共聚型高分子量PAN的合成及其原丝湿法纺丝成形工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维以其卓越的性能而被广泛应用于航空航天、一般工业、体育休闲等众多领域。由于种种原因,我国高性能碳纤维的研究水平一直与国外有较大差距。而原丝质量不过关,一直是制约我国碳纤维高性能化的最重要因素,因此,对高性能碳纤维原丝的研究是实现高性能碳纤维国产化的关键。目前,国际上通过高分子量PAN来制造高强高模超细碳纤维是一个研究热点,但也遇到了一系列困难,包括如何制备高性能的PAN原丝。针对这一问题,本论文从PAN的三元共聚角度出发,采用混合溶剂法沉淀聚合得到了粘均分子量为56万的高分子量PAN,并综合利用SEM、XRD、强力仪、密度仪等分析测试手段,系统研究了聚合物共聚序列结构,沉淀聚合PAN的分子量控制和粒径分布,以及高分子量PAN湿法纺丝凝固成形及原丝的生产工艺,对生产高强高模超细碳纤维提供了详实可靠的实验数据基础和理论基础。本文的主要研究结论如下:
     由PAN共聚物的序列均匀性角度出发,利用第四统计力学理论,提出了两单体共聚过程中其竞聚率的乘积即R1··R2可称为共聚物序列结构的均匀性标度。通过理论计算与推导,由前人的实验数据证明了共聚过程中溶解度参数与共聚序列标度的关系,即1n(r1r2)=k/(δ1-δ2)2,并从理论角度分析了控制高分子量PAN分子链序列均匀度的聚合方法。
     在PAN共聚合过程中,通过改变混合溶剂配比,可以有效地调节PAN的分子量。并且,当混合溶剂为DMSO与H20时,不良溶剂H20(链转移常数为0)含量越高,PAN分子量和转化率越高,这是由于随着H20含量的增加,溶剂极性增加,PAN分子量呈增大的趋势;当混合溶剂为DMSO和C2H5OH或C4H90H时,随着DMSO含量的减少,溶剂极性减少,PAN分子量呈减小的趋势。
     在混合溶剂中对AN、MA及IA三元共聚合,由于良溶剂DMSO的加入,单体在反应介质中的溶解度提高,并沉淀析出的聚合物颗粒的溶胀性也有所提高,聚合物颗粒结构比较疏松。随着DMSO组分的增加,聚合物的颗粒特性发生变化,由结实的不规则珠状变成松软的块状。
     应用第四统计力学理论,得到聚合物颗粒粒径分布的均匀度标度r1*r2,r1*r2数值越小,PAN聚合物粒径的分布越均匀;r1*r2数值大,PAN聚合物粒径分布越不均匀。由粒径分布参数的计算可知,当DMSO与溶剂的配比为5:5时,得到的PAN聚合物颗粒粒径分布均匀。通过理论计算与推导,求得PAN聚合物粒径分布均匀度的对数值与混合溶剂的内聚能密度有着良好的线性关系,即1nr1*r2=A+BeCED;在进一步理论研究中发现表面张力与内聚能密度的关系,即1nM/f=A0+KoeCDE,并通过实验数据确定,混合溶剂体系对此关系式的影响可分成两大类区域:Ⅰ区是烷类;Ⅱ区是含羟基的醇类。
     高分子量PAN溶液属于切力变稀的非牛顿流体,随着浓度的提高,PAN溶液的粘度降低。高分子量PAN纺丝溶液体系以弹性为主,粘性表现不明显。在固含量为10%时,纺丝液的物理稳定性较好,适合制备优质PAN原丝。
     在一定浓度的凝固浴中,水和DMSO的扩散系数都随着凝固浴浓度的提高而增大,都随着凝固浴温度的提高而增大;凝固浴的浓度越高,其凝固扩散活化能越小,扩散进行越快。凝固浴的凝固能力对初生纤维的横截面及表面形貌都有很大的影响,要制得具有良好形貌的初生纤维,凝固浴的凝固能力要适中。凝固能力太大或太小会引起初生纤维表面或横截面的缺陷。
     凝固浴浓度,凝固浴温度及凝固浴表观负牵伸倍数对初生纤维圆形横截面形状的影响大小程度为:凝固浴浓度>凝固浴表观负牵伸倍数>凝固浴温度。随着凝固浴浓度从50%升高至85%,PAN初生纤维的圆形横截面异形度先减小后增大,在80%浓度下,PAN初生纤维的圆形横截面异形度达到极小值,即纤维具有最接近圆形的横截面。随着凝固浴表观负牵伸倍数从40%降低至0牵伸倍数,PAN初生纤维的圆形横截面异形度减小,即在凝固浴表观负牵伸为0的条件下,PAN初生纤维具有更接近圆形的横截面。随着凝固浴温度从70℃降低至30℃,PAN初生纤维的圆形横截面异形度先增大,后减小,而后又增大,在凝固浴温度为40℃下,PAN初生纤维具有更近于圆形的横截面形貌。在凝固浴浓度为80%、凝固浴表观负牵伸倍数为O、凝固浴温度为40℃下得到的高分子量PAN湿法纺丝初生纤维,不仅具有圆形横截面,还具有良好的表面形貌及物理机械性能。
     高分子量PAN的沸水牵伸倍数在4.5倍下可以极大的提高纤维的力学性能,但过牵易使纤维结构破坏,降低力学性能;对高分子量PAN纤维,在干燥致密化温度为130℃,干燥致密化时间为60s的条件下,有利制备具有良好的物理机械性能的原丝;在蒸汽牵伸倍数为2.5时,高分子量PAN原丝的物理机械性能最优。运用第四统计力学理论,定量分析和说明了牵伸和干燥致密化工艺以及在致密化过程中施加一定张力的重要作用。经过优化后的纺丝工艺,最终制备了强度达到0.96GPa (8.2cN/dtex)的高分子量PAN原丝。
For its excellent performance, carbon fiber is widely used in aerospace, general industrial, leisure and sports fields. However, our national levels of high performance carbon fiber still have a great gap compared with international advanced level for various reasons. The inferior quality of PAN precursor is the most important factor which has been restricting our development of high performance carbon fiber. Currently, using high molecular weight PAN to produce ultra high strength and high modulus carbon fiber in foreign is a research hotspot which also encountered a number of difficulties, including how to prepare high performance PAN precursor from high molecular weight PAN. To solve this problem, the study on high performance carbon fiber precursor is critical to solve this embarrassing situation. Start