新型高纯微电子封装材料的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微电子封装技术和材料是制约微电子产品设计、应用和发展的重要因素之一。进入二十一世纪以来,微电子产业的蓬勃发展推动了微电子封装技术的飞速发展,然而微电子封装材料的发展却相对较慢。随着微电子产品向着高度集成化、布线微细化、组装三维化、芯片大型化、绿色环保化等方向发展,这就对微电子封装材料提出了新的要求,朝着无杂质、高纯、高耐热等方向发展。为适应新型3D微电子封装技术的发展需求,开发低杂质、耐热的微电子封装材料,本论文在开发高纯邻甲酚醛环氧树脂的基础上,通过将耐热单体引入到邻甲酚醛环氧树脂分子链上的改性方法,提高微电子封装材料整体的耐热性,而不增加封装工艺的难度,满足微电子封装技术发展的需求。在实验过程中,发现单纯依靠实验来开发满足微电子产业要求的微电子封装材料,其过程将是漫长和耗费大量成本的。这个过程虽然能通过一些实验方法的设计进行改进,但仍需提高。本论文采用分子模拟的方法,建立分子结构模型,进而初步研究环氧树脂交联体系的一些性能,对用分子模拟方法来开拓环氧树脂研究新领域进行了一些有益探索。
     本论文的具体研究内容和结果如下:
     1、高纯邻甲酚醛环氧树脂的结构优化和开发
     本论文采用两步法工艺合成高纯邻甲酚醛环氧树脂。基于对第一步合成邻甲酚醛树脂机理的深入理解,通过调节工艺参数,得到了低游离酚含量、软化点可控的线型邻甲酚醛树脂。接着,探讨了邻甲酚醛环氧树脂的合成机理,分析了工艺参数对树脂性能的影响。在优化工艺参数的基础上,制备了低氯高纯的邻甲酚醛环氧树脂。目前,该工艺路线已经完成了中试实验。结果表明,该工艺流程具有可行性,能满足大规模生产的要求,可用于工业化生产符合新一代微电子封装技术需求的低氯高纯的邻甲酚醛环氧树脂。
     2、不同邻位含量的邻甲酚醛树脂的合成
     热塑性酚醛树脂是环氧树脂的一类重要的固化剂。本论文在对前期邻甲酚醛树脂合成机理研究的基础上,通过改变合成过程中催化剂的种类和工艺条件,成功地制备了邻位含量可调的邻甲酚醛树脂,并对其结构进行了定性和定量表征。接着,将其作为邻甲酚醛环氧树脂的固化剂进行初步研究,发现在高邻位酚醛树脂中特有的自催化作用,同样适用于对环氧树脂的固化。这对开发快固型环氧塑封料提供了新的可能方向。
     3、烯丙基改性邻甲酚醛树脂的开发
     采用耐热单体对环氧树脂进行改性,是提高环氧树脂耐热性的常用方法。本论文在前面对邻甲酚醛树脂合成机理的研究基础上,通过烯丙基氯与邻甲酚醛树脂的反应,得到了烯丙基改性邻甲酚醛树脂。在这种改性树脂中,通过控制反应配比,使其同时含有烯丙基和酚羟基,能成为环氧树脂的“双官能团型固化剂”。接着,将其作为邻甲酚醛环氧树脂的固化剂,并通过烯丙基引入耐热性优良的双马来酰亚胺树脂进行共聚。这样就无需添加小分子就能使耐热的双马来酰亚胺引入环氧树脂的分子主链中,实现对邻甲酚醛环氧树脂的改性。
     4、多官能团环氧树脂交联体系的分子模拟研究
     分子模拟方法是介于实验研究和理论计算之间的第三种科学的研究方法。本论文在建立多官能团环氧树脂的分子模型和固化模型的基础上,设计了一个分子模拟算法。通过这个算法,能够较为真实地模拟多官能团环氧树脂固化交联的动态过程,最终得到一个既有化学交联又有物理缠结的三维网状结构,得到的固化反应转化率较为接近真实体系。同时,通过该分子模拟算法,能对环氧树脂交联体系的一些性能进行计算,如弹性力学常数、玻璃化转变温度等,较为接近真实值。
Microelectronic packaging technology and materials are one of the most important factors that restrict the design, application and development of microelectronic technology. Entering the twenty-first century, microelectronic technology and microelectronic packaging technology has been rapidly developed, but the development of microelectronic packaging materials is slow. With the progress of electronic products towards the high-integration, cabling-miniaturization, lead-free and other directions, it is directly required that microelectronic packaging materials should be high purity and high heat-resistant in the new electronic packaging.
