聚丙烯腈纤维取向结构对热稳定化反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯腈(PAN)纤维的取向结构是影响纤维力学性能的关键因素。在碳纤维制备过程中,PAN原丝高分子链取向结构经历热稳定化过程,发生复杂的物理和化学变化,影响进一步碳化过程生成的石墨微晶结构,从而对终极碳纤维性能产生影响。本论文针对PAN原丝取向结构在热稳定化过程中的演变规律及取向结构对热稳定化反应程度及反应生成结构的影响进行了研究分析,揭示了取向结构影响热稳定化反应的机理及影响特点;并通过外力场牵伸改变取向结构,研究该过程对热稳定化反应及生成碳纤维结构和性能的影响,揭示了牵伸诱导取向对热稳定化特征结构及碳纤维性能的影响关系,为高性能碳纤维的结构可控性制备提供了机理依据。
     PAN纤维取向结构在热稳定化过程中的演变规律主要受到分子链侧氰基环化反应的影响。发生在非晶区的环化反应促进体系内应力增加,能够诱导晶区分子链进一步取向重排,导致晶区取向度增大;相应的,环化应力还能诱导近晶区分子链段规整重排形成晶区,导致结晶度和晶粒尺寸小幅增大。时温效应对环化反应影响显著,导致不同时间温度环化应力诱导PAN纤维聚集态结构变化存在差异:热处理180℃时,环化反应程度较低,环化应力诱导结晶和晶区取向现象不明显;200℃热处理30min后,随着环化反应程度提高,环化应力诱导结晶和晶区取向现象逐渐显现;220℃热处理初期,剧烈的环化反应使得应力诱导结晶和晶区取向现象更加明显,影响PAN纤维结晶度、晶粒尺寸和晶区取向度短时间内迅速增长,但随着热处理时间延长,晶区分子链逐渐参与环化反应,原有晶态规整结构被破坏,导致220℃热处理30min后,晶态结构参数逐渐减小;240℃热处理时,纤维非晶区和晶区分子链短时间内迅速参与环化反应,结晶度、晶粒尺寸和晶区取向度均显著降低。
     空气气氛热稳定化反应中,由于环境介质氧对环化反应有催化作用,显著缩短了环化反应诱导期,导致PAN纤维晶态结构和取向结构演变特征温度向低温方向推移。
     PAN纤维取向结构影响热稳定化反应放热行为,热稳定化反应初期,纤维取向结构对反应有抑制作用,取向度较大的纤维,初始热稳定化反应放热量相对较低;随热处理温度升高,取向分子链逐渐参与化学反应,取向结构对反应的抑制作用不断减弱;热稳定化反应中后期,取向结构越规整的纤维,热稳定化反应放热相对更加剧烈。
     PAN纤维取向结构影响热稳定化结构的形成,取向度较高的纤维,容易生成较多热稳定化类芳香片层结构,且片层面积相对较大。对热稳定化PAN纤维应力-应变曲线的研究表明,类芳香片层结构生长越完善的纤维,其断裂伸长率相对更大,由于取向度较高的纤维生成类芳香结构相对更完善,因此影响其热稳定化纤维的拉伸强度、拉伸模量和断裂伸长率相对更大。
     热稳定化同步牵伸影响PAN纤维取向结构,进而影响热稳定化反应。与原丝牵伸相比,200℃以下热稳定化牵伸能够进一步提高纤维晶区取向度:随热处理温度升高,牵伸率增大,晶区取向度不断增大;但较高温度时取向度随牵伸率变化增长逐渐缓慢。受牵伸对取向结构的影响,牵伸诱导取向度增长较大的纤维,其热稳定化纤维中环化反应程度相对更高,生成的类芳香片层结构相对更多。200℃热处理8min后追加牵伸,对晶区取向结构及热稳定化反应的影响已不明显。
     不同热稳定化牵伸制备的PAN基碳纤维石墨结构和力学性能的研究表明,热稳定化牵伸诱导取向度增长较大的纤维,由于促进了热稳定化过程生成更大类芳香片层结构,因此影响制得碳纤维的石墨化程度相对更好,石墨结构相对更均一,碳纤维的拉伸强度和拉伸模量相对更大。
The axial mechanical properties of polyacrylonitrile (PAN) basedcarbon fiber was originated from its orientation structure. During thestabilization process, which was one of the key process for the manufactureof high performance carbon fiber from the PAN precursor, complicatedphysical and chemical transition of the oriented PAN molecular chains wereoccurred and it was very important for the formation of pseudo-graphitecrystalline structure and properties of the resulted carbon fiber. In presentstudy,the effect of orientation structure of PANprecursor on the stabilizationprocess, including the structure transformation and the extent of cyclizationwas investigated. The characteristic correlation between the orientationstructure and the mechanism of stabilization process was revealed.Stretching was performed during the stabilization process and the effect ofwhich on the structure as well as properties of final carbon fiber was alsostudied. The author believes this study can contribute to the development of the research field of high performance carbon fiber.
