米0.74 m3,最小的是朝阳区,每平方米仅0.14 m3,北京市城六区单位面积绿量为每平方米0.29 m3;人均绿量最多的是石景山区,每人105.79 m3,最少的是西城区,每人仅为6.06 m3;在生态效益方面,北京市城六区年产氧量为804981.18t,二氧化碳的年吸收量为1109914.57t,二氧化硫的年吸收量为1209.36t,年滞尘量为439042.45t,其中北京市城六区二氧化硫的年吸收量仅为排放量的1.02%,年滞尘量为降尘量的7.11倍,整体看来北京市城六区绿化植物的生态效益能对环境改善起到一定的作用。通过分析,从增加乔木数量、立体绿化、完善绿地规划体系和制定三维绿量衡量标准三个方面提出建议。
     本文的创新点主要体现在以下几个方面:
     (1)近些年,众多学者对三维绿量进行了大量的研究,但大多都是由实测树木的胸径、冠幅、树高等测树因子通过树冠的冠形形状选择合适的体积公式进行计算,这种计算过于粗放,本文通过地面三维激光扫描仪对单株树木进行不同方向的扫描来获得整株树木的完整点云数据,在后处理软件中生成树冠的三维点云模型,分别从沿树干方向和冠幅平面进行等距离分割,在冠幅平面方向又沿水平方向等距离分割,生成若干个梯形和首尾两个三角形,然后计算由点云坐标围成的不规则面的面积,最后按照极小等距形成的若干个圆台和两个圆锥来计算整个树冠的体积,整个过程由程序实现。通过这种方法最后得出的结果去除了模拟规则形状而参与计算的多余空间的体积,结果更加精确,其研究方法具有创新性。
     (2)本文以全站仪获得的单株立木的坐标为原点,树冠直径的二分之一为半径建立树冠冠径的缓冲,然后通过提取不同缓冲范围在影像各波段中的灰度值建立实测三维绿量与波段值及其组合值之间的模型。这种方法对于基于像元灰度值与实测三维绿量建立模型是一种尝试和探索,对于研究灰度值的提取及三维绿量反演模型建立具有理论意义。
     (3)对由地面三维激光扫描仪获得的单株树木的点云数据通过Geomagic软件量测冠径、树高、枝高、胸径等测树因子,再对经典的Logistic冠径-冠高方程进行修正,由模型检验和精度评价来反映模型本身的回归显著性,再用实测值与估算值进行精度评价,进而应用到其他扫描树种中,得到多种北京市城六区常见的绿化树种的茎-高模型,此法对于研究城区森林植被的茎高关系具有实践价值和推广意义。
ABSTRACT
     In this paper, tridimensional green biomass of urban six districts(Xicheng, Dongcheng, Haidian, Chaoyang, Shijingshan and Fengtai) of Beijing has been estimated and analyzed. Different from the conventional method that proper volume formula is selected according to the crown shape, single tree scanning by terrestrial three dimensional laser scanning system has been used, and peripheral point cloud data of crown was used to calculate the volume and obtained tridimensional green biomass of single tree.Combined with the RS and GIS technology, the three dimensional green biomass inversion model has been established with the help of mathematical statistics knowledge. The three dimensional green biomass of urban six districts was got and analyzed. In addition, suggestions have been proposed to provide the scientific basis for urban green land planning.
     Based on the terrestrial laser scanning system, conifers and broad-leaved trees of urban six districts of Beijing have been scanned plant by plant, to acquire tridimentional green biomass per plant. SPOT5 remote sensing was used as the data source, the three-dimensional green biomass model has been established with the help of multivariate statistical software SPSS and remote sensing and geographic information systems model and spatial analysis tool. The three-dimensional green biomass of forest in urban six districts of Beijing was estimated and the correlation analysis has been done, in order to quickly and accurately estimate three dimensional green biomass of urban six districts of Beijing, providing an effective means and methods. The following conclusions have been got:
     (1) Through systematic sampling and typical sampling, selecting several greening places such as campus,parks,sidewalks,residential districts,parking lots etc, in these places, terrestrial laser scanner FARO LS880 was used to scan over 30 tree species plant by plant, like arborvitae, cedar, pine, cypress, ginkgo, poplar, sycamore, willow tree, Sophora japonica, Ailanthus altissima, Koelreuteria, ash, maple, cork oak and other nearly ten common tree species in Beijing, and a total of more than 1,000 trees have been scanned. By using FARO SCENE point cloud processing software, single plants were extracted of plant crown point cloud, and in the reverse engineering software Geomagic, the factors like height, diameter, crown width, branch were measured plant by plant; By reading through the programming, relative three-dimensional coordinates of the point cloud concerning the crown of each plant were measured and then the outermost point of the surface formed by the irregular surface area of direction perpendicular to the trunk was calculated, and then along the direction of trunk, the infinitesimal method was used to cut a round table volume, and finally they were added together to acquire the crown volume, that is the tridimentional green biomass of crown upper;
     (2)The image of SPOT5 with the spatial resolution of 2.5m panchromatic band and an empty spatial resolution of 10m multispectral remote sensing data has been selected, combined with Worldview and Google earth and auxiliary data like topographic maps etc, and then combination of supervised classification and visual interpretation methods has been used to do classification and extraction of the vegetation in the urban six districts of Beijing. In this paper,6 land types have been classified:coniferous forest, broadleaf forest, grassland, farmland, water, construction sites and other lands, and the overall classification accuracy reached 83%. Verified by field survey points, conformity was over 93%; According to the scanning data of tree species, remote sensing and GIS information, multivariate statistical analysis methods was used for variable selection, and then three dimensional green biomass models of coniferous and broadleaf trees have been established. The coniferous trees three-dimensional green biomass model is:V=1.149-0.096B1-0.1B2+0.199SWIR, and broadleaf trees three-dimensional green biomass model is: V=-40.290-0.236B1-0.188B2+0.487SWIR. with the correlation coefficient of models were 0.946 and 0.893 respectively, and the significance was shown as highly significant. Through regression standard residual and cumulative probability distribution, the regression of model was good, and the test sample data was used for accuracy estimation under the regression estimates in 0.05 and 0.01 confidence level. The results showed that the accuracy coniferous trees were 96.85% and 95.84%, and the accuracy of broad-leaved trees were 89.29% and 85.84%. Therefore, it can be drawn that the tridimensional green biomass established by the above method can be used.