from the synthesis of copolymerization of AN, MA and IA, this paper polymerized PAN with 560,000 viscosity-average molecular weight by precipitation polymerization in mixture solvent, and studied sequence structure of polymer, control of PAN molecular weight and distribution of PAN particle size in precipitation polymerization, coagulation process of high molecular weight PAN in wet spinning and the spinning technology of PAN precursor through comprehensive utilization of SEM, XRD, strength tester, density gradient tube and other analytical testing methods which provides fine detailed and reliable experimental data and theoretical basis for the production of high strength and high modulus carbon fiber. The main conclusions are as follows:
     From uniformity of the sequence structure of PAN, scale R1·R2 which is related to reactivity ratio of two monomers in copolymerization is introduced to be representative of uniformity degree of copolymer sequence structure. Through theoretical calculation and deduction, the relationship between solubility parameters and the scale of copolymer sequence is confirmed, which can be expressed as:In (r1r2)= k'(δ1-δ2)2. In addition, the control of sequence structure of PAN copolymer is also studied from the theoretical point of view.
     During the copolymerization process of PAN, the molecular weight of PAN can be effectively adjusted by changing the ratio of mixed solvent. When the mixed solvent is DMSO and H2O, the molecular weight and conversion rate increase with the increase of H2O content, which is due to the increase of polarity of the solvent. When the mixed solvent consists with DMSO and C2H5OH or C4H9OH, the molecular weight of resulting PAN decreases with the increase of the content of C2H5OH or C4H9OH.
     During the copolymerization of AN, MA and IA in mixed solvent, the solubility of monomer increases with the addition of DMSO, which makes better swelling of PAN particles and a loose structure of PAN. With the increase of DMSO components, PAN particles changes from irregular beads into a solid block.
     The uniformity scale r1*r2of the distribution of PAN particle size is introduced according to the Fourth Statistical Mechanics theory. A smaller r1*r2 value is corresponding to a more uniform distribution of PAN particle size and a larger r1*r2 value is corresponding to a more non-uniform distribution of PAN particle size. According to the calculation, in a mixed solvent with the content of DMSO or other solvent in equal portions, the distribution of resulting PAN particles size is more uniform. Through theoretical calculation and deduction, good linear relationship between logarithmic value of uniformity scale of the distribution of PAN particles size and the cohesive energy density of mixed solvent can be confirmed, which can be expressed as In r1*r2=A+BeCED. In addition, the relationship between surface tension and cohesive energy density is also determined, which is lnf/M=A0+K0eCDE.