     Based on that purpose, we developed a low-chlorine epoxy resin and improved its heat resistance by introducing a heat-resistant group to the epoxy monomer molecular main chain so as to meet the demands of new 3D packaging technology.
     At the same time, the process will be long and costly if it only relies on experiments to meet the new requirements of microelectronic packaging materials. This paper also uses a molecular simulation method to study the performance of the epoxy resin cross-linking system.
     A new process of preparing low-chlorine o-cresol novolac epoxy resin was introduced. O-cresol novolac resin was synthesized in the presence of a special mixed catalyst (oxalic acid and another co-catalyst). Then, the resultant resin was further reacted with epichlorohydrin (ECH) to prepare o-cresol novolac epoxy resin (CNE). The relationship between the properties and the reaction conditions of o-cresol novolac resin and o-cresol novolac epoxy resin were also studied. O-cresol novolac epoxy resins were synthesized with certain performances through the adjustment of the reaction conditions, which were suited for the exigent demands for ultra-high purity o-cresol novolac epoxy resin.
     Novolac resin is an important curing agent of epoxy resins. According to the mechanism of synthesizing o-cresol novolac resin, a research on the controlled synthesis of different proportion of ortho-substituted ortho-cresol novolac resins under different reaction conditions was studied. Then, the chemical structures of different ortho-substituted ortho-cresol novolac resins were investigated, and the curing kinetics study of curing ortho-cresol novolac epoxy resin was also addressed, which was proved that the autocatalysis effect was also available for curing epoxy resins.
     The most used method to develop the heat-resistance of epoxy resin is modifying epoxy resin with heat-resistant monomer. According to the mechanism of synthesizing o-cresol novolac resin, an allyl modified o-cresol novolac resin was prepared by o-cresol novolac resin and allyl chloride, which was a new curing agent with two different reactive groups. It was used for co-curing o-cresol novolac epoxy resin and BMI in order to introduce imide into epoxy molecular chain. The purpose of this research was to obtain high heat-resistant effect.
     Molecular simulation method is a useful, scientific method which is between experiment and theory researches. Based on the molecular model of multifunctional epoxy resin and its crosslinking system, a molecular simulation method was developed. The method could obtain a model closer to the actual epoxy crosslinking system. Based on the method, some performances of o-cresol novolac epoxy resin crosslinking system could be calculated, which was closer to the actual system.
引文
[1]中国电子学会生产技术学分会丛书编委会.微电子封装技术[M].合肥:中国科技大学出版社,2003.
    [2]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002.
    [3]史子瑾,潘峥.集成电路密封用高纯邻甲酚醛环氧树脂的制备[J].合成树脂与塑料.1996,13(1):19-22.
    [4]李宝芳,董耿蛟.低氯高纯度邻甲酚醛环氧树脂的合成工艺[J].热固性树脂.1998,13(1):22-25.
    [5]刘守贵,廖虹.国内邻甲酚醛环氧树脂生产与应用展望[J].热固性树脂.2001,16(4):38-42.
    [6]张在利,刘守贵,王家贵等.邻甲酚醛环氧树脂研究进展[J].化工新型材料,2003,31(9):1-4,25.
    [7]孙忠贤,李刚,吴怡盛等.LSI用环氧塑封料研制与中试[J].高分子通报,1996,(9):189-191.
    [8]Wang C S, Pham H Q, Bertram J L. Preparation of epoxy resins [P]. US:4499255, 1985-02-12.
    [9]Liao Z K, Wang C S. Concurrent addition process for preparing high purity epoxy resins [P]. US:5028686,1991-07-02.
    [10]Wang C S, Liao Z K. Method for reducing the aliphatic halide content of epoxy resins using a solvent mixture including a polar aprotic solvent [P]. US:4785061
    [11]Wang C S, Liao Z K. Synthesis of high purity o-cresol formaldehyde novolac epoxy resins [J]. Polym. Bull.,1991,25:559-565.
    [12]Wang C S, Lee M C. Synthesis, Characterization, and Properties of Multifunetional Naphthalene-Containing Epoxy Resins Cured with Cyanate Ester [J]. Journal of Applied Polymer Science,1999,73:1611-1622.
    [13]Kaji M, Endo T. Synthesis of a Novel Epoxy Resin Containing Naphthalene Moiety and Properties of Its Cured Polymer with Phenol Novolac [J]. Journal of Polymer Seienee, PartA:Polymer Chemistry,1999,37:3063-3069.