     (3) The three-dimensional green biomass model has been used to estimate the green biomass of urban six districts of Beijing. By analysis, the total amount of green biomass concerning urban six districts of Beijing is 399,129,501.69 m3. Haidian District owns the largest amount of 141,087,038.92 cubic meters, Xicheng District owns the least of 9,943,012.58 cubic meters; The largest amount of green biomass per unit area is in Shijingshan District, with 0.74 cubic meters per square meter, and the smallest is in Chaoyang district, with only 0.14 cubic meters per square meter. As for the urban six districts of Beijing, the amount of green biomass per unit area green 0.34 m3/m2; the largest amount of green biomass per capita is in Shijingshan District, with 105.79 cubic meters per capita, while the Western District owns the least green biomass with only 6.06 cubic meters per capita; To ecological benefits, the forestry can product 804981.18t oxygen annual in six districts,the annual absorpted carbon dioxide 1109914.57t, the annual absorpted sulfur diocide 1209.36t,the annual dust reduce quantity 439042.45t, in which the annual absorption tanke up account for 1.02% emission,the annual dust reduce quantity is 7.11 times of dust fall quantity, tthe ecological benefits of green plants in central six districts can play a role in improving the environment in whole. By analysis, suggestions have been proposed from the following three aspects:increase tree number and vertical planting, improve the planning system of green land, set standards of estimating three dimensionnal green biomass as well.
     Innovation of this paper is shown as follows:
     (1) In recent years, many scholars have done a lot of research in the three-dimensional green biomass, but for most studies, the volume formula of crown is selected by measuring the factors like tree diameter at breast height, crown width, to estimate the volume. However, this calculation is too extensive, and in this paper three-dimensional laser scanner was used to scan the trees in different directions to the complete point cloud data of the whole trees. And in the post-processing software, three-dimensional point cloud model of the crown has been generated. The model was put into equidistant partition in the direction of the trunk and crown plane, and then, equidistant partition was also done in the direction of the horizontal crown plane, generating several ladder and two drive end to end triangle. In addition, the coordinates of the point cloud bounded by the irregular surface area was calculated. Finally, the crown volume was got based on a number of small round table and two cones, and the whole process was realized by the Program. The results was got by this method, with more accurate results, therefore, the study method is innovative.
     (2)The paper taking the coordinates of sigle tree obtained by the total station as the origin,one-half the diameter of the crown as radius to establish buffer, and then extracting gray value of the buffers in the image to model.. This method based on pixel gray value and measured tridimentional green biomass is an attempt and exploration, having theoretical meaning in the study of gray value extraction and tridimentional green biomass inversion modeling..
     (3)The point cloud of single tree got by three-dimensional laser scanner was measured by Geomagic software, to get the measurement factors like crown diameter, tree height, branch height, diameter and others, and then the classical Logistic crown diameter-crown height equation was used for correction. In addition, testing and accuracy evaluation of the model was used to reflect the regression model itself significant, and then measured value and calculated value were used for accuracy assessment. And it was applied to scanning other species to get a Stem-High model with variety of common tree species in urban six districts of Beijing, and this method to study urban vegetation for stem height relations has the practical value and promotion significant.
引文
1. 安勇,卓丽环.哈尔滨市紫丁香绿量[J].东北林业大学学报,2004,32(6):81-84.
    2. 柴一心,祝宁,韩焕金.城市绿化树种的滞尘效应——以哈尔滨市为例[J].应用生态学报,2002,13(9):121-126.
    3. 陈芳,周志翔,王鹏程,等.武汉钢铁公司厂区绿地绿量的定量研究[J].应用生态学报,2006,4(17):592-596.
    4. 陈芳,周志翔,郭尔祥,等.城市工业区园林绿地滞尘效应的研究[J].生态学杂志,2006,25(1):34-38.
    5. 陈自新,苏雪痕,刘少宗,等.北京城市园林绿化生态效益的研究[J].中国园林,1998,14(1):57.
    6. 陈自新,苏雪痕,刘少宗,等.北京城市园林绿化生态效益的研究[J].中国园林,1998,14(2):51-54.
    7. 陈自新,苏雪痕,刘少宗,等.北京城市园林绿化生态效益的研究[J].中国园林,1998,14(3):54-57.