     High molecular weight PAN solution exhibits a shear-thinning phenomenon which shows that it is a Non-Newtonian Fluids. With the increase of PAN concentration, viscosity of PAN solution decreases. Elasticity of high molecular weight PAN spinning solution is more obvious than its viscosity. In the solid content of 10%, spinning solution shows good physical stability which is suitable for preparing high-quality PAN precursor.
     In a certain concentration of coagulation bath, the diffusion coefficient of H2O and DMSO are increased with the increase of coagulation bath concentration, increased with the increase of coagulation bath temperature; the higher coagulation bath concentration is corresponding to a smaller coagulation diffusion activation energy which results in faster diffusion. Coagulation ability of coagulation bath has a significant impact on cross section and surface morphology of nascent fiber. To obtain a nascent fiber with good morphology, coagulation ability should be moderate. Too large or too small is easier to cause defects in cross section and surface morphology of nascent fiber
     The order of the influence of coagulation bath concentration, coagulation temperature and coagulation negative draw ratio on the cross section of nascent fiber is:coagulation bath concentration> coagulation negative draw ratio> coagulation temperature. As the concentration of coagulation bath increased from 50% to 85%, De (degree of deviation from circular cross section) of nascent fiber decreases first and then increases, in 80% of concentration, De achieves the minimum value, which means the cross section of nascent fiber is closest to circular. With the apparent negative draw ratio decreases from -40% to 0, De of nascent fiber reduced, which means under 0 negative draw ratio, the cross section shape of nascent fiber is closest to a circular. As the coagulation bath temperature decreased from 70℃to 30℃, De increases first, then decreases, and then increases. At 40℃, PAN fiber has a cross-section morphology most closer to circular. PAN nascent fiber obtained in a coagulation bath concentration of 80%, the apparent negative draw ratio is 0 and the coagulation bath temperature is 40℃, not only has circular cross-section, but also has a good surface morphology and mechanical properties.
     To high molecular weight PAN, a draw ratio of 4.5 times can greatly improve the mechanical properties of fiber in drawing process of boiling water. But too large draw ratio will damage the fiber structure which results in reduction of mechanical properties of fiber. The condition that the temperature of dry densification at 130℃and drying time is 60s, is conducive to good mechanical properties of fiber. A draw ratio of 2.5 times in the steam stretch is favor to produce PAN precursor with optimal physical and mechanical properties. And the importance of drawing and drying densification process and exert tension in drying densification are also analyzed quantitatively according to the Fourth Statistical Mechanics theory. After optimization of the spinning process, the strength of final high molecular weight PAN precursor can reach 0.96GPa (8.2cN/dtex).
引文
[1]L. P. Kobets, I. S. Deev. Carbon fibers:Structure and mechanical properties. Composites Science and Technology,1997,57:1571-1580
    [2]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004
    [3]沈曾民.新型碳材料.北京:化学工业出版社,1991.53-54
    [4]罗益锋.新世纪初世界碳纤维透视.高科技纤维与应用,2000,25(1):1-7
    [5]张兴智.PAN基高性能碳纤维的制备及其性能的研究.安徽大学学报(自然科学版),1995,(1):74-81
    [6]胡志膨.碳纤维生产技术与市场[J].中国石油和化工经济分析,2006,17:22
    [7]张家杰.国内外碳纤维生产现状及发展趋势.化工技术经济,2005,23(4):12-16
    [8]贺福,王润娥,赵建国.聚丙烯睛基碳纤维.化工新型材料,1999,27(4):6-11.