     During the thermal stabilization process, from the viewpoint ofmicroscopic, the evolution of the orientation structure was related to thecyclization of the nitrile side group. The orientation degree of crystalline partwas increased because of the rearrangement of molecular chains under thestress, which was caused by the cyclization started from the amorphous part.At the same time, the molecular chains in the pseudo-crystalline region couldbe regularly arranged and lead to the increase of crystallinity and crystallitesize. As for the environment factors, the evolution of aggregation structurewas influenced by the time and temperature as well since the cyclizationprocess was different.When the heat treatment temperature was180oC, thecyclization degree was low so that the induced crystallization and orientationof crystalline part was not obviously.After heated at200oC for30minutes,with the increasing of the cyclization degree, the above phenomenon couldbe observed gradually.In the case of being heated at220oC,at the beginning,the crystallinity, crystallite size and orientation degree of crystalline partwere increased rapidly because of the induced crystallization andrearrangement of molecular chains. However, with the extension of heatingtime, the crystalline molecular chains started to participate the cyclizationand lead to the destruction of the whole crystalline structure, the crystallinity,crystallite size and orientation degree were decreased. When the heatingtemperature reached to240oC, the cyclization occurred in both amorphous and crystalline region rapidly, the crystalline structure factors abovedecreased obviously.
     When the stabilization process was performed in air, since thecyclization could be initialized by oxygen, the induction period of thecyclization was reduced so that the transition of aggregation structure wouldoccur at relative lower temperature.
     The effect of orientation structure of PAN precursor on the exothermalof stabilization reaction was investigated on the basis of differential scancalorimeter measurements. Initially, the cyclization was constrained and theexothermic heat flow was relatively lower if the orientation of PANfiber ishigher. With the increasing of temperature, the confinement of theorientation structure was decreased since the oriented chain participate thecyclization gradually. In the middle and last stage of stabilization, theendothermic peak was sharper for the PAN fiber with higher orientationdegree.
     The formation of cyclizated structure was also related to the orientationstructure. The measurements of13C-NMR indicate that relatively more andlarger aromatic layer structure, which was benefit to the mechanicalproperties of carbon fiber such as elongation, tensile strength, tensilemodules, was easy to obtain from the PAN precursor with higher orientation.
     As mentioned above, the cylization reaction was related to theorientation structure of PANfiber, and it was also affected by the stretching during stabilization. Comparing to the stretching during precursor processingstage, the stretching during stabilization below200oC is more useful toincrease the orientation degree of crystalline part. With the increase ofheating temperature, the orientation degree of crystalline part was increasedwith stretching ratio, while the tendency was slow down. The cyclizationdegree and aromatic layer structure was relatively larger for the PANfiberwith higher orientation degree. On the other hand, stretching after heattreatment at200oC for8min has almost no effect on the orientation structureof crystalline part.
     The pseudo-graphite structure and mechanical properties of so obtainedcarbon fiber were measured. It is easy to obtain larger and more regulararomatic layer structure by performing higher stretching during thermalstabilization while the pseudo-graphite structure is more homogeneous andgraphite degree is higher, which is very useful to improve the mechanicalproperties of final carbon fiber.
引文
[1]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010.
    [2]王茂章,贺福.碳纤维的性质、制造及其应用[M].北京:科学出版社,1984.
    [3]岳清瑞,杨勇新.复合材料在建筑、加固中的修复应用[M].北京:化学工业出版社,2006.
    [4]施凯跃.碳纤维应用的发展与创新[J].尖端材料科技协会,2007,14:7-9.
    [5]益小苏,范欣愉.大飞机复合材料技术引领纤维产业发生的思考[J].高科技纤维与应用,2009,34(4):1-8.
    [6]钱伯章,朱建芳.碳纤维发展现状及市场分析[J].合成纤维,2007,7:10-14.
    [7]何东晓,黄立刚,杨松,等.我国复合材料风机叶片的几种制造工艺发展前景[J].纤维复合材料,2007,2:12-17.
    [8]Cao W Y, Gao A J, Xu L H. Evolution of Crystallite Size La of PAN-Based Carbon FiberDuring Heat Treatment Process[J]. Aerospace Materials&Technology,2011,1:61-65.
    [9]刘福杰. PAN基碳纤维微观结构与力学性能相关性研究[D].太原:中国科学与山西煤炭化学研究所,2009.