    8. 陈自新,苏雪痕,刘少宗,等.北京城市园林绿化生态效益的研究[J].中国园林,1998,14(4):46-49.
    9. 陈自新,苏雪痕,刘少宗,等.北京城市园林绿化生态效益的研究[J].中国园林,1998,14(5):57-60.
    10. 陈自新,苏雪痕,刘少宗,等.北京城市园林绿化生态效益的研究[J].中国园林,1998,14(6):55-56.
    11. 戴升山.地面三维激光扫描的发展与应用前景[J].现代测绘,2009,32(4):11-12.
    12. 戴天兴.城市环境生态学[M].北京:中国建材工业出版社,2002.
    13. 邓向瑞,冯仲科.三维激光扫描系统在林业中的应用研究[J].北京林业大学学报,2005,27(增2):43-47.
    14. 狄艳,罗惠云.搞好立体绿化,提高城市绿量[J].国土绿化,2005,(3):20.
    15. 董斌.山东黄河流域森林资源空间格局机器评价研究[D].北京林业大学,2009.
    16. 董明晓,郑康平.一种点云数据噪声点的随机滤波处理方法[J].中国图像图形学报,2004,9(2):245-248.
    17. 杜凤兰,田庆久.面向对象的地物分类法分析与评价[J].遥感技术与应用,2004,19(1):20-23.
    18. 杜凤兰,田庆久,夏学齐.遥感图像分类方法评析与展望[J].遥感技术与应用,2004,19(6):521-525.
    19. 范海英Cyra三维激光扫描系统在精准林业中的应用研究[D].辽宁工程技术大学,2004.
    20. 樊恒通.基于面向对象方法的城市植被提取与绿量估算研究[D].河海大学,2006.
    21. 付强.数据处理方法及其农业应用[M].科学出版社,2006.
    22. 冯仲科,罗旭,马钦彦,等.基于三维激光扫描成像系统的树冠生物量研究[J].北京林业大学学报,2005,27(增2):82-87.
    23. 冯仲科,赵春江,聂玉藻,等.精准林业[M].北京:中国林业出版社,2002.
    24. 高珊珊.基于三维激光扫描仪的点云配准[D].南京理工大学硕士学位论文,2008.
    25. 葛宏立,方陆明.遥感图像森林资源信息提取与分析研究[M].北京:科学出版社,2007.
    26. 葛伟强,周红妹,杨引明,等.基于遥感和GIS的城市绿地缓解热岛效应作用研究[J].遥感技术与应用,2006,21(5):432-435.
    27. 郭迎福,王晓强,李兵,等.激光扫描点云数据预处理技术研究[J].西安科技大学学报,2006,26(3):408-412.
    28. 韩光瞬,冯仲科,刘永霞,等.三维激光扫描系统测树原理及精度分析[J].北京业大学学报,2005,27(Supp 2):187-190.
    29. 韩素梅.沈阳地区主要树木净化二氧化硫潜力的研究[J].辽宁大学学报,2001,28(2):174-179.
    30. 黄慧萍.面向对象影像分析中的尺度问题研究[D].中国科学院博士学位论文,2003.
    31. 黄慧萍,吴炳方.基于区域合并影像分割技术的多尺度地表景观分析[J].地理科学进展,2004,23(3): 9-15.
    32.黄慧萍,吴炳方,李苗苗,等.高分辨率影像城市绿地快速提取技术与应用[J].遥感学报,2004(1):68-74.
    33.黄晓鸾,张国强,贾建中.城市生产环境绿色量值群的研究(6)——城市生存环境绿色量值群[J].中国园林,1998,14(6):57-60.
    34.蔺银鼎.城市绿地生态效应研究[J].中国园林,2003,(11):36-38.
    35.金福宇,曹立科,周大鹏,等.城市绿量研究进展[J].现代园林,2006,(5):10-11.
    36.李辉,赵卫智,古瑞泽,等.居住区不同类型绿地释氧固碳及降温增湿作用[J].环境科学,1999,20(6):41-44.
    37. 李俊祥,宁永昌,傅徽楠,等.上海市中心城区地表温度与绿地覆盖率相关性研究[J].上海环境科学,2003,22(9):599-601.
    38. 李明艳,刘悦翠,曹小玉.基于数量化方法的森林蓄积与环境因子关系的研究[J].西北林学院学报,2006,21(4):89-92.
    39. 李伟,贾宝全,王成,等.城市森林三维绿量研究现状与展望[J].世界林业研究,2008,21(3):31-34.
    40. 李希娟,宋启道,林扬碧,等.三亚城市森林对热岛效应的减缓作用[C].当代出版社,2008.
    41. 林木龙,陈秋波,邓小果.洋浦经济开发区城市森林对降温增湿遮阴的作用[J].热带农业科学,2010,30(4):15-19.
    42. 林华文.浅谈城市垂直绿化[J].热带林-,2007,35(2):33-34,42.
    43. 刘常富,何兴元,陈玮,等.沈阳城市森林三维绿量测算[J].北京林业大学学报,2006,3(28):32-37.
    44. 刘常富,何兴元,陈玮,等.沈阳城市森林绿量测算[J].应用生态学报,2007,18(6):1208-1212.
    45. 刘常富,李玲,赵桂玲,等.沈阳城市森林三维绿量的垂直分布[J].东北林业大学学报,2008,36(3):18-21.
