奥氏体不锈钢24Mn18Cr3Ni0.62N疲劳性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以24Mn18Cr3Ni0.62N高氮奥氏体不锈钢为研究对象,研究了24Mn18Cr3Ni0.62N在室温下的拉伸性能,该新型奥氏体不锈钢拉伸时没有明显的屈服平台,力学性能为:σ_(0.2)=525MPa,σ_b=890MPa,δ=41%,φ=57%。24Mn18Cr3Ni0.62N高氮钢具有很高的强度和优良的塑性,拉伸时形成的滑移带粗大、密集,若金相截面和某(111)_γ面平行或接近平行,还可发现具有正三角形的形变组织,拉伸断口为韧性断口,块状夹杂物为裂纹发源地之一,净化材料可以进一步提高材料的抗拉强度。 
     同时,本文重点研究了24Mn18Cr3Ni0.62N高氮奥氏体不锈钢的拉-拉疲劳性能。分别在233K、293K和423K三个温度下、不同载荷水平下对试样进行疲劳试验,以获得高氮钢的疲劳寿命,并绘制S-N曲线。
     本文重点分析了σ_(max)为398MPa、477 MPa、588 Mpa和796 MPa时的断口形貌,初步探究其疲劳断裂机理。对疲劳试样断口附近的形变组织进行观察,可知24Mn18Cr3Ni0.62N高氮奥氏体不锈钢室温下为单一的奥氏体组织,存在很多孪晶和层错。在切应力作用下,众多位错发生滑移会产生滑移线。滑移初期只有一个方向的滑移系统占主导地位,只能看到一个方向的滑移带比较明显,其他方向的滑移带只是隐约可见。形变发展的过程中,可以看到出现新方向的滑移带。随着变形量的加大,滑移线逐渐变宽,出现“台阶”现象。
     宏观断口上可观察到疲劳源区、裂纹扩展区和瞬断区。对断口进行微观分析,在裂纹扩展区可观察到疲劳条带、河流花样、解理台阶、沿晶裂纹,瓦纳线以及二次裂纹。在瞬断区可观察到许多韧窝。同时,对疲劳裂纹萌生的机制和扩展机理作了初步探索。疲劳断裂的微观机理可能是解理断裂和微孔聚集断裂的混合型断裂。
     利用S-N曲线,研究了高氮钢的拉-拉疲劳性能。用载荷作纵坐标,对应的疲劳寿命做横坐标绘制S-N曲线,得出的S-N曲线呈阶梯下降趋势。利用S-N曲线比较三个温度下高氮钢的疲劳性能,可知当疲劳循环周次N_f<2×10~5周次时,233K温度下高氮钢24Mn18Cr3Ni0.62N的疲劳性能优于293K和423K时的。当2×10~5     结合常温拉伸试验的结果,对高氮钢的疲劳寿命进行预测。由实验测出的高氮不锈钢的拉伸应力-应变曲线,可确定材料微元屈服极限服从对数正态分布。经计算与分析,24Mn18Cr3Ni0.62N高氮不锈钢疲劳寿命估算值与实测值吻合较好,误差<20%,初步证明本文中提出的估算高周疲劳寿命的方法是可行的,对高氮不锈钢的疲劳寿命的预测起到一定指导意义。
24Mn18Cr3Ni0.62N high nitrogen austenitic stainless steels were studied in this paper. Tensile properties of a new type austenitic stainless steel 24Mn-18Cr-3Ni-0.62N at room temperature were investigated. During tensile the austenitic stainless steel has not obvious yield point elongation. Tensile property parameters are:σ_(0.2)=525MPa,σ_(b)=890MPa,δ=41 %,φ=57% .It possesses very high strength and excellent plasticity. Slip bands formed were coarse and dense, regular triangle deformation microstructure can be founded if optical microscopy section is parallel or approximately parallel to (111) _γplane.The fracture is toughness fracture. The inclusions are one of crack headstream, and purifying materials can further enhance tensile strength of materials.
     At the same time, tension-tesion fatigue properties of high nitrogen austenitic stainless steel (24Mn18Cr3Ni0.62N )under different loads were investigated in this paper. Fatigue samples under different loadings were tested at 233K、293K and 423K,then the respective fatigue life and S-N curve was obtained.