    [10]胡胜治.高模量碳纤维的微观结构及其对力学性能的影响[J].第八届全国新型炭材料学术研讨会论文集:桂林,2007:161-164.
    [11]安德里亚·卡罗·费拉里,约翰·罗宾逊编.碳材料的拉曼光谱[M].北京:化学工业出版社,2007.
    [12]贺福.用拉曼光谱研究碳纤维的结构[J].高科技纤维与应用,2005,30(6):20-25.
    [13]任铃子.丙烯腈聚合及原液制备[M].北京:纺织工业出版社,2002.
    [14]H. F.马克, S. M.阿特拉斯, E.契尼亚主编[M].化学纤维结构及纺丝原理.北京化工大学合成纤维教研室、高分子物理教研室译.张中岳校.北京:化学工业出版社,1980.
    [15]陈娟,王成国. PAN湿法纺丝中凝固成纤过程的研究进展[J].材料导报,2006,20(9):26-28.
    [16]Keshav V, Datye. Spinning of pan-fiber: part Ⅲ: wet spinning[J]. Synthetic Fibers,1996,22(4):11-16.
    [17]Wang Q, Wang Y X, Zhu B, et al. The effect of coagulation and strech on the structure andproperties of PANprecursor by wet spinning[J].合成纤维SFC,2005,5:24-28.
    [18]Muller D J, Fitzer E, Fiedler A K. The formation of imperfect ladder polymers by cyclization ofpolyacrylonitrile as a first step in carbon fiber fabrication preceding of the internationalconfenence organized by the plastic instituted[P]. London:1971, No.2:10-17.
    [19]Gupta A, Harrisox L H. New aspect of the oxidation stabilization of PAN-based carbonfibers[J]. Carbon,1996,34(11):1427-1431.
    [20] Bang Y H, Lee S, Cho H H. Effect of methyl acrylate composition on the microstructurechanged of high molecular weight polyacrylonitrile for heat treatment[J]. Journal of AppliedPolymer Science,1998,68:2205-2213.
    [21]Hearle J W S.高性能纤维[M].北京:中国纺织出版社,2004.
    [22] Bromley J. Internation conference on carbon fibers, their compositions and application[N].London Paper, No.1,1971.
    [23]金允正. PAN基预氧丝在碳化过程中若干性能和细微结构变化的研究[D].太原:中国科学院山西煤炭化学研究所,1989.
    [24] Bromley J. Gas evolution processes during the formation of carbon fibers inteconfor on carbonfibers, thei composiles and application[J]. London: The Plastics Institute,1971,1:1-9.
    [25]周国英,贺福.碳化工艺条件对PAN基碳纤维性能的影响[A].中国金属学会碳素材料专业委员会第十五次学术交流会论文集[C],北京:中国金属学会,2000:100-102.
    [26]李丽娅.聚丙烯腈(PAN)基预氧丝的碳化与石墨化[D].湖南:中南工业大学,2000.
    [27] Murano M, Yamadera R. The stereoregularity of PAN and its dependence on polymerizationtemperature[J]. Polymer Letter,1967,5:333-338.
    [28] Olive G H, Olive S. The cyrstallinity in chain structure. Advances in Polymer Science,1983,51(1):1-5.
    [29] Henrici O G, Olive S. Molecular interactions and macroscopies properties of polyacrylonitrileand model substances. Advances in Polymer Science,1979,32:123-152.
    [30] Hu X P. The molecular structure of PAN fibers[J]. Journal of Applied Polymer Science,1996,62:1925-1932.
    [31] Liu X D, Ruland W. X-ray studies on the structure of polyacrylonitrile fibers[J].Macromolecules,1993,26:3030-3038.
    [32] Colvin B G, Storr P. The crystal structure of polyacrylonitrile[J]. European Polymer Journal,1974,10:337-340.
    [33] Bashir Z. Thermorversible gelation and plasticization of polyacrylonitrile[J]. Polymer,1992,33(20):4304-4313.
    [34] Minagawa M, TakasuT, Shinozaki S, et al.13C NMR and GPC-low-angle laser light scatteringmeasurements on polyacrylonitrile prepared by urea clathrate polymerization in the solid statefor the optimization of tacticity[J]. Polymer,1995,12:2343-2346.
    [35] Hobson R J, WindleA H. Crystalline structure of atactic polyacrylonitrlie[J]. Macromolecules,1993,26:6903-6907.
    [36] Grobelny J, Sokol M, Turska E. A study of conformation, configuration and phase structure ofpolyacrylonitrile and their mutual dependence by means of WAXS and1H BL-nmr[J].Polymer,1984,25:1415-1418.