    46. 刘华,侯琳,雷瑞德.秦岭火地塘林区油松和华山松林的空间分布格局及碳储量与碳密度研究[J].中国生态农业学报,2007,Vol.15(1):5-8.
    47. 刘立民,刘明.绿量——城市绿化评估的新概念[J].中国园林,2000,16(71):32-34.
    48. 刘健.基于3S技术闽江流域生态公益林体系高效空间配置研究(D).北京林业大学博士学位论文,2006.
    49. 刘伍,李满春,刘永学,等.基于矢栅混合数据模型的土地适宜性评价研究[J].长江流域资源与环境,2006,15(3):320-324.
    50. 娄全胜.基于GIS的广州森林空间格局及其环境效益研究[D].中国科学院博士论文,2006.
    51. 陆元昌,陈敬忠,洪玲霞,等.遥感影像分类技术在森林景观分类评价中的应用研究[J].林业科学研究,2005,18(1):31-35.
    52. 罗旭,冯仲科.三维激光扫描成像系统在森林计测中的应用[J].北京林业大学学报,2005,27(增2):61-65.
    53. 罗旭.基于三维激光扫描测绘系统的森林计测学研究[D].北京林业大学,2006.
    54. 鲁敏,李成.绿化树种对大气重金属污染物吸收净化能力的研究[J].山东林业科技,2006(3):31-32.
    55. 毛文永.生态环境影响评价概论[M].中国环境科学出版社,1998.
    56. 梅长林,范金城.数据分析方法[M].北京:高等教育出版社,2006.
    57. 孟宪宇.测树学[M].第2版.北京:中国林业出版社,1999.
    58. 莫登奎,林辉,孙华,等.基于高分辨率遥感影像的土地覆盖信息提取[J].遥感技术与应用,2005,20(4):411-416.
    59. 年顺龙,杨建祥,曹顺伟.森林资源遥感调查中植被因子的提取方法[J].南京林业大学学报(自然科学版),2005,29(4):120-122.
    60. 欧阳勋志,廖为明,刘国华.城市森林绿地建设的生态学思考[J].江西农业大学学报(自然科学版),2002,4(5):671-674.
    61. 钱巧静,谢瑞,张磊,等.面向对象的土地覆盖信息提取方法研究[J].遥感技术与应用,2005,20(3):411-416.
    62. 沈守云,李伟进,范亚民,等.南宁青秀山绿地绿量评价[J].中南林学院学报,2003,5(23):88-91.
    63. 沈泽昊,张新时.三峡大老岭地区森林植被的空间格局分析及其地形解释[J].植物学报,2000,42(10):1089-1095.
    64.史欣,吴统贵,徐大平,等.广州帽峰山森林公园的“冷岛”效应分析[C].中国林业出版社,2007.
    65. 宋金秀.八达岭林场森林植被三维绿量遥感测算[D].北京林业大学2010.
    66. 宋新民,李金良.抽样调查技术[M].北京:中国林业出版社,2007.
    67. 粟志峰,刘艳,彭倩芳.不同绿地类型在城市中的滞尘作用研究[J].干旱环境监测,2002,16(3):62-63.
    68. 孙家抦.遥感原理与应用[M].武汉:武汉大学出版社,2003.
    69. 谭炳香,杜纪山.遥感数据分析林区的植被和土壤侵蚀特征[J].林业科学,2006,42(4):7-11.
    70. 覃先林,李增员,易浩若.高空间分辨率卫星遥感影像树冠信息提取方法研究[J].遥感技术与应用,2005,20(2):228-232.
    71. 谭鑫鑫,常江,谭莹莹.三维绿量—城市森林评价指标的新方法[J].山东林业科技,2009,(3):114-115.
    72. 汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    73. 童庆禧,张兵,郑兰芬.高光谱遥感:原理、计算与应用[M].北京:高等教育出版社,2006:46-283.
    74. 王娟,蔺银鼎.城市绿地生态效应[J].草原与草坪,2004,4(107):24-27.
    75. 王桥,王文杰.基于遥感的宏观生态监控技术研究[M].北京:中国环境科学出版社,2006:90-92.
    76. 王晓峰.三维激光扫描技术在土木工程领域的应用[D].同济大学,2009.
    77. 王伟.西南林学院教学区主要绿地部分生态效益评价研究[D].西南林学院,2007.
    78. 王雪,卫发兴,崔志新.3S技术在林业中的应用[J].世界林业研究,2005,18(2):44-47.
    79. 王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    80. 吴春峰,陆怀民,郭秀荣,等.三维激光扫描系统在测树中的应用[J].林业机械与木工设备,2008,36(12):48-52.
    81. 吴荷英.城市立体绿化中植物配置分析[J].中国园艺文摘,2009,(8):68-71.
    82. 吴耀兴,康文星,郭清和,等.广州市城市森林对大气污染物吸收净化的功能体现[J].林业科学,2009,45(5):42-48.
    83. 吴泽胜.绿量在深圳城市绿化的应用[J].安徽农业科学,2006,34(7):1350-1352.
    84. 谢广民,秦飞,池康,等.徐州城市森林规划布局与树种配置[J].江苏林业科技,2007,34(2):55-57.
    85. 肖化顺.森林资源监测中林业3S技术的应用现状与展望[J].林业资源管理.2004,2:53-58.