    [14]Duan Y E, Liu T M, Cheng K C, Su W F. Thermal stability of some naphthalene-and Phenyl-based epoxy resins [J]. Polymer Degradation and Stability,2004,84: 305-310.
    [15]Ho T H. Synthesis of naphthalene containing aralkyl novolac epoxy resins for electronic application [J]. Macromolecular Materials and Engineering,2000,283: 57-61.
    [16]Xu K, Chen M C, Zhang K, Hu J W. Synthesis and charaetorization of novel epoxy resin bearing naphthyl and limonene moieties, and its cured Polymer [J]. Polymer,2004,45:1133-1140.
    [17]Xu K, Chen M C, Zhang X J, Zhang K. Structoral Effeet on Thermal Cure and Property of Naphthalene-Based Epoxies:Preparation and Characterization [J]. Macromolecular Chemistry and Physies,2004,205:1559-1568.
    [18]Pan G Y, Du J, Zhang C, et al. Synthesis, characterization, and properties of novel novolac epoxy resin containing naphthalene moiety [J]. Polymer,2007,48: 3686-3693.
    [19]Lee J Y, Jang J. Synthesis and Curing of Liquid Crystalline Epoxy Resin Based on Naphthalene Mesogen [J]. Journal of Polymer Scienee, Part A:Polymer Chemistry,1999,37:419-425.
    [20]Kaji M, Nakahara K, Ogami K, Endo T. Synthesis of a Novel Epoxy Resin Containing Diphenylether Moiety and Thermal Properties of Its Cured Polymer with Phenol Novolac [J]. Journal of Polymer Seienee, Part A:Polymer Chemistry, 1999,37:3687-3693.
    [21]Lee J Y, Jang J, Hwang S S, et al. Synthesis and curing of liquid crystalline epoxy resin based on 4,4'-biphenol [J]. Polymer,1998,39:6121-6126.
    [22]蔡智奇.液晶环氧树脂的合成和固化行为研究[D].杭州:浙江大学,2007.
    [23]熊涛,王锦艳,兰建武,于艳,赛锡高.含二氮杂蔡酮结构新型环氧树脂的合成[J].石油化工,2003,32(5):426-29.
    [25]胡汉杰,何天白.高分子科学的学科前沿及学科发展.In:何天白,胡汉杰,eds.海外高分子科学的新进展[M].北京:化学工业出版社,1997.
    [26]Clancy T C, Mattice W L. Computer simulation of polyolefin interfaces [J]. Computational and Theoretical Polymer Science,1999,9:261-270.
    [27]Deng M, Tan V B C, Tay T E. Atomistic modeling:Interfacial diffusion and adhesion of polycarbonate and silanes [J]. Polymer,2004,45:6399-6407.
    [28]Aabloo A, Klintenberg M, Thomas J Q. Molecular dynamics simulation of a polymer-inorganic interface [J]. Electrostatic Acta,2000,45:1425-1429.
    [29]Prathab B, Subramanian V, Aminabhavi T M. Molecular dynamics simulations to investigate polymer-polymer and polymer-metal oxide interactions [J]. Polymer, 2007,48:409-416.
    [30]Okada O, Oka K, Kuwajima S, et al. Molecular simulation of an amorphous poly (methyl methacrylate)-poly(tetrafluoroethylene) interface [J]. Computational and Theoretical Polymer Science,2000,10:371-381.
    [31]Brown D, Clarke J H R. Molecular dynamics simulation of an amorphous polymer under tension [J]. Macromolecules,1991,24:2075-2082.
    [32]Raaska T, Niemela S, Sundholm F. Atom-based modeling of elastic constants in amorphous [J]. Macromolecules,1994,27:5751-5757.
    [33]Vasudevan V J, McGrath J E. Atomistic modeling of amorphous aromatic polybenzoxazoles [J]. Macromolecules,1996,29:637-645.
    [34]Ogura I, Yamamoto T. Molecular dynamics simulation of large deformation in an amorphous polymer [J]. Polymer,1995,36:1375-1381.
    [35]Yin Y, Zou D, Zhong J, et al. A new method for calculation of elastic propeties of anisotropic material by constant pressure molecular dynamics [J]. Computational Materials Science,2007,38:538-542.
    [36]Han J, Gee R H, Boyd R H. Glass transition temperature of polymers from molecular dynamics simulations [J]. Macromolecules,1994,27:7781-7784.