    [37]贾文杰,王成国,孙春峰.丙烯腈/丙烯酸甲酯/衣康酸三元共聚物序列结构的Monte Carlo模拟[J].合成纤维工业,2004,27(6):11-13.
    [38]唐春红,张旺玺,曹维宇,等.不同牵伸倍数的PAN原丝结构性能的研究[J].塑料工业,2004,23(3):54-57.
    [39]韩曙鹏,徐樑华,曹维宇,等. PAN致密化过程对纤维晶态结构的影响.合成纤维工业,2004,27(6):17-19.
    [40]王延相,王成国,蔡华苏,等.拉伸对聚丙烯腈原丝结构和性能的影响.合成纤维工业,2002,31(5):6-8.
    [41] Perret R, Ruland W. The microstructure of PAN-base carbon fibers[J]. Journal of AppliedCrystalline,1970,3:525-532.
    [42] Chand S. Review carbon fibers for composites[J]. Journal of materials science,2000,35:1303-1313.
    [43] Bohn C R, Schaefgen J R, Statton W O. Latterally ordered polymers: polyacrylonitrile and poly(vinyl trifluoroacetate)[J]. Journal of Polymer Science,1961,55:531-549.
    [44] Lindenmeyer P H, Hosemann R. Application of the theory of paracrystals to the crystalstructure analysis of PAN[J].Journal of Applied Physics,1963,34(1):42-45.
    [45] Warner S B, Uhlmann D R. Oxidative stabilization of acrylic fibers: part3morphology ofpolyacrylonitrile[J]. Journal of materals science,1979,14:1893-1900.
    [46] Gupta A K, Singhal R P. Effect of copolymerization and heat treatment on the structure andX-ray diffraction of polyacrylonitrile[J]. Journal of Polymer Science: Polymer Physics Edition,1983,21:2243-2262.
    [47] Imai Y, Minami S, Yoshihara T, et al. Preparation and characterization of amorphouspolyacrylonitrile[J]. Journal of Polymer Science Part B: Polymer Letters,1970,8:281-288.
    [48] Bashir Z, Tipping A R, Church S P. Orientation studied in polyacrylonitrile films uniaxiallydrawn in the solid state[J]. Polymer,1994,33:9-17.
    [49] Bashir Z, Atureliya S K, Church S P. Production of oriented polyacrylonitrile films byflow-induced chain extension and crystallization fromsolution[J]. Journal of Materials Science,1993,28:2721-2732.
    [50] Mignagawa M, Taira T, Yabuta Y, et al. An anomalous tacticity-crystallinity relationship: AWAXDstudy of stereoregular isotactic (83-25%) poly(acrylonitrile) powder prepared by ureaclathrate polymerization[J]. Macromolecules,2011,34(11):3679-3683.
    [51] Bai Y J, WangC G, Lun N, et al. HRTEM microstructures of PANptrcursor fibers[J]. Carbon,2006,44(9):1773-1778.
    [52]王延相,王成国,朱波,等.网状和皮芯结构对生产高性能碳纤维组织演变的影响[J].材料科学与工程学报,2005,23(5):325-340.
    [53]王延相,王成国,朱波,等.聚丙烯腈纤维片层组织结构演变历程的研究[J].合成纤维工业,2005,34(6):10-13.
    [54] Dobretsov S L, Lomonosova V P, Stelmakh S Y F. The orientation behaviour of high-molecularpolyacrylonitrile[J]. Polymer Science,1972,14(5):1278-1285.
    [55]徐樑华,张巍,童元建,等. PAN原丝工艺过程结晶行为的研究[J].新型碳材料,1997,12(3):31-33.
    [56] Mukesh K J, Abhiraman A S. Conversion of acrylonitrile-base precursor fibers o carbonfibers[J]. Journal of Materials Science,1987,22:278-300.
    [57]刘岳新,徐樑华,张均,等. PAN分子取向程度与纤维结构性能的关系[J].合成纤维工业,2005,28(1):5-8.
    [58]张玉梅. PAN纤维强度影响因素的探讨[J].广西化纤通讯,2011,10(2):46-49.
    [59]张引枝. PAN高性能碳纤维原丝发展概况[J].合成纤维工业,1993,16(2):53-56.
    [60] Grassie N, Guchan R M. Pyrolysis of polyacrylonitrile and related polymers-Ⅵ. Acrylonitrilecopolymers containing carboxylic acid and amide structures[J]. European Polymer Journal,1972,8(2):257-269.