    86. 熊妮娜,王佳,罗旭,等.一种基于三维激光扫描系统测量树冠体积方法的研究——以油松为例[J].北京林业大学学报,2007,29(增2):61-65.
    87.徐进军,张民伟.地面三维激光扫描仪现状与发展[J].测绘通报,2007,(1):47-50.
    88. 杨存建,刘纪远等.热带森林植被生物量与遥感地学数据之间的相关性分析[J].地理研究,2005,24(3):473-479.
    89. 杨丹,冯仲科.北京市森林覆盖率遥感统计及其分析[J].北京林业大学学报,2005,27(2):133-128.
    90. 叶镜中.城市森林的布局模式与“绿色南京”营建[J].南京林业大学学报(人文社会科学版),2003,3(1):13-15.
    91.游先祥.遥感原理及在森林资源环境中的应用[M].北京:中国林业出版社,2003.
    92. 余建英,何旭宏.数据统计分析与SPSS应用[M].北京:人民邮电出版社,2003.
    93. 张浩,王祥荣.城市绿地的三维生态特征及其生态功能[J].中国环境科学,2001,21(2):101-104.
    94. 张良培,郑兰芬,童庆禧.利用高光谱对生物变量进行估计[J].遥感学报,1997,1(2):111-114.
    95. 张煜星,王祝雄.遥感技术在森林资源清查中的应用研究[M].北京:中国林业出版社,2007.
    96. 张彦林.基于3S技术的山东省是森林蓄积量定量估测研究[D].北京林业大学,2008.
    97. 张雪莹.基于遥感的北京市植被时空分布规律及影响因素分析[D].中国地质大学(北京),2010.
    98. 郑德华,沈云中,刘春.三维激光扫描仪及其测量误差影响因素分析[J].测绘工程,2005,14(2):32-36.
    99. 赵军,刘琳,李霞.基于RS与GIS的半干旱区城市绿化三维量测算研究——以兰州市安宁区为例[J].地理与地理信息科学,2007,23(4):37-40.
    100.赵茂程,郑加强,佘光辉.数据融合技术及其在林业中的应用[J].南京林业大学学报,2005,29(6):114-117.
    101.赵鹏祥,强建华,张会儒,等.基于遥感的黄土高原天然林林地信息提取及计算机分类研究[J].西北农林科技大学学报,2006,34(10):75-79.
    102.赵婷婷.云南大学东陆园植物群落结构与三维绿量研究[D].西南林学院,2007.
    103.赵阳,余新晓,信忠保,等.地面三维激光扫描技术在林业中的应用与展望[J].世界林业研究,2010,23(4):42-46.
    104.赵宪文.林业遥感定量估测[M].北京:中国林业出版社,1996.
    105.赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    106.周坚华,孙天纵.三维绿色生物量的遥感模式研究与绿化环境效益估算[J].环境遥感,1995,10(3):162-174.
    107.周坚华.城市绿量测算模式及信息系统[J].地理学报,2001,56(1):14-23.
    108.周坚华.城市生产环境绿色量值群的研究(5)——绿化三维量及其应用研究[J].中国园林,1998,14(5):61-63.
    109.周一凡,周坚华.绿量快速测算模式.生态学报,2006,(5):4204-4211.
    110.周一凡,周坚华.基于绿化三维量的城市生态环境评价系统[J].中国园林,2001(5):77-79.
    111.周廷刚,罗红霞,郭达志.基于遥感影像的城市空间三维绿量(绿化三维量)定量研究[J].生态学报,2005,3(25):415-420.
    112.周志翔,邵天一,王鹏程,等.武钢厂区绿地景观类型空间结构及滞尘效应[J].生态学报,2002,22(12):236-243.
    113.朱文泉,何兴元,陈玮.城市森林研究进展[J].生态学杂志,2001,20(5):55-59.
    114.朱文泉,何兴元,陈玮,等.城市森林结构的量化研究——以沈阳树木园森林群落为例[J].应用生态学报,2003,14(12):2090-2094.
    115. Acker,Steven A. etc.Biomass accumulation over the first 150 years in coastal Oregon Picea Tsuga forest [J].Journal of Vegetation Science,2000,11(5):725-738.
    116. Ahmet Karaburun,Ali Demirci,I-Shian Suen.Impacts of urban growth on forest cover in Istanbul (1987-2007)[J].Environ Monit Assess,2010,(166):267-277.
    117. Akira Kato,L.Monika Moskal,Peter Schiess,et al.Capturing tree crown formation through implicit surface reconstruction using airborne lidar data[J].Remote Sensing of Environment,2009,(113): 1148-1162.
    118. Alexandrov,G.A.,Oikawa,T.and Yamagata,Y.,The scheme for globalization of a process-based model explaining gradations in terrestrial NPP and its application Ecological Modeling[J].Academic Journal, 2002,(148):293-306.
    119. Andrity V. Zhalnin,George R. Parker.Spatial analysis and delineation of ecological landtye phases for the Hoosier National Forest,Indiana,USA[J].Computers & Geosciences,2009,(35):214-224.
    120. Anatoly A Gitelson,Yoram J Kaufman,Robert Stark,et al.Novel algorithms for remote estimation of vegetation faction. Remote Sensing of Environment[J].2002,80(1):76-87.