    [37]Fried J R, Li B. Atomistic simulation of the glass transition of di-substituted polysilanes [J]. Computational and Theoretical Polymer Science,2001,11: 273-281.
    [38]Fried J R, Ren P. Molecular simulation of the glass transition of polyphosphazenes [J]. Computational and Theoretical Polymer Science,1999,9: 111-116.
    [39]Pozuelo J, Baselga J. Glass transition temperature of low molecular weight poly (3-aminopropyl methyl siloxane) [J]. Polymer,2002,43:6049-6055.
    [40]Abu-Sharkh B F. Glass transition temperature of poly (vinylchloride) from molecular dynamics simulation:explicit atom model versus rigid CH2 and CHC1 groups model [J]. Computational and Theoretical Polymer Science,2001,11: 29-34.
    [41]Mattice W L, Helfer C A, Rane S S, et al. Some mechanism for subtle influences of stereochemical composition on the physical properties of macromolecules [J]. Journal of Polymer science Part B:Polymer Physics,2005,43:1271-1282.
    [42]Misra S, Mattice W L. Structure and energy of thin films of poly-(1, 4-cis-butadiene):A new atomistic approach [J]. Journal of Computer-Aided Materials Design,1995,2:101-112.
    [43]Yoshioka A, Tashiro K. Solvent effect on the glass transition temperature of syndiotactic polystyrene viewed from time-resolved measurements of infrared spectra at the various temperatures and its simulation by molecular dynamics calculation [J]. Macromolecules,2004,37:467-472.
    [44]Bharadwaj R K, Berry R J, Farmer B L. Molecular dynamics simulation study of norbornene-POSS polymers [J]. Polymer,2000,41:7209-7221.
    [45]Lyulin A V, Balabaev N K, Michels M A J. Molecular-weight and cooling-rate dependence of simulated Tg for amorphous polystyrene [J]. Macromolecules,2003, 36:8574-8575.
    [46]Liang T, Yang X, Zhang X. Prediction of polyimide materials with high glass-transition temperatures [J]. Journal of Polymer science Part B:Polymer Physics,2001,39:2243-2251.
    [47]Tsige M, Taylor P L. Simulation study of the glass transition temperature in poly (methyl methacrylate) [J]. Physical Review E,2002:65-73.
    [48]Soldera A. Energetic analysis of the two PMMA chain tacticities and PMA through molecular dynamics simulations [J]. Polymer,2002,43:4269-4275.
    [49]Simith G D, Bedrov D. Relationship between the a-and b-relaxation processes in amorphous:Insight from atomistic molecular dynamics simulations of 1, 4-polybutadiene melts and blends [J]. Journal of Polymer science Part B:Polymer Physics,2007,45:627-643.
    [50]Suter U W, Eichinger B E. Estimating elastic constants by averaging over simulated structure [J]. Computational Materials Science,2002,38:538-542.
    [51]Alentiev A, Economou I G, Finkelshtein E, et al. Transport properties of silmethylene homo-polymers and random copolymers:experimental measurements and molecular simulation [J]. Polymer,2004,45:6933-6944.
    [52]Nath S K, Banaszak B J, Pablo J J d. Simulation of ternary mixtures of ethylene, 1-hexene,and polyethylene [J]. Macromolecules,2001,34:7841-7848.
    [53]Tiemblo P, Saiz E, Guzman J, et al. Comparison of simulated and experimental transport of gases in commerical poly(vinyl chloride) [J]. Macromolecules,2002, 35:4167-4174.
    [54]Vegt N D. Temperature dependence of gas transport in polymer melts:molecular dynamics simulations of CO2 in polyethylene [J]. Macromolecules,2000,33: 3153-3160.
    [55]Neyertz S, Brown D. Influence of system size in molecular dynamics simulations of gas permeation in glassy polymers [J]. Macromolecules,2004,37: 10109-10122.
    [56]Wang X, Willmore F T, Raharjo R D, et al. Molecular simulations of physical aging in polymer membrane materials [J]. Journal of Physical Chemistry B,2006, 110:16685-16693.
    [57]Case F H, Honeycutt J D. Will my polymers mix? Methods for studing polymer miscibility [J]. Trends in Polymer Science,1994,2:258-266.
    [58]Fan C F, Olafson B D, Blanco M, et al. Application of molecular simulation to derive phase diagrams of binary mixtures [J]. Macromolecules,1992,25: 3667-3676.
    [59]Choi K, Jo W H. Effects of copolymer sequence distribution on the miscibility of poly (ethylene oxide)/poly (styrene-co-acrylic acid) blends:A molecular simulation approach [J]. Macromolecules,1997,30:1509-1514.