    [61] Grassie N, Guchan R M. Pyrolysis of polyacrylonitrile and related polymers-Ⅱ: The effect ofsample preparation on the thermal behaviour of polyacrylonitrile[J]. European PolymerJournal,1971,7(8):1091-1104.
    [62] Schurz J. Discoloration effect in acrylonitrile polymers[J]. Journal of Polymer Science,1958,28(117):438-439.
    [63] Grassie N, Hay J N, Neill I C. Thermal coloration and insolubilization in polyacrylonitrile[J].Journal of Polymer Science,1962,56(163):189-202.
    [64] Fochler H S, Mooney J R, Ball L E, et al. Infrared and NMR spectroscopic studied of thethermal degradation of polyacrylonitrile[J]. Spectrochim Acta,1985,41(2):271-278.
    [65] Coleman M M, Petcavich R. Forier transform infrared studies on the thermal degradation ofpolyacrylonitrile[J]. Jouranl of Polymer Science: Polymer Physics Edition,1978,16(5):821-832.
    [66] Conley R T, Bieron J F. Examination of the oxidative degradation of polyacrylonitrile usinginfrared spectroscopy[J]. Journal of Applied Polymer Science,1963,7(5):1757-1773.
    [67] Standage A E, Matkowsky R D. Thermal oxidation of polyacrylonitrile[J]. European PolymerJournal,1971,7(7):775-783.
    [68] Usami T, Itoh T, Ohtani H, et al. Structural study of polyacrylonitrile fibers during oxidativethermal degradation by pyrolysis-gas chromatography, solid-state13C-NMR, and fouriertransform infrared spectroscopy[J]. Macromolecules,1990,23(9):2460-2465.
    [69] Hideto K, Kohji T. Mechanism and kinetics of stabilization reactions of polyacrylonitrile andrelated copolymers Ⅲ. Comparision among the various types of copolymers as viewed fromisothermal DSC thermograms and FT-IR spectral changes[J]. Polymer Journal,1997,29(7):557-562.
    [70] Takahagi T, Shimada I, Fukuhara M, et al. XPS studies on the chemical structure of thestabilized polyacrylonitrile fiber in the carbon fiber production process[J]. Journal of PolymerScience Part A: Polymer Chemistry,1986,24(11):3101-3107.
    [71] Kakida H, TashirdK. Mechanism and Kinetics of stabilization reaction of polyacrylonitrile andrelated copolymer Ⅳ. Effects of atmosphere on isothermal DSC thermograms and FT-IRspectral changes during stabilization reaction of acrylonitrlie/methacrylic acid copolymer[J].Polymer Journal,1998,30(6):463-469.
    [72]赵家祥.2002年世界碳纤维前景[J].高科技纤维与应用,2002,27(6):6-9.
    [73]张旺玺.聚丙烯腈基碳纤维的新进展[J].高科技纤维与应用,2001,26(5):12-15.
    [74]刘杰,李仍元. PAN共聚纤维的热氧化研究[J].高分子材料科学与工程,1993,1(4):113-118.
    [75]张利珍,吕春祥,吕永根.聚丙烯腈纤维在预氧化过程的结构和热性能转变[J].新型炭材料,2005,20(2):144-150.
    [76] Bhat G S, Peebles L H, Abhiraman A S, et al. Rapid stabilization of acrylic fibers usingammonia: Effect on structure and morphology[J]. Journal of Applied Polymer Science,1993,49(12):2207-2219.
    [77] Hu X P, Hsieh Y L. Structure of Acrylic Fibers prior to cyclization polymer[J]. Polymer,1997,38(6):1491-1493.
    [78] Mathur R B, Bahl O P, Mittal J, et al. Structure of thermally stabilized PANfibers[J]. Carbon,Letters to the Editor,1991,29(7):1059-1061.
    [79]刘杰,阳武.热氧稳定化过程中聚丙烯腈纤维序态结构的变化[J].材料研究学报,2007,21(5):487-490.
    [80] Gupta P K, Trechan J C. Thermogravimetric behaviour of polyacrylonitrile&study of thereaction mechanism for making carbon fibres from it[J]. Indian Journal of Technology,1976,14(3):133-137.
    [81]季敏霞. PAN原丝在预氧化和碳化过程中微观结构的演变[D].山东:山东大学,2008.
    [82] Watt W. Nitrogen evolution during the pyrolysis of polyacrylonitrile [J].Nature PhysicalSci-ence,1972,235:10-11.
    [83] Watt W. Pyrolysis of polyacrylontrile [J]. Nature,1969,222:265-266.
    [84] Lacombe E M. Color formation in polyacrylonitrile [J]. Journal of Polymer Science,1957,24(105):152-154.