    121. Benz Ursula,Pottier Eric.Object based analysis of polarimetric SAR data in alpha-entropyoanisotropy decomposition using fuzzy classification by eCognition[J].International Geoscience and Remote Sensing Symposium(IGARSS),2001 (3):1427-1429.
    122. Bienert A.Tree detection and diameter estimation by analysis of terrestrial laser scanner point clouds[J].IAPRS,2007,36(3):52.
    123. Brown S I,Schroeder.Spatial patterns of aboveground production and mortality of woody biomass for eastern U. S. forests [J].Ecological Applications,1999(9):968-980.
    124. Burrough P A.GIS and geostatistics:essential partners for spatial analysis[J].Environmental and Ecological Statistics,2001,8(4):361-377.
    125. Brian T. Rafferry,Malvin N. Janal,Ricardo A. Zavanelli,et al.Design features of a three-dimensional molar crown and related maximum principal stress. Afinite element model study[J].Dental Materials, 2010,(26),156-163.
    126. Bradley B.Walters.Local Management of Mangrove Forests in the Philip pines:Successful Conservation or Efficient Resource Exploitation[J].Human Ecology,2004,32(2):177-195.
    127. C.Comas,M.Palahi,T.Pukkala,et al.Characterising forest spatial structure through inhomogeneous second order characteristics[J].Stoch Environ Res Risk Assess,2009,(23):387-397.
    128. C. M. Hoffmann,M. Blomberg.Estimation of leaf area index of beta vulgaris based on optical remote sensing data[J].Agronomy & Crop Science,2004, (190):197-204
    129. Chen Li-Jun,LIU Gao-Huan,FENG Xian-Feng.Estimation of Net Primary Productivity of Terrestrial Vegetation in China by Remote Sensing[J].Acta Botanica Sinica,2001,43(11):1191-1198.
    130. Chen J M,J Liu,J.Cihlar&M. L.Goul den. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications[J].Ecological Modelling,1999,(124):99-119.
    131. Chiesi M.,Maselli F, Bindi M,et al.Calibration and application of Forest-BGC in a Mediterranean area by the use of conventional and remote sensing data[J]. Ecological Modelling,2002,(154):251-262.
    132. Clark J R,Matheny,Crossg,et al.A model of urban forest sustainability[J].J Arboric,1997,23(1):17-30.
    133. C. Song.Estimating tree crown size with spatial information of high resolution optical remotely sensed imagery[J].Intrenational Journal of Remote Sensing,2007,28(15):3305-3322.
    134. Conghe Song,Curtis E.Woodcock. Estimating Tree Crown Size from Multiresolution Remotely Sensed Imagery[J].Photogrammetric Engineering & Remote Sensing,2003,Vol.69(11):1263-1270.
    135. C.Songa,M.B.Dickinsonb.Extracting forest canopy structure from spatial information of high resolution optical imagery:tree crown size versus leaf area index[J].International Journal of Remote Sensing, 2008,29(19):5605-5622.
    136. Daniel J.Chmura,Mohd S.Rahman,Mark G.Tjoelker, et al. Crown structure and biomass allocation patterns modulate aboveground productivity in yong loblolly pine and slash pine[J]. Forest Ecology and Management,2007,(243):219-230.
    137. Danson F M,Hetherington D.Forest canopy gap fraction from terrestrial laser scanning[J].Ieee Geoscience and Remote Sensing Letters,2007,4(1):157-160.
    138. David J.Nowak,Daniel E.Crane,John F.Dwyer,et al.Compensatory value of urban trees in the United States[J].Journal of Arboriculture,2002,28(4):194-199.
    139. Dong Yan,Zhao Lin-sen,Zhao Yu-xiang,et al..Quantity of plant leaf area on three major public squares in kunming City, china[J]. Journal of Forestry Research,2004,15(4):291-294.
    140. Douglas G. Sprugel, Katherine G. Rascher, Rolf Gersonde, et al. Spatially explicit modeling of overstory manipulations in young forests:Effects on stand structure and light[J]. Ecological Modelling, 2009, (220):3536-3575.
    141. Dungan J L, Perry J N, Dale M R T, et al. A balance view of scale in spatial statistical analysis [J]. Ecography,2002, (25):626-640.
    142. Franco-Lopez H, Ek A.R. Bauer M.E. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sensing of Environment[J].2001,77(3): 251-274.
    143. Gabor Brolly, Geza Kiraly. Algorithms for stem mapping by means of terrestrial laser scanning[J]. Acta Silv Lign Hung,2009,5(1):119-130.
    144. Gianfranco D.De Grandi, Richard M. Lucas, Jan Kropacek. Analysis by Wavelet Frames of Spatial Statistics in SAR Data for Characterizing Structural Properties of Forests[J]. IEEE Transactions on Geoscience and Remote Sensing,2009, vol.47, (2):494-407.
    145. Gorte B, Winterhalder D. Reconstruction of laser-scanned trees using filter operations in the 3D raster domain[J]. Remote Sensing and Spatial Information Sciences,2004,35(8):39-44.
    146. Gorte B, Pfeifer N. Structuring laser-scanned trees using 3D mathematical morphology[J]. nternational Archives of Photogrammetry and Remote Sensing,2004,35(B5):929-933.
    147. Guangxing Wang, Tonny Oyana, Maozhen Zhang. Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images[J]. Forest Ecology and Management,2009, (258):1275-1283.