    [9]赵稼祥.碳纤维的现状与新发展.材料工程,1997,(12):3-6
    [10]郑远.碳纤维生产技术和工业应用.兰化科技,1995,13(4):255-260
    [11]张旺玺.聚丙烯睛基碳纤维的新进展.高科技纤维与应用,2001,26(5):12-15
    [12]赵稼祥.碳纤维发展新方向—美国卓尔泰克(Zoltek)公司的碳纤维.纤维复合材料,1997,(4):59-64
    [13]赵稼祥.世界碳纤维现状与进展.玻璃钢/复合材料,2003,2:41-44Minxia Ji, Chengguo Wang, Yujun Bai, Meijie Yu and Yanxiang Wang. Structural
    [14]Evolution of Polyacrylonitrile Precursor Fibers during Preoxidation and Carbonization. Polymer Bulletin,2007,59:527-536
    [15]汪晓峰,王建平.碳纤维工业的进展及新型碳纤维制品,中西部地区发展非织造布和产业用纺织品交流、洽谈会论文集,2000
    [16]朱伟平.聚丙烯腈基碳纤维国内发展概况[J].合成纤维,2006,3:49
    [17]2011-2015年中国碳纤维行业市场调查及发展前景预测分析报告,中国市场调研
    [18]贺福.优质原丝是制取高性能碳纤维的基础.化工新型材料,1993,21(2):9-14
    [19]贺福,杨永岗.攻坚碳纤维原丝瓶颈势在必行.化工新型材料,2001,29(1):3-6
    [20]徐樑华.突破原丝瓶颈效应加速我国PAN碳纤维技术的发展.炭素科技,2001,11(3):3-5
    [21]陈光大.碳纤维用PAN原丝的生产和研究.吉化科技,1994,(1):17-21
    [22]马向军,张裕卿.提高聚丙烯睛基碳纤维原丝质量的研究进展.合成纤维,2005,34(11):28-32
    [23]Mukesh K. Jain, A. S. Abhiraman. Conversion of acrylonitrile-based precursor fibers to carbon fibers Part Ⅰ:A review of the physical and morphological aspects. Journal of Materials Science,1987,22:278-300
    [24]孙晓波,陈锡宏.我国干法腈纶的发展现状与对策分析.合成纤维,2006,8:5-8
    [25]高健,陈惠芳.聚丙烯睛原丝及其干喷湿纺.合成纤维工业,2002,25(4):35-38
    [26]Yushan Sun, Qingrui Wang, Xiaojun Li, et al. Investigation on dry spinning process of ultrahigh molecular weight polyethylene/decalin solution. Journal of Applied Polymer Science,2005,98:474-483
    [27]V. A. Bhanu, P. Rangarajan, K. Wiles. Synthesis and characterization of acrylonitrile/methyl acrylate statistical copolymers as melt processable carbon fiber precursors. Polymer,2002,43:4841-4850
    [28]宋育梅,王刚.二甲基亚砜法碳纤维用聚丙烯睛原丝的技术进展.化工科技,2001,9(3):60-63
    [29]乔福牛.二甲基亚砜一步法碳纤维用聚丙烯睛原丝生产工艺.合成纤维工业,1995,8(4):19-23
    [30]Dgawa H, Saito K. Oxidation behavior of polyacrylonitrile fibers evaluated by new stabilization index. Carbon,1995,33:783-788
    [31]Nakom W, Hiroyuki N, Kouichi M. Effect of preoxidation at low temperature on the carbonization behavior of coal. Fuel,2002,81:1477-1484
    [32]Yu MJ, Wang CG, Bai YJ, Wang YX, Xu Y. Influence of precursor properties on the thermal stablization of polyacrylonitrile fibers. Polymer Bulletin,2006,57:757-763
    [33]Tsehao K. The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization. Journal of Applied Polymer Science,1991, 43:589-600
    [34]Edie D.D. The effect of processing on the structure and properties of carbon fibers. Carbon,1998,36:345-362
    [35]Johnson JW, Marjoram JR, Rose PG Stress graphitization of polyacrylonitrile based carbon fiber. Nature,1969,221(5178):357-358
    [36]Mittal, O.P. Bahl, R.B. Mathur. Single step carbonization and graphitization of highly stabilized PAN fibers. Carbon,1997,35:1196-1197
    [37]D. C. Gupta, J. P. Agrawal. Effect of comonomers on thermal degradation of polyacrylonitrile. Journal of Applied Polymer Science,1989,38:265-270