     In this paper,the fracture morphology under 398MPa,477 MPa,588 Mpa and 796MPa were emphatically analysed,and the fracture mechanism was given under preliminary analysis. Observed the deformation structure of fatigue sample, it was found that 24Mnl8Cr3Ni0.62N austenitic stainless steel has a single austenite phase,where exists many twins and stacking faults.Numerous dislocations glided by shear stress will produce slip linesAt the initial stage,there is only one sliding systerm playing the leading role and only one sliding band can be seen obviously,other directional sliding bands can not be seen distinctly.During the developing process of the deformation,a new directional sliding band can be seen.With the deformation increasing,the sliding lines are gradually broadening and the step-shaped image is made.
     Fatigue initial area, crack propagation area and fatigue fracture area can be seen from observation of macroscopic fracture morphology. And observation from microscopic fracture morphology showed that there were fatigue striations, river pattern,cleavage steps,intergranular cracks,fishbone-shaped morphology,Wallner lines and the secondary cracks in fatigue crack propagation area, and a lot of dimples in fatigue fracture area. Based on the previous results and macroscopic fracture morphology,the mechanism of fatigue failure mechanism is mixed mode fracture by cleavage fracture and aggregation microporous fracture.
     Tension-tension fatigue property of high nitrogen steel is studied by S-N curve in this paper.With the loading stress the ordinate and corresponding fatigue life the abscissa, the S-N curve had been drew,which showed the stepladder-like trend downward.If N_f < 2×10~5, fatigue property of high nitrogen steel at 233K is superior to the fatigue properties at 293K and 423K; If 2×10~5< N_f <1×10~7, fatigue property at room temperature is best.The corresponding platform of S-N curve was approximately stess : 405MPa at 233K,378MPa at 293K, and 382MPa at 423K .Under this stess,fatigue failure can still be observed in this kind of new austenitic stainless steel,which has no traditional fatigue strength and infinit life,but condition fatigue strength.
     Using the results of tensile test at room temperature, prediction of the fatigue life of high nitrogen steel was done. Randomly distributed models of micro-plastic strains were used to calculate the micro-plastic deformation produced at each cycle of the steel under high cycle fatigue test. The micro-plastic strains are determined by combining the true fracture ductility of the steel under test. For 24Mn18Cr3Ni0. 62N high nitrogen steel, the errors of the fatigue life calculated with the proposed method are less than 20% compared with that determined by test.It is proved that the estimation of the high-cycle fatigue life is feasible,which is playing a guiding role for the fatigue life prediction of high nitrogen steel.
引文
[1]程晓农,戴起勋.奥氏体不锈钢的设计和控制[M].北京:国防工业出版社,2005
    [2]崔约贤,王长利.金属断口分析[M].北京:机械工业出版社, 1998
    [3]陆世英,张廷凯,康喜范等.不锈钢[M].(第一版).北京:原子能出版社,1998
    [4]康喜范.我国低碳、超低碳奥氏体不锈钢的主要进展[J].钢铁,1994,29(10):77-82
    [5]李新亚,娄廷春.含氮不锈钢研究进展[J].铸造,2002,51(11):661
    [6]赵进刚,张宝伟,王明林.高强度奥氏体不锈钢的发展[J].材料开发与运用,2005,2(4)
    [7]HansBern. Manufacture and Application of High Nitrogen Steels[J]. Z. Metallkd, 1995, 86(3): 156-163
    [8]Zacky, V. F., Carlson, J. F. and Jackson P. Nitrogen in Iron[J]. Trans Amer Soc Met, 1956, 1 (48): 509
    [9]王安东,戴起勋,程晓农.低温奥氏体钢及其断裂机理的研究进展[J].江苏理工大学学报(自然科学版),2000,21(5):59-62