    148. H.Akbari. Shade trees reduce building energy and CO2 emissions from power plants[J]. Environmental Pollution,2002(116):119-126.
    149. Hiroaki Ishii, Nate McDowell. Age-related development of crown structure in coastal Douglas-fir trees[J]. Forest Ecology and Management,2002, (169):257-270.
    150. I. Ozdemir. Estimating stem volume by tree crown area and tree shadow area extracted from pan-sharpened Quickbird imagery in open Crimean juniper forests[J]. International Journal of Remote Sensing,2008, Vol.29, No.19:5643-5655.
    151. Jaroslaw Zawadzki, Piotr Fabijanczyk, Tadeusz Magiera, et al. Study of litter influence on magnetic susceptibility measurements of urban forest topsoils using the MS2D sensor[J]. Environ Earth Sci, 2010, (61):223-230.
    152. J. E. S. Fransson, G. Smith, J. Askne, et al. Stem volume estimation in boreal forests using ERS-1/2 coherence and SPOT XS optical data[J]. International Journal of Remote Sensing, Volume.2001, 22(14):2777-2791.
    153. Joao L.F. Batista, Douglas A. Maguire. Modeling the spatial structure of topical forests[J]. Forest Ecology and Management,1998, (110):293-314.
    154. Josee Levesquea, Douglas J. King. Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modeling individual tree crown and forest canopy structure and health[J]. Remote Sensing of Environment,2003, (84):589-602.
    155. Jakob WeiB. A pplication and statistical analysis of terrestrial laser scanning and forest growth simulations to determine selected characteristics of Douglas-Fir stands[J]. Folia Forestalia Polonica, series A,2009,51(2):123-137.
    156. Klaus Seeland, Sabine Dubendorfer, Ralf Hansmann. Making friends in Zurich's urban forests and parks:The role of public green space for social inclusion of youths from different cultures[J]. Forest Policy and Economics,2009, (11):10-17.
    157. Lael Parrott, Holger Lange. Use of interactive forest growth simulation to characterize spatial structure[J]. Forest Ecology and Management,2004, (194):29-47.
    158. Liu J, Chen J M,Chen W. Net Primary Productivity Distribution in the BOREAS Region from a Process Model Using Satellite and Surface Data[J]. Journal of Geophysical Research,1999.104(D22): 27735-27754.
    159. Leena Hamberg, Susanna Lehvavirta, D. Johan Kotze. Forest edge structure as a shaping factor of understorey vegetation in urban forests in Finland[J]. Forest Ecology and Management,2009, (257): 712-722.
    160. Moorthy I, Miller JR. Retrieving crown leaf area index from an individual tree using ground-based lidar data[J]. Canadian Journal of Remote Sensing,2008,34(3):320-332.
    161. Matti Mottus, Madis Sulev, Mait Lang. Estimation of crown volume for a geometric radiation model from detailed measurements of tree structure[J]. Ecological Modelling,2006, (198):506-514.
    162. Maco S E, Mpherson E G. Assessing canopy cover over streets and sidewalks in street tree populations[J]. Journal of Arboriculture,2002,28(6):270-276.
    163. Mcpherson E G. Structure and sustainability of Sacramento's urban forest[J]. J Arboric,1998,24(4): 174-190.
    164. McPherson E G, Simpson J R, Peper P J, er al.. Benefit-cost analysis of Modesto municipal urban forest[J]. Jouranl of Arboriculture,1999, (25):235-247.
    165. N. C. Coops, R. H. Waring. The use of multiscale remote sensing imagery to derive regional estimates of forest growth capacity using 3-PGS[J]. Remote Sensing of Environment,2001, (75):324-334.
    166. Nowak D J, Nobln M H, Sistnni S M, et al. Assessing the US urban forest resource[J]. Journal of Forestry,2001, (3):37-42.
    167. Nowak D J, Crane D E, Dwyer J F. Compensatory value of urban trees in the United States[J]. Journal of Arboriculture,2002,28(40):194-199.
    168. Nowak D J, Crane D E. Carbon storage and sequestration by urban trees in the USA[J]. Environ Pollut, 2002,116(3):381-389.
    169. Oscar Aguirre, Gangying Hui, Klaus von Gadow. et al. An analysis of spatial forest structure using neighbourhood-based variables[J]. Forest Ecology and Management,2003, (183):137-145.
    170. Peter R J. North Estimation of APAR, LAI, and vegetation fractional cover from ATSR-2 imagery[J]. Remote Sensing of Environment,2002,80(1):114-121.
    171. Petra Kilchling, Ralf Hansmann, Klaus Seeland, et al. Demand for non-timber forest products:Surveys of urban consumers and sellers in Switzerland[J]. Forest Policy and Economics,2009, (11):294-300.
    172. Pfeifer N, B Gorte, D Winterhalder. Automatic reconstruction of single trees from terrestrial laser scanner data[C]. Proceedings of the XXth ISPRS Congress:Geo-Imagery Bridging Continents, Istanbul, Turkey,2004,35(B5):114-119.
    173. Pfeifer N, Winterhalder D.Modelling of tree cross sections from terrestrial laser-scanning data with free-form curves[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,2004,36(8):76-81.
    174. Puhr C B, Dongoghue DNM, CoxNJC, et al. Logit modeling to map canopy closure in conifer plantations:A case study using landsat TM data from SW Scotlan[J]. Remote Sensing Society Observations & Intrenations New York:The Remote Sensing Society,1997:171-176.