    [38]Jin-Shy Tsai, Chung-Hua Lin. The effect of the side chain of acrylate comonomers on the orientation, pore-size, and properties of polyacrylnitrile precursor and resulting carbon fiber. Journal of Applied Polymer Science,1991,42:3039-3044
    [39]贺福,赵建国,王润娥,李庚平.碳纤维开发与碳纤维原丝质量.新型炭材料,1998,13(1):64-67
    [40]姚芳莲,王祝祁,孙经武.借助微机测算三元共聚体系的竞聚率及不同转化率下共聚物的组成.高分子学报,1996,12(6):660-666
    [41]桂祖桐,达建文,张廷山等.竞聚率及其测定技术的进展.齐鲁石油化工,1997,25(2):134-137
    [42]Paresh G Sanghvi, Alpesh C. Patel, K.S. Gopalkrishnan, Surekha Devi. Reactivity ratios and sequence distribution of styrene-acrylonitrile copolymers synthesized in microemulsion medium. European Polymer Journal,2000,36:2275-2283
    [43]A. S. Brar, Kaushik Dutta. Microstructure and compositional sequence determination of acrylonitrile/acrylic acid copolymers by NMR spectroscopy. European Polymer Journal,1998,34(11):1585-1597
    [44]贾文杰,王成国,孙春峰.丙烯腈/丙烯酸甲酯/衣康酸三元共聚物序列结构的Monte Carlo模拟.合成纤维工业,2004,27(6):11-13
    [45]张旺玺,刘杰.丙烯腈/衣康酸在DMSO/H2O中的共聚物结构模拟.合成技术及应用,2004,19(1):6-9
    [46]S. H. Bahrami, P. Bajaj, K. Sen. Thermal behavior of acrylonitrile carboxylic acid copolymers. Journal of Applied Polymer Science,2003,88:685-698
    [47]P. Bajaj, S. H. Bahrami, K. Sen, T. V. Sreekumar. Thermal and rheological behavior of acrylonitrile-carboxylic acid copolymers and their metal salt complexes. Journal of Applied Polymer Science,1999,74:567-582
    [48]P. Bajaj, T. V. Sreekumar, K. Sen. Effect of reaction medium on radical copolymerization of acrylonitrile with vinyl acids. Journal of Applied Polymer Science,2001,79:1640-1652
    [49]骆效雄,潘鼎.碳纤维用聚丙烯腈新型共聚物的制备.化工新型材料,2003,31(8):32-35
    [50]杨俊锋,陆国林,谭久青,黄晓宇,陈惠芳,潘鼎.2-甲基-2-丁烯二酸单甲酯的合成及其与丙烯腈二元共聚的表观竞聚率的测定.化学学报,2008,66(14):1753-1757
    [51]侯瑞斌,陈铁,金龙一.大环单氮杂冠醚与丙烯腈的自由基共聚反应竞聚率的测定及其共聚物的热力学性质研究.延边大学学报(自然科学版),2008,34(4):265-268
    [52]徐晶,许志献,代永强,徐樑华,金日光.高等规度聚丙烯腈的合成.北京化工大学学报,2007,34(6):608-611
    [53]Yasuhiro Nakano, Kunio Hisatani, Kenji Kamide. Polymer International,1995,36:87-89
    [54]陈娟,王成国.PAN湿法纺丝中凝固成纤过程的研究进展.材料导报,2006,20(9):26-28
    [55]D. R. Paul. Diffusion during the coagulation step of wet-spinning. Journal of Applied Polymer Science,1968,12:383-402
    [56]高健,陈慧芳.聚丙烯腈原丝及其干喷湿纺[J].合成纤维工业,2002,25(4):35-38
    [57]Lin B, Sureshkumar R, Kardos J L. Electropolymerization of pyrrole on PAN-based carbon fibers:Experimental observations and a multiscale modeling approach [J] Chemical Engineering Science,2001,56 (23):6563-6575
    [58]Qian Baojun, Pan Ding, Wu Zhenqiou. The mechanism and characteristics of dry-jet wet-spinning of acrylic fibers [J]. Advances in Polymer Technology,1986,6 (4):509-529
    [59]Sea Cheon Oh, Young Soo Wang, Yeong-Koo Yeo. Modeling and Simulation of the Coagulation Process of Poly(acrylonitrile) Wet-Spinning [J].Industrial & Engineering Chemistry Research,1996,35 (12):4796-4800
    [60]Chen Hou, Qu Rongjun, Liang Ying. Kinetics of diffusion in polyacrylonitrile fiber formation [J]. Journal of Applied Polymer Science,2005,96 (3):1529-1533
    [61]季保华,王成国,王延相等.湿纺凝固条件对PAN初生纤维形态结构的影响.合成纤维工业,2006,29(1):1-4