    [85] Hay J. Thermal reactions of polyacrylonitrile [J]. Journal of Polymer Science: Part A2.Polymer Chemistry,1968,6(8):2127-2135.
    [86] Jain M K, Abhiraman A S. Conversion of acrylonitrile-based precursor fibers to carbon fibers:Part1. A review of the physical and morphological aspects [J]. Journal of Materials Science,1987,22(1):278-300.
    [87] Watt W, Johnson W. The pyolysis of polyacrylonitrile fiber [J]. Polymer Preprints,1968,9:1245-1254.
    [88] Watt W, Johnson W. Mechanism of oxidization of polyacrylonitrile fibers [J]. Nature,1975,257:210-212.
    [89] Matthew W, Ignacio M G, Jose V A, at al. The effect of graphitization temperature on thestructure of helical-ribbon carbon nanofibers [J]. Carbon,2009,47:2211-2218.
    [90] Endo M. Structure of mesophase pitch-based carbon fiber [J]. Journal of Materials Science,1988,23(2):598-605.
    [91] Ko T.The influence of pyrolysis on physical properties and microstrucuture of modified PANfiber during carbonization [J]. Journal of Applied Polymer Science,1991,43(3):589-600.
    [92] Liu Jie, Li Jia, WangLei. Effect of preoxidation temperature on core/shell structure during thepreoxidation procession of PAN fibers [J]. Journal of Beijing University of ChemicalTechnology(Natural Science Edition),2006,33(1):41-45.
    [93] Ko T, Day T, Lin M.The effect of precarbonization on mechanical properties of finalpolyacrylonitrile-based carbon fibers [J]. Journal of Materials Science Letter,1993,12(3):343-345.
    [94] Li L Y, Huang Q Z, Zhang H B. Microstructure and Properties of Polyacrylonitrile CarbonFiber [J]. Journal of central south university of technology (Natural Science),2005,36(2):193-187.
    [95] Bajaj P, Paliwal D K, Gupta A K. Acrylonitrile-acide copolymers[J]. Journal of AppliedPolymer Science,1993,49:823-833.
    [96] Mathakiya B, Vangani V, Rakshit A K. Terpolymerization of acrylamide, acrylic acid andacrylonitrile: synthesis and properties[J]. Journal of Applied Polymer Science,1998,69:217-228.
    [97] Gupta D C. Acrylic fibers-polymerization[J]. Synthetic Fibers,1984,4(14):14-20.
    [98]张旺玺,姜庆利,刘建军,等.丙烯腈与衣康酸的共聚合[J].山东工业大学学报,1995,28(5):401-406.
    [99] Bajaj P, Sengupta A K, Jain P C. Studied on acrylonitrile-hydroxylkyl-methacrylate copolymerfibers[J]. TextileResearch Journal,1980,4:218-223.
    [100] Chang S. Thermal analysis of acrylonitrile copolymers containing methylacrylate[J]. Journal ofApplied Polymer Science,1994,54(3):405-407.
    [101] Gapg K K. Polyacrylonitrile and copolymers[J]. Synthetic Fibers,1985,2:29-35.
    [102] Kim H S, Shioya M, Takako A. Kinetic studies on hot-stretching of polyacrylonitrile-basedcarbon fibers by using internal resistance heating. Part Ⅱ. Changes in structure andmechanical properties[J]. Journal of Materials Science,1999,34(14):3307-3314.
    [103] Gupta A K, Singhal R P. Effect of copolymerization and heat treatment on the structure andx-ray diffraction of polyacrylonitrile[J]. Journal of Polymer Science, Polymer Physics Edition,1983,21(11):2243-2262.
    [104] Ko T H, Lin C H, Ting H Y. Structural changes and molecular motion of polyacrylonitrilefibers during pyrolysis[J]. Journal of Applied Polymer Science,1989,37(2):553-566.
    [105] Sarvaranta L. Shrinkage of short PP and PANfibers under hot-stage microscope[J]. Journal ofApplied Polymer Science,1995,56(9):1085-1091.
    [106] Kalashnik A T, Serkov A T. Mechanisms of transformation of acrylic fibers duringthermooxidative stabilization[J]. Fibre Chemistry,2000,32(5):356-364.
    [107]刘杰,阳武.热稳定化过程中聚丙烯腈纤维序态结构的变化[J].材料研究学报,2007,21(5):487-490.
    [108] Warner S B, Peebles J L H, Uhlmann D R. Oxidative stabilization of acrylic fibres Part2Stabilization dynamics[J]. Journal of Materials Science,1979,14:565-572.
    [109] Jain M K, Balasubramnian M, Desai P, et al. Conversion of acrylonitrile-based precursors tocarbon fibers Part2Precursor morphology and thermooxidative stabilization[J]. Journal ofMaterial Science,1987,22:301-312.