    [60]Fan Z J, Williams M C, Choi P. A molecular dynamics study of the effects of branching characteristics of LDPE on its miscibility with HDPE [J]. Polymer,2002, 43:1497-1502.
    [61]Soldera A, Bedrov D. Local dynamics of stereoregular PMMAs using molecular simulations [J]. Macromolecules,2002,43:722-726.
    [62]Patnaik S S, Pachter R A. A molecular simulations study of the miscibility in binary mixtures of polymers and low molecular weight molecules [J]. Polymer, 2002,43:415-424.
    [63]Lee S, Lee J G, Lee H, et al. Molecualr dynamics simulations simulations of the enthalpy of mixing of poly (vinyl chloride) and aliphatic polyester blends [J]. Polymer,1999,40,5137-5145.
    [64]Moolman F S, Meunier M, Labuschagne P W, et al. Compatibility of polyvinyl alcohol and poly(methyl vinyl ether-co-maleic acid) blends estimated by molecular dynamics [J]. Polymer,2005,46:6192-6200.
    [65]Natarajan U, Tanaka G, Mattice W L. Atomistic simulations of the surfaces of thin films of random copolymers [J]. Journal of Compter-Aided Materials Design, 1997,4:193-205.
    [66]Mansfield K F, Theodorou D N. Atomistic simulation of a glassy polymer surface [J]. Macromolecules,1990,23:4430-4445.
    [67]Hapke T, Linke A, Patzold G, et al. Model of amorphous polymer surfaces in computer simulation [J]. Surfacial Science,1997,373:109-124.
    [68]Ijantkar A S, Natarajan U. Atomistic simulations of the stucture and thermodynamic properties of poly(1,2-vinyl-butadiene) surfaces [J]. Polymer,2004, 45:1373-1391.
    [69]Prathab B, Aminabhavi T M, Parthasarathi R, et al. Molecular modeling and atomistic simulation strategies to determine surface properties of perfluorinated homopolymers and their random copolymers [J]. Polymer,2006,47:6914-6924.
    [70]Prathab B, Subramanian V, Aminabhavi T M. Computation of surface energy and surface segregation phenomena of perfluorinated copolymers and blends-A molecular modeling approach [J]. Polymer,2007,48:417-424.
    [71]Natarajan U, Misra S, Mattice W L. Atomistic simulation of polymer-polymer interface:interfacial energy and work of adhesion [J]. Computational and Theoretical Polymer Science,1998,8:323-329.
    [72]Macchione M, Jansen J C, Luca G D, et al. Experimental analyssis and simulation of the gas transport in dense Hyflon AD60X membranes:Influence of residual solvent [J]. Polymer,2007,48:2619-2635.
    [73]Fried J R, Sadat-Akavi M, Mark J E. Molecular simulation of gas permeability: poly(2,6-dimethyl-1,4-phenylene oxide) [J]. Journal of Membrane Science,1998, 149:115-126.
    [74]Fried J R, Goyal D K. Molecular simulation of gas transport in poly[1-(trimethylsilyl)-1-propyne] [J]. Journal of Polymer science Part B:Polymer Physics,1998,36:519-536.
    [75]Mijovic J, Zhang H. Molecular Dynamics Simulation Study of Motions and Interactions of Water in a Polymer Network [J]. J. Phys. Chem. B,2004,108: 2557-2563.
    [76]Domotor G, Hentschke R. Equilibrium Swelling of an Epoxy-Resin in Contact with Water-A Molecular Dynamics Simulation Study [J]. Macromolecular Theory and Simulations,2004,13:506-511.
    [77]Wu C F, Xu W J. Atomistic simulation study of absorbed water influence on structure and properties of crosslinked epoxy resin [J]. Polymer,2007,24: 5440-5448.
    [1]孙忠贤.电子化学品[M].北京:化学工艺出版社,2002.
    [2]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002.
    [3]Knop A, Pilato L A. Chemistry and Application of Phenolic Resins [M]. Berlin: Springer-Verlag,1979.
    [4]Knop A, Pilato L A. Phenolic Resins:Chemistry, Application and Performance-Future Directions [M]. New York:Springer-Verlag,2000.
    [5]Sitetyana P. An Optimization Study into the Synthesis of o-Cresol Novolacs [D]. Rand Afrikaans University,2004.
    [6]马华宪,尹维英.电子塑封料的研制与开发[J].化工科技,2000,(1):12-16.