    [62]林风崎,徐樑华,李常清.凝固条件对PAN初生纤维微孔结构形态的影响.合成纤维工业,2006,29(1):16-19
    [63]In Chul Um, HaeYong Kweon, Kwang Gill Lee, et al. Wet spinning of silk polymer. I. Effect of coagulation conditions on the morphological feature of filament. International Journal of Biological Macromolecules,2004,34:89-105
    [64]张冠,赵炯心,曾小梅.DMSO湿法PAN纤维截面形状形成条件的研究.合成技术及应用,2005,20(4):10-14
    [65]P. Bajaj, T. V. Sreekumar, K. Sen. Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. Journal of Applied Polymer Science,2002,86:773-787
    [66]R. Huisman, H. M. Heuvel. The effect of Spinning speed and drawing temperature on structure and properties of polyethylene terephthalate) Yarns. Journal of Applied Polymer Science,1989,37:595-616
    [67]A shok Kumar Yadav, Nishkam, Kasturiya, et al. Manufacturing Process of Acrylic Fibre by Wet Spinning. Man-Made Textiles,2000,25:421-426
    [68]S. H. Bahrami, P. Bajaj, K. Sen. Effect of Coagulation Conditions on Properties of Poly(acrylonitrile-carboxylic acid) Fibers. Journal of Applied Polymer Science, 2003,89: 1825-1837
    [69]李常清,蓝雁,徐樑华.凝固条件对PAN初生纤维微结构的影响.合成纤维工业,2008,31(4):22-24
    [70]张均,李常清,孔令强,赵振文,徐樑华.凝固与拉伸条件对PAN纤维结构形态的影响.合成纤维工业,2007,30(1):11-13
    [71]沈新元.高分子材料加工原理.北京:中国纺织出版社,2000
    [72]唐春红,张旺玺,曹雄宇,刘杰,吴刚.不同牵伸倍数的PAN原丝结构性能的研究.塑料工业,2004,32(3):54-57
    [73]朱岿立,潘鼎.干——喷湿纺聚丙烯腊纤维拉伸工艺研究.合成纤维工业.2003,26(2):9-12
    [74]陈蕾,杨明远,毛萍君.纺聚丙烯腊纤维的拉伸及热定型工艺.成纤维工业,2001,4(2):4-7
    [75]汪晓峰,倪如青.高性能聚丙烯睛基原丝的制备.合成纤维.2000,29(4):23-27
    [76]Bajaj P, Sreekumar T V, Sen K. Thermal behaviour ofacrylonitrile copolymers having methacrylic and itaconicacid comonomers [J].Polymer,2001,42 (4):1707-1718
    [77]S. Chand. Review Carbon fibers for composites. Journal of Materials Science,2000,35(6):1303-1313
    [78]徐楔华,吴红枚.PAN/DMSO干湿法纺丝凝固工艺的研究.高分子材料科学与工程,2000,16(6):163-166
    [79]陈蕾,杨明远,毛萍君.纺聚丙烯腊纤维的拉伸及热定型工艺.成纤维工业,2001,4(2):4-7
    [80]A.F. Ismail, M.A.Rahman, A. Mustafa. On the fabrication and characteristics of PAN precursor fiber in the solvent-free coagulation process.2nd National Carbon Fiber Conference 2006, Malaysia
    [81]Zhang Wang Xi,Liu Jie, Wu Gang.Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon,2003,41(14):2805-2812
    [82]Tse-Hao Ko, Sing-Chang Liau, Ming-Fong Lin. Preparation of graphite fibres from a modified PAN precursor. Journal of Materials Science,1992,27(6):6071-6078
    [83]D.P. Bahl, R.B. Mathur, T.L. Dhami. Modification of polyacrylonitrile fibres to make them suitable for conversion into high performance carbon fibres. Materials Science and Engineering,1985,73(1-2):105-112
    [84]Tse-Hao Ko and Li-Chuan Huang. Preparation of high-performance carbon fibres from PAN fibres modified with cobaltous chloride. Journal of Materials Science, 1992,27(4):2429-2436
    [85]S Blazewicz. Carbon fibres from a SO2 treated PAN precursor. [J] Carbon, 1989,27(6):777-783
    [86]黄平.合成纤维工业,2001,24(5):26-30
    [87]Lyoo W S, Kim J P. Colloid and Polymer science,1998,276 (11):951-959