    175. Qi J, Marsett R C, Moran M S., et al. Spatial and temporal dynamics of vegetation in the San Pedro River basin area[J]. Agricultural and Forest Meteorology,2000 (105):55-68.
    176. Qin Z, Karnieli A, Berliner P.A. Mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. International Journal of Remote Sensing,2001,22(18):3719-3746.
    177. R. A. Houghton, K. T. Lawrence, J. L. Hackler, et al. The spatial distribution of forest biomass in the Brazilian Amazon:a comparison of estimates[J]. Global Change Biology.2001, (7):731-746.
    178. Rauste, Yrjo. Techniques for wide-area mapping of forest biomass using radar data[J]. Espoo VTT Publications,2005:91-103.
    179. Renzo Motta, Emanuele Lingua. Human impact on size, age, and spatial structure in a mixed European larch and Swiss stone pine forest in the Western Italian Alps[J]. C an. J. For. Res,2005, (35): 1809-1820.
    180. Ronald E. McRoberts, Susanne Winter, Gherardo Chirici. Large-scale spatial patterns of forest structural diversity[J]. Can. J. For. Res,2008, (38):429-438.
    181. Scott E M,McPherson E G.Assessing canopy cover over streets and sidewalks in street tree population[J].Journal of Arboriculture,2002,28(6):270-276.
    182. Sorin C.Popescu,Randolph H.Wynne,Ross F.Nelson,et al.Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass[J].Can. J.Remote Sensing,2003,Vol.29,No.5:564-577.
    183. Shawn X. Meng,Victor J.Lieffers,Shongming Huang,et al.Modeling crown volume of lodgepole pine based upon the uniform stress theory[J].Forest Ecology and Management,2007,(251):174-181.
    184. Simonse M.Automatic determination of forest inventory parameters using terrestrial laser scanning[C]. Proceedings of the ScandLaser Scientific Workshop on Airborne Laser Scanning of Forests,Ume(a), Sweden,2003:251-257.
    185. S.E.Franklin,A.J.Maudie,M.B.Lavigne.Using Spatial Co-Occurrence Texture to Increase Forest Structure and Species Composition Classification Accuracy[J].Photogrammetric Engineering & Remote Sensing,2001,Vol.67,No.7:849-855.
    186. Staiger R.Terrestrial Laser Scanning—Technology,System and Applications[A].2nd FIG Regional Conference,Marrakech,Morocco,2003,(12):2-5.
    187. Thies M,Pfeifer N.Three-dimensional reconstruction of stems for assessment of taper,sweep and lean based on laser scanning of standing trees [J].Scandinavian Journal of Forest Research,2004,19(6): 571-581.
    188. Tim De Chant,Ana Hernando Gallego,Javier Velazquez Saornil,et al.Urban influence on changes in linear forest edge structure[J].Landscape and Urban Planning,2010,(96):12-18.
    189. Tansey K,Selmes N.Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data[J].International Journal of Remost Sensing,2009,30(19):5195-5209.
    190. Taha,H.,Douglas,S.,Haney,J,et al.Mesoscale meteorogical and air quality impacts of increased urban albedo and vegetation[J].Energy and Buildings-Special Issue on Urban Heat Island,1997, 25(2):169-177.
    191. Tokola T.The Influence of Field Sample Data Location on Growing Stock Volume Estimation in Landsat TM-Based Forest Inventory in Eastern Finland [J].Remote Sensing of Environment,2000, 74(3):422-431.
    192. T. Svoray,M.Shoshany,P.J.Curran,et al.Relationship between green leaf biomass volumetric density and ERS-2SAR backscatter of four vegetation formations in the semi-arid zone of Israel [J].International Journal of Remote Sensing,2001,Vol.22,No.8:1601-1607.
    193. Vincent Kint,Marc Van Meirvenne,Lieven Nachtergale,et al.A Comparison Between Nearest-Neighbor Indices and Variogram Analysis[J].Forest Science,2003,49(1):36-49.
    194. Viola Clausnitzer. Dragonfly communities in coastal habitats of Kenya:indication of biotope quality and the need of conservation measures[J]. Biodiversity and Conservation.2003, (12):333-356.
    195. Vu Thanh Ca,Takashi Asaeda,Eusuf Mohamad Abu,et al.Reduction in air conditioning energy caused by nearly park[J].Energy and Buildings,1998,29:83-92.
    196. Wenhua Zhang,Yinghai Ke,Lindi J.Quackenbush,et al.Using error-in-variable regression to predict tree diameter and crown width from remotely sensed imagery[J].Can.J.For.Res,2010,(40):1095-1108.
    197. Wezyk P.Koziol K.Terrestrial laser scanning versus traditional forest inventory first results from the polish forests[J].IAPRS,2007,36(3):424-429.
    198. Yadvinder Malhi,Rosa Maria Roman-Cuesta. Analysis of lacunarity and scales of spatial homogeneity in IKONOS images of Amazonian tropical forest canopies[J].Remote Sensing of Environment,2008, (112):2074-2087.
    199. Zhanqing Hao,Jian Zhang,Bo Song,et al.Vertical structural and spatial associations of dominant tree species in an old-growth temperate forest[J].Forest Ecology and Management,2007,(252):1-11.