    [7]刘守贵,廖虹.国内邻甲酚醛环氧树脂生产与应用展望[J].热固性树脂,2001,(4):38-42.
    [8]孙忠贤,李刚.LSI用环氧塑封料研制与中试[J].高分子通报,1996,(3):189-191.
    [9]孟红,于在璋,李宝芳,董耿蛟.相转移催化剂存在下邻甲酚醛环氧树脂醚化动力学[J].合成树脂及塑料,1994,(11):10-14.
    [10]李宝芳,董耿蛟.低氯高纯度邻甲酚醛环氧树脂合成工艺[J].热固性树脂,1998,(1):22-26.
    [10]Wang C S, Pham H Q, Bertram J L. Preparation of epoxy resins [P]. US: 4499255,1985.
    [11]Liao Z K, Wang C S. Concurrent addition process for preparing high purity epoxy resins [P]. US:5028686,1991.
    [12]Wang C S, Liao Z K. Method for reducing the aliphatic halide content of epoxy resins using a solvent mixture including a polar aprotic solvent [P]. US:4785061, 1988.
    [13]Kuen Y W, Chen H S, Bangduh A, et al. Process for preparing a high purity epoxy resin [P]. US:6001873,1999.
    [14]Wang C S, Liao Z K. Synthesis of high purity o-cresol formaldehyde novolac epoxy resins [J]. Polymer Bulletin,1991,25:559-565.
    [15]Technical data sheet of EPICLON n-600 series. Dainippon ink & chemicals, Japan.
    [1]Knop A, Pilato L A. Chemistry and Application of Phenolic Resins [M]. Berlin: Springer-Verlag,1979.
    [2]Knop A, Pilato L A. Phenolic Resins:Chemistry, Application and Performance-Future Directions [M]. New York:Springer-Verlag,2000.
    [3]黄发荣,焦杨声.酚醛树脂及其应用[M].北京:化学工业出版社,2002.
    [4]Potter W G. Epoxide Resins [M]. New York:Springer-Verlag,1970.
    [5]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002.
    [6]Culbertson H M. Process for preparing high ortho novolac resins [P]. United State Patent:4097463,1978.
    [7]Aubertson W. Process for preparing high ortho novolac resins [P]. United State Patent:4113700,1978.
    [8]Linden G L. Storage stable 100% solids high ortho phenol formaldehyde hot melt adhesives [P]. United State Patent:5182357,1993.
    [9]Nanjo M, Watanabe T, Koshibe S, Azuma K. Process for producing quick-curing phenolic resin [P]. United State Patent:4299947,1981.
    [10]Casnati G, Pochini A, Sartori G, Ungaro R. Template Catalysis via Non-Transition Metal Complexes-New Highly Selective Synthesis on Phenol Systems [J]. Pure and Applied Chemistry,1983,55:1677-1688.
    [11]Huang J Y, Xu M Q, Ge Q, Zou Y S, et al. Controlled Synthesis of High-Ortho-Substitution Phenol-Formaldehyde Resins [J]. J Appl Polym Sci,2005, 97:652-658.
    [12]DeBruyn P J, Lim A S L, Looney M G, Solomon D H. Strategic Synthesis of Model Novolac Resins [J]. Tetrahedron Letters,1994,35:4627-4630.
    [13]Sitetyana P. An Optimization Study into the Synthesis of o-Cresol Novolacs [D]. Rand Afrikaans University,2004.
    [14]周大鹏.快速成型与耐热、高强度酚醛注塑料的制备技术及性能研究[D].杭州:浙江大学,2005.
    [15]Krystyna R, Teresa B, Maciej S. Some properties and chemical structure of phenolic resins and their derivatives [J]. J Appl Polym Sci,1983,28:531-542.
    [16]Scariah K J, Usha K M, Narayanaswamy K, et al. Evaluation of isomeric composition of resol-type phenol formaldehyde matrix resins for silica-phenolic composites and its effect on cure characteristics of the resin [J]. J Appl Polym Sci, 2003,90:2517-2524.
    [17]Grenier-Loustalot M F, Larroque S, Grenier P. Phenolic resins:5. Solid-state physicochemical study of resoles with variable F/P ratios [J]. Polymer,1996,37: 639-650.
    [18]Szymenski H A, Bluemle A. Study of phenolic resins by PMR spectroscopy with arsenic trichloride as a solvent [J]. J Polym Sci Part A:Polym Sci,1965,3:63-74.