    [110] Yu M J, Wang C G, Bai Y J. Evolution of tension during the thermal stabilization ofpolyacrylonitrile fibers under different parameters[J]. Journal of Applied Polymer Science,2006,102:5500-5506.
    [111] Wu G P, Lu C X, Ling L C, et al. Influence of tension on the oxidative stabilization process ofpolyacrylonitrile fibers[J]. Journal of Applied Polymer Science,2005,96:1029-1034.
    [112]于美杰.聚丙烯腈纤维预氧化过程中热行为与结构演变[D].山东:山东大学,2007.
    [1]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004:236-248.
    [2]汪晓峰,倪如青,沙中瑛,等.高性能聚丙烯腈原丝的制备[J].合成纤维,2000,29(4):23-27.
    [3]李东风,王浩静,薛林兵,等. PAN基碳纤维连续石墨化过程中的取向性[J].化工进展,2006,25(9):1101-1109.
    [4] Ji M X, Wang C G, Bai Y J, et al. Structural evolution of polyacrylonitrile precursor fibersduring preoxidation and carbonization[J]. Polymer Bulletin,2007,59(4):527-536.
    [5] He D X, Wang C G, Bai Y J, et al. Microstructural evolution during thermal stabilization ofPANfibers[J]. Journal of Materials Science,2007,42(17):7402-7407.
    [6] Coleman M M, Sivy G T. Fourier transform ir studies of the degradation of polyacrylonitrilecopolymers-Ⅰ: Introduction and comparative rates of the degradation of three copolymersbelow200℃and under reduced pressure[J]. Carbon,1981,19(2):123-126.
    [7]Ko T H, Lin C H, Ting H Y. Structural changes and molecular motion of polyacrylonitrilefibers during pyrolysis[J]. Journal of Applied Polymer Science,1989,37(2):553-566.
    [8] Gupta A, Harrison I R. New aspects in the oxidative stabilization of PAN-based carbonfibers[J]. Carbon,1996,34(11):1427-1445.
    [9]吕春祥,吴刚平,吕永根,等. PAN纤维氧化工艺的研究[J].新型碳材料,2003,18(3):186-
    [10]刘杰,阳武.热稳定化过程中聚丙烯腈纤维序态结构的变化[J].材料研究学报,2007,21(5):487-490.
    [11]杨淑兰.高聚物的结构与性能[M].北京:科学出版社,1981:115-140.
    [12]龚永明,徐樑华,刘淑金,等. PAN分子环化行为对纤维结构及性能的影响[J].北京化工大学学报,2004,31(6):44-46.
    [13]刘焕章,王成国,王延相.聚丙烯腈纤维预氧化工艺条件对其结构和性能的影响[J].高科技纤维与应用,2006,31(1):31-35.
    [14] Yu M J, Wang C G, Bai Y J, et al. Combined effect of processing parameters on thermalstabilization of PANfibers[J]. Polymer Bulletin,2006,57(4):525-533.
    [15] Jing M, WangC G, Bai Y J, et al. Effect of temperatures in the rearmost stabilization zone onstructure and properties of PAN-based oxidized fibers[J] Polymer Bulletin,2007,58(3):541-551.
    [16]周贵恩.聚合物X射线衍射[M].合肥:中国科学技术大学出版社,1989:173-175.
    [17]葛兆刚,肖长发,金欣.湿法纺丝中凝固成形和拉伸对PAN纤维结构和性能的影响[J].天津工业大学学报,2008,27:1-5.
    [18] Zhang W X, Liu J, Wu G. Evolution of structure and properties of PANprecursors during theirconversion to carbon fibers[J]. Carbon,2003,41(14):2805-2812.
    [1] Grassie N, Hay N, Neill T. A research on the oxidation kinetics of PAN-based precursorfiber[J]. Polymer Science,1958,31:205.
    [2] Ouyang Q, Lu C, Wang H J, et al. Mechanism and kinetics of the stabilization reactions ofitaconic acid-modified polyacrylonitrile[J]. Polymer Degradation and Stability,2008,93(8):1415-1421.
    [3] Bajaj P, Sreekumar T V, Sen K. Thermal behavior of acrylonitrile copolymers havingmethacrylic and itaconic acid comonomers[J]. Polymers,2001,42(4):1707-1718.
    [4] Schurz J. Discoloration effect in acrylonitrile polymers[J]. Journal of Polymer Science,1958,28(117):438-439.
    [5] Standage A E, Matkowky R. A research on PAN-based precursor fiber[J]. European PolymerJournal,1971,7(7):775-783.