    [88]黄玉东.高科技纤维与应用,2001,26(1):11-151
    [89]陈自力,刘兆峰.产业用纺织品,1998,16(4):7-10
    [90]温月芳,杨永岗,冯星东,等.第五届全国新型炭材料学术研讨会论文集,太原:新型炭材料编辑部,2001,55-58
    [91]Jinshy Tsai, Chunghua Lin. Journal of Applied Polymer Science,1991,42:3045-3050
    [92]张旺玺.浅谈提高聚丙烯腈基碳纤维性能的几种关键技术.合成技术及应用,2002,17(2):19-22
    [93]葛曷一,王成国,陈娟,刘建军.湿法纺聚丙烯腈纤维的截面形貌与皮芯结构的研究.材料导报,2007,21(3):150-152
    [94]孙春峰,王成国,张旺玺.不同共聚单体与丙烯腈的共聚合及其表征.合成技术及应用,2003,18(4):9-12
    [95]张树钧.特种纤维与改性纤维[M].北京:中国石化出版社,1995.380-381
    [96]Tsai Jin Shy, Lin ChungHua. The Efect of the distribution of composition among chains on the properties of polyaerylonitrile precursor for carbon fiber[J]. Material Science,1991,26:3996-4000
    [97]金日光,模糊群子论,1985,黑龙江科技出版社
    [98]Li Huangquan, The fourth statistical theory-JRG sub-Cluster theory,93, IUPAC, proc. A-2
    [99]Jin Riguang, The essential thoughts and equation of sub-custer theory, proc. of C- J Intel con of Rheology, China,1991,25-35
    [100]Jin Riguang, Study of polymer blend with sub-custer theory, J. M. S. T.,1994(10):111
    [101]金日光,赵学兰,用群子统计理论研究高分子溶液第二维里系数,北京化工学院学报,1984,(2):1-7
    [102]金日光,金彰礼,气液平衡组成计算中群集统计方法的应用,化学工程,1981(3):25-29
    [103]应圣康,余丰年.共聚合原理.北京:化学工业出版社,1984,5:345-398
    [104]Taymond B. S., Chares E. C. Polymer Chemistry, Marcel Dekker. Inc., New York and Based,1981,10:320-341
    [105]陈希,黄象安.化学纤维实验教程.北京:纺织工业出版社,1988
    [106]高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001
    [107]潘祖任.高分子化学.北京:化学工业出版社,1997
    [108]J Brandrup; E H Immergut; Eric A Grulke. Polymer Handbook, Wiley, New York,1975, Ⅱ,341-358
    [109]贾曌,杨明远,毛萍君等.用水相沉淀聚法制备高分子量PAN.山西化纤,1998,1:1-5
    [110]李克友,张菊花,向福如.高分子合成原理及工艺学.北京:科学出版社,1999
    [111]任铃子.腈纶生产的回顾与发展建议[J].合成纤维工业,1996,19(1);1-7
    [112]张旺玺.丙烯腈与丙烯酸混台介质悬浮聚合工艺研究[J].合成纤维,2000,29(3):6-8
    [113]徐忠波,张旺玺,王成国,朱波,蔡华苏.丙烯腈与衣糠酸在混合溶剂中沉淀共聚合[J].化工科技,2002,15(2):1-4
    [114]秦一秀,姚臻,曹堃,王俊,刘福洲,李家荣,朱四九,彭浩,吴全法,何霖,张蓬安,成强,李胸有.丙烯腈连续水相沉淀聚合过程的在线研究[J].化学反应工程与工艺,2007,23(5):441-442
    [115]Pushpa B, Sreekumar TV, Kushal S. Journal of Applied Polymer Science,2001,79: 1640-1652
    [116]程斌,马育红,李艳亮等.对甲基苯乙烯阳离子聚合研究,高分子材料科学与工程,2002,18(6),78-81
    [117]韩曙鹏,徐梁华,曹维宇,姚红,白丽芳.成纤过程中PAN纤维聚集态结构的形成.新型炭材料,2006,21(1):54-57
    [118]Shunjin Peng, Huili Shao, Xuechao Hu. The effect of precursor properties on the strength of carbon fiber. International Journal of Polymeric Materials,2004,53(7):601-608
    [119]上海纺织工学院.睛纶生产工艺及其原理.上海:上海人民出版社,1976
    [120]Yu MJ, Wang CG, Bai YJ, Wang YX, Wang QF, Liu HZ. Combined effect of procession parameters on thermal stabilization of PAN fibers. Polymer bulletin,2006,57:757-763
    [121]吴雪平,张先龙,盛丽华,吕春祥,贺福,凌立成.碳纤维前驱体聚丙烯腈溶液的可纺性研究,高科技纤维与应用,2007,32(6):21-24
    [122]Paul D R. [J] Journal of Applied Polymer Science.1968,12(3):383-402
    [123]Rende A. etal.[J] Journal of Applied Polymer Science.1972,16:585-594
    [124]Ziabicki, A. Fundamentals of Fiber Formation:The Science of Fiber Spinning and Drawing; Wiley:New York,1976
    [125]Wu W, Paul D R,[J] Textile Research Journal.1978,48:230