    [19]Ottenbourgs B T, Adriaensens P J, Reekmans B J, et al. Development and Optimization of Fast Quantitative Carbon-13 NMR Characterization Methods of Novolac Resins [J]. Ind Eng Chem Res,1995,34:1364-1370.
    [20]Bogan L E Jr. Determination of cresol novolak copolymer composition and branch density using carbon-13 NMR spectroscopy [J]. Macromolecules,1991,24: 4807-4812.
    [21]Sojka S A, Wolfe R A, Dietz E A, et al. Carbon-13 Nuclear Magnetic Resonance of Phenolic Resins. Positional Isomers of Bis(hydroxybenzyl)phenols and Bis(hydroxyphenyl)methanes [J]. Macromolecules,1979,12:767-770.
    [22]Carothers J A, Gipstein E, Fleming W W, et al. Determination of the structural configuration of cresol-novolak resins by 13C NMR spectroscopy [J]. J Appl Polym Sci,1982,27:3449-3454.
    [23]Yamagishi T A, Nomoto M, Ito S, Ishida S, Nakamoto Y. Preparation and characterization of high molecular weight novolak resins [J]. Polymer Bulletin, 1994,32:501-507.
    [24]Mandal H, Hay A S. M.A.L.D.I.-T.O.F. mass spectrometry characterization of 4-alkyl substituted phenol-formaldehyde novalac type resins [J]. Polymer,1997,38: 6267-6271.
    [25]陈少锋,谢建良,邓龙江.DSC法研究聚异氰酸酯/环氧树脂胶粘剂的固化反应动力学及固化工艺[J].四川化工,2006,2(9):1-4
    [26]徐刚.用DSC法研究环氧树脂/环氧封端酚酞聚芳醚腈的固化特性[J].中国胶粘剂,1999,9(3):24-26
    [27]何劲,陈连喜,刘全文,等.间甲苯胺改性双氰胺固化环氧树脂的DSC研究[J].武汉理工大学学报,2006,128(6):28-30.
    [28]景晨丽,陈立新,王知伟,等.新型环保工艺合成的线型酚醛树脂固化环氧树脂的研究[J].材料科学与工程学报,2007,25(3):367-371.
    [29]Kissinger E. Reaction kinetic in differential thermal analysis [J]. Analytical Chemistry,1957,29:1702-1707.
    [30]Crane L W, Dynes P J, Kaelble D H. Analysis of curing kinetics in polymer composites [J]. Journal of Polymer Science,1973,11:533-540.
    [31]汪晓东,张强.覆铜箔层压板专用低溴环氧树脂/双氰胺体系的固化反应动力学[J].高分子材料科学与工程,2003,19(3):79-82.
    [1]丁孟贤,何天白编.聚酰亚胺新型材料[M].北京:科学出版社,1998.
    [2]陈祥宝编.高性能树脂基体[M].北京:化学工业出版社,1999.
    [3]吴培熙,张留城编.聚合物共混改性[M].北京:中国轻工业出版社,1996.
    [4]Melissaris A P, Mikroyannidis J A. Thermally stable Polymers based on bismaleimides containing amide, imide, and ester linkages [J]. Journal of Polymer Science Part A:Polymer Chemistry,1989,27:245-262.
    [5]Seola D A. Synthesis and characterization of bisimide amines and bisimide amine-cured epoxy resins [J]. Polymer Composites,1983,4:154-161.
    [6]Han J L, Chern Y C, Li K Y, Hsieh K H. Interpenetrating polymer networks of bismaleimide and polyurethane-crosslinked epoxy [J]. Journal of Applied Polymer Science,1998,70:529-536.
    [7]Han J L, Li K Y. Interpenetrating Polymer networks of bismaleimide and Polyether Polyurethane-crosslinked epoxy [J]. Journal of Applied Polymer Science, 1998,70:2635-2645.
    [8]高菊,金戈,任杰伟.端羧基丁腈橡胶环氧基酯增韧剂的合成与应用[J].热固性树脂,2005,20:21-23.
    [9]朱雅红,马晓燕,颜红侠等.双酚A氰酸脂/端羧基丁腈橡胶共混物的制备工艺和性能[J].航空学报,2005,26:759-763.
    [10]何景学,马文石.环氧树脂增韧改性研究现状[J].粘接,2006,27:35-38.
    [11]潘广勤.含活性官能团液体橡胶增韧环氧树脂及其应用[J].热固性树脂,2005,17:15-19.
    [12]Lee J Y, Shim M J, Kim S W. Effect of modified rubber compound on the cure kinetics of DGEBA/MDA system by Kissinger and isoconversional methods [J]. Thermochimiea Acta,2001,371:45-51.