    [6] Conley R T, Bieron J F. Examination of the oxidation degradation of polyacrylonitrile usinginfrared spectroscopy[J]. Journal of Applied Polymer Science,1963,7(5):1757-1773.
    [7] Dalea G, Abhiraman A, A mathematical model of solid-state therm-oxidative stabilization ofacrylic fibers[J]. Carbon,1992,30(3):451-457.
    [8] Gupta A K, Paliwal D K, Bajaj P. Effect of the nature and mole fraction of acidic comonomeron the statillization of polyacrylonitrile[J]. Journal of Applied Polymer Science,1996,59(12):1819-1826.
    [9] TsaiJ S. Comparison of batch and comtinuous oxidation processes for producing carbon fiberbased on PANfiber[J]. Journal of Materials Science Letters,1997,16:361-362.
    [10] Wang P H, Yue Z R, Li R Y, et al. Aspects on interaction between muitistage stabilization ofPAN precursor and mechanical properties of carbon fibers[J]. Journal of Applied PolymerScience,1995,56:289-300.
    [11] Mukesh K J, Balasubramanian M, Desai P, ed al. Conversion of acrylonitrile-based precursorsto carbon fibers, Part2Precursor morphology and thermo-oxidative stabilization[J]. Journal ofMaterials Science,1987,22:301-312.
    [12] Chatterjee N, Basu S, Palit S K. An XRD characterization of the thermal degradation ofpolyacrylonitrile[J]. Journal of Polymer Science, Part B: Polymer Physics,1995,33(12):1705-1712.
    [13]胡学超,邵惠丽,梁英俊,等.纺丝速度对热致充分结晶PET纤维结构和性能的影响[J].合成纤维,1991,3:3-9.
    [14]于美杰.聚丙烯腈纤维预氧化过程中热行为与结构演变[D].山东:山东大学,2007.
    [15] Fitzer E. PAN-basedcarbon fibers present state and trend of the technology from the view pointof possibilities and limits to influence and to control the fiber properties by the processpatameters[J]. Carbon,1989,27(5):621-625.
    [16] Fitzer E, Mvller D J. The influence of oxygen on the chemical reactions during stabilization ofpan as carbon fiers precursor[J]. Carbon,1975,13(1):63-69.
    [17]昌志龙.低温热处理过程中环境介质对PAN纤维化学结构影响规律的研究[D].北京:北京化工大学,2011.
    [18]潘鉴元,席世平,黄少慧.高分子物理[M].广东:广东科技出版社,1981,264-269.
    [1] Yu M J, Wang C G, Bai Y J. Evolution of tension during the thermal stabilization ofpolycarylonitrile fibers under different parameters[J]. Journal of Applied Polymer Science,2006,102:5500-5506.
    [2]王平华,刘杰,李仍元.聚丙烯腈原丝连续预氧化过程中纤维张力的变化[J].合成纤维工业,1991,14(5):32-35.
    [3] Zhang W X, Liu J, Wu G. Evolution of structure and properties of PANprecursors during theirconversion to carbon fibers[J]. Carbon,2003,41(14):2805-2812.
    [4]高锋,赵江.预氧化过程中张力对聚丙烯腈预氧化纤维微缺陷结构的影响[J].高等学校化学学报,2011,32(12):2711-2713.
    [5]荣浩明,王培华,杨小平.聚丙烯腈原丝在热稳定化过程中的热机械行为-收缩应力变化的研究[J].1999,26(2):33-40.
    [6] Jain M K, Balasubramanian M, Desai P, et al. Conversion of acrylonitrile-based precursorfibers to carbon fibers Part2Precursor morphology and thermooxidative stabilization[J].Journal of Materials Science,1987,22:301-312.
    [7] Fitzer E, Frohs W, Heine M. Optimization of stabilization and carbonization treatment of PANfibers and structural characterization of the resulting carbon fibers[J]. Carbon,1986,24(4):387-395.
    [8]王瑞华,于美杰,何东新,等.聚丙烯腈原丝的热稳定化研究[J].材料热处理学报,2009,30(5):5-9.
    [9] Wu G P, Lu C X, Ling L C, et al. Influence of tension on the oxidative stabilization process ofpolyacrylonitrile fibers[J]. Journal of Applied Polymer Science,2005,96:1029-1034.
    [10]于美杰.聚丙烯腈纤维预氧化过程中热行为与结构演变[D].山东:山东大学,2007.
    [11] Reich S, Thomsen C. Raman spectroscopy of graphite[J]. Philosophical transactions of theroyal society of London series a-mathematical physical and engineering sciences,2004,362:2271-2288.
    [12]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2012:245-246.