    [126]陈娟,王成国.PAN湿法纺丝中凝固成纤过程的研究进展[J].材料导报,2006,20(9):26-28,42
    [127]Yanxiang Wang, et al. Effects of different coagulation conditions on polyacrylonitrile fibers wet spun in a system of dimethylsulphoxide and water [J]. J Appl Polym Sci,2006, 104:3723-3729
    [128]Chen Hou, Rong-jun Qu, Ying Liang,Cheng-guo Wang. Kinetics of Diffusion in Polyacrylonitrile Fiber Formation. Journal of Applied Polymer Science, Vol.96, 1529-1533 (2005)
    [129]李青山,沈新元.睛纶生产工学.北京:中国纺织出版社
    [130]Chen J, Wang CQ Dong XG, Liu HZ. Study on the coagulation mechanism of wet-spinning PAN fibers. Journal of Polymer Research,2006,13:515-519
    [131]Ruijiao Dong, Marcus Keuser, Xiaomei Zeng, Jiongxin Zhao, Youwei Zhang, Chengxun Wu, Ding Pan. Viscometric measurement of the thermodynamics of PAN terpolymer/DMSO/water system and effect of fiber-forming conditions on the morphology of PAN precursor. Journal of Polymer Science Part B:Polymer Physics,2008,46(19):1997-2011
    [132]A.F. Ismaila, M.A. Rahmana, A. Mustafaa, T. Matsuura. The effect of processing conditions on a polyacrylonitrile fiber produced using a solvent-free free coagulation process. Materials Science and Engineering:A,2008,485(1-2):251-257
    [133]林凤崎,徐梁华,李常清,姚红.凝固条件对PAN初生纤维微孔结构形态的影响.合成纤维工业,2006,29(1):16-19
    [134]张旺玺.聚丙烯腈基碳纤维[M].Shanghai:东华大学出版社,2005.38-39
    [135]W.S. Lyoo and J. P. Kim, Colloid and Polymer science,276,951 (1998)
    [136]A. K. Gupta, D. K. Paliwal and P. Bajaj, Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics,31,1(1991)
    [137]Showa, Japan Patent,6312609 (1988)
    [138]J. S. Tsai and C. H. Lin, Journal of Applied Polymer Science,42,3045 (1991)
    [139]JK.昭63-35820
    [140]Wilkinson, Kenneth. Process for the preparation of an acrylonitrile copolymer and product prepared therefrom [P]. U. S. Patent 5523366,1996-06-04
    [141]JK.昭61-167013
    [142]Xiao-Ping Hu. The molecular structure of polyacrylonitrile fibers. Journal of Applied Polymer Science,1996,62:1925-1932
    [143]Mukesh KJ, Abhiraman AS. Conversion of acrylonitrile-base precursor fibres to carbon fibres. Journal of Materials Science,1987,22:278-300
    [144]王茂章,贺福.碳纤维的制造、性质及其应用.北京:科学出版社,1984:93-95
    [145]A.K.Gupta,R.P.Singhal. Effect of copolymerization and heat treatment on the structure and X-ray diffraction of polyacrylonitrile.Journal of polymer science,1983,21(11):2243-2262
    [146]谢皮斯基A.纤维成形基本原理.华东纺织工学院化学纤维教研室译.上海:上海科学技术出版社,1983.397
    [147]Qi-feng Qin, Yongqiang Dai, Kai Yi, Li Zhang, Ryu SeungKon, Ri-guang Jin. Effects of Polymerization and Spinning Conditions on Mechanical Properties of PAN Precursor Fibers.Carbon letter,2010,11(3)
    [148]贺福.高性能碳纤维原丝与加压水蒸汽牵伸机.高科技纤维与应用,2004,29(6):13-15
    [149]王延相,季保华,刘焕章.[J].功能材料,2005,36(9):1438-1441
    [150]孙金峰,陈杰,刘伟凌,朱伟平,吴永兴.PAN原丝性能对碳纤维强度影响的探讨.高科技纤维与应用,2006,31(2):37-46
    [151]沈新元.高分子材料加工原理.北京:中国纺织出版社,2000
    [152]葛曷一,柳华实,陈娟.PAN原丝至碳纤维缺陷的形成与遗传性.合成纤维,2009,2:21-25
    [153]腈纶纤维的干燥致密化,上海纺织工学院化学纤维教研组,1976