    [13]Lee J Y, Choi H K, Shim M J, Kim S W. Effect of CTBN on the cure characteristics of DGEBA/MDA/PGE-AcAm system [J]. Materials Chemistry and Physics,1998,52:272-276.
    [14]吴良义.耐热耐湿环氧树脂及其组成物的国外发展趋势[J].热固性树脂,2000,15:21-23.
    [15]石宁.高性能环氧树脂的开发和应用趋势[J].热固性树脂,2000,4:30-33.
    [16]张春玲.含联苯结构高性能环氧树脂的合成与性能研究[D].吉林:吉林大学,2006.
    [17]Shibahare S, Yamamoto T, Yamaji T, Motoyoshiya J, Hayashi S. Thermal Reaction of N-phenylmaleiimide and Mono-or Di-functional Allyphenols [J]. Polymer Journal,1998,30:404-409.
    [1]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002.
    [2]张敏,唐来安,王小军,等.用正交实验设计法优化由间苯二酚合成BPO单体盐酸盐的工艺条件[J].高分子材料科学与工程,2006,22:60-63。
    [3]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [4]Binder K. Monte Carlo and molecular dynamics simulations in polymer science [M]. New York:Oxford University,1994.
    [5]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2003.
    [6]吴超富.交联环氧树脂的分子模拟研究[D].长沙:湖南大学,2007.
    [7]Hamerton I, Heald C R, Howlin B J. Molecular modelling of the physical and mechanical properties of two polycyanurate network polymers [J]. Journal of Material Chemistry,1996,6:311-314.
    [8]Barton J M, Deazle A S, Hamerton I, Howlin B J, et al. The application of molecular simulation to the rational design of new materials:2. Prediction of the physico-mechanical properties of linear epoxy systems [J]. Polymer,1997,38: 4305-4310.
    [9]Doherty D C, Holmes B N, Leung P, et al. Polymerization molecular dynamics simulations:I. Cross-linked atomistic models for poly(methacrylate) networks [J]. Computational and Theoretical Polymer Science,1998,8:169-178.
    [10]Wu C F, Xu W J. Atomistic molecular modelling of crosslinked epoxy resin [J]. Polymer,2006,47:6004-6009.
    [11]Wu C F, Xu W J. Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin [J]. Polymer,2007,48:5802-5812.
    [12]Rappe A K, Goddard W A. Charge equilibration for molecular dynamics simulations [J]. Journal of Physical Chemistry,1991,95:3358-3363.
    [13]胡玉明,吴良义.固化剂[M].北京:化学工业出版社,2004.
    [14]Theodorou D N, Suter U W. Detailed molecular structure of a vinyl polymer glass [J]. Macromolecules,1985,18:1467-1478.
    [15]Theodorou D N, Suter U W. Atomistic modeling of mechanical properties of polymerix glasses [J]. Macromolecules,1986,19:139-154.
    [16]Ogura I, Yamamoto T. Molecular dynamics simulation of large deformation in an amorphous polymer [J]. Polymer,1995,36:1375-1381.
    [17]Raaska T, Niemela S, Sundholm F. Atom-based modeling of elastic constants in amorphous [J]. Macromolecules,1994,27:5751-5757.
    [18]Sun H, Ren P, Fried J R. An ab initio forcefield optimized for condensed-phase applications-overview with details on alkane and benzene compounds [J]. Journal of Physical Chemistry B,1998,102:7338-7364.
    [19]弗兰克等著;汪文川等译.分子模拟—从算法到应用[M].北京:化学工业出版社,2002.
    [20]Fan C F, Cagin T, Chen Z M, et al. Molecular modeling of polycarbonate.1. Force field, static structure, and mechanical properties [J]. Macromolecules,1994, 27:2383-2391.
    [21]Lyulin A V, Balabaev N K, Michels M A J. Molecular-weight and cooling-rate dependence of simulated Tg for amorphous polystyrene [J]. Macromolecules,2003, 36:8574-8575.
    [22]Montserrat S, Calventus Y, Hutchinson J M. Effect of cooling rate and frequency on the calorimetric measurement of the glass transition [J]. Polymer,2005,46: 12181-12189.
    [23]Weyer S, Huth H, Schick C. Application of an extended tool-narayanaswmy-moynihan model. Part 2. Frequency and cooling rate dependence of glass transition from temperature modulated DSC [J]. Polymer,2005,46:12240-12246.