    [10]HansBerns. Manufacture and Application of High Nitrogen Steels[J]. Z. Metallkd, 1995, 86(3): 156-163
    [11]任伊宾,扬柯,梁勇.新型生物医用金属材料的研究和进展[J].材料导报,2002,16(2): 12-15
    [12]Yong Jun Oh, Jun Hwa Hong. Nitrogen effect on precipitiation and sensitization in cold-worked Type 316(N) stainless[J]. Journal of Nuclear Materials 2000, 27 (8): 242-250
    [13]Pickering F B. Physical Metallurgy and the Design of Steels [M]. London: Applied Science publishers, 1978
    [14]Brandis H, Heimann W. Stainless nitrogen effects in dual-phase stainless steel [A]. Steel 84[C], London: The Institute of Metals, 1985: 97
    [15]H. Hanninen. Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosionand wear property[J]. Mater. &Tech. 2001, 11(7): 424-430
    [16]陈秋龙,蔡亦炜,彭辉.奥氏体不锈钢氮离子注入层的研究[J].上海交通大学学报,1995,29(3):129-133
    [17]J. W. Simmons. Overview: high-nitrogen alloying of stainless steels[J]. Materials Science and Engineering, 1996, A20(7): 159-169
    [18]T. Kruml, J. Polak, S. Degallaix. Microstructure in 316LN stainless steel fatigued at low temperature[J]. Mater. Sci. Eng. A, 2000, 293: 275-280
    [19]Me B.C.et al,含氮钢的热处理特点[M].氮钢译文集,上海钢铁研究所,1992
    [20]郎宇平,康喜范.耐腐蚀性能及氮的影响[J],钢铁研究学报,2001,13(1):30-35
    [21]许崇臣,冈毅民,李民保.氮对高纯不锈钢耐晶间腐蚀性能的影响[J]. 腐蚀科学与防护技术,1997,9(3):192-196
    [22]赵少沛,王忠保.疲劳设计[M].北京:机械工业出版社,1992
    [23]高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社,2000
    [24]王栓柱.金属疲劳[M].福建科学技术出版社,1986
    [25]李金魁,姚枚,王仁智.喷丸强化的综合效应理论[J].航空学报,1992,(13)A:670-677
    [26]李金魁.金属喷丸强化理论研究[D].博士学位论文,哈尔滨工业大学,1989
    [27]Sanjeev Saxena, Ramakrishnan N. A comparison of micro, meso and macroscale FEM analysis of ductile fracture in a CT specimen (modeI)[J]. Computational Materials Science, 2007, 39: 1-7
    [28]J. B. Vogt. Fatigue properties of high nitrogen steels[J]. Materials Processing Technology. 2001. 117: 364-369
    [29]M. Botshekan. S. Degallaix. Y. Desplanques et al. Fatigue Fract[J]. Eng. Mater. 1998. 21: 651-660
    [30]T. H. Myeong, Y. Yamabayashi, M. Shimojot et al. Anew life extension method for high cycle fatigue using micro-martensitic transformation in an austenitic stainless steel[J]. Int. J. Fatigue, 1997, 19(1): 69-73
    [31]J. B. Vogt, J. Foct, J. O. Nilson. high cycle fatigue [J]. Metall. 1990, 19: 273-277
    [32]J. B. Vogt, T. Magnin, J. Foct. Fatigue Fract[J]. Eng. Mater. Struct. 1993, 16: 555-564
    [33]J. B. Vogt, B. Ait Saadi, J. Fatigue Fract[J]. Mettllkd, 1999, 90: 323-328
    [34]M. Botshekan, S. Degallaix, et al. Fatigue Fract[J]. Eng. Mater. Struct. 1998, 21: 651-660
    [35]T. Kruml, J. Polak. S. Degallaix. Microstnicture in 316LN stainless steel fatigued at low temperature[J]. Mater. Sci. Eng. A, 2000, 293: 275-280
    [36]P.M.Kelly. The matensite transformation in steels with low stacking fault energy [J]. Acta Metall. 1965, 13: 635-646
    [37]顾怡,吕海波.结构元件疲劳可靠性分析的累积损模型[J].机械强度,2000(9):228-230
    [38]戴振羽.均匀应力场中材料局部疲劳损伤研究及其在疲劳-蠕变寿命估算中的应用[D].博士学位论文.成都:西南交通大学,1990.
    [39]Sandor B I.俞炯亮译.循环应力与循环应变的基本原理[M].北京:科学出版社, 1985.53-62.
    [40]Whaley P W. A local theory of fatigue damage and fracture mechanics based on random yielding[A]. Fatigue Life: Analysisand Prediction[C]. USA: ASM, 1986, 17-22
    [41]Dai Q. X. Yuang Z. Z, Cheng X. N. et al. Numerical simulation of Nitride Age-precipitation in High Nitrogen Stainless Steels[J]. Mater. Sci. Eng. A, 2004, 385: 445-448
    [42]Q. X.Dai, A. D Wang, X. N Cheng, et al. Effect of alloying elements and temperature on strength of cryogenic austenitic steels[J]. Mater. Sci. Eng. A, 2001, 311(1/2): 205-210
    [43]张旺峰,陈瑜眉,朱金华.一种新型的拉伸应力应变曲线规律研究[J].两安交通大学学报,1999,33(10):64-67
    [44]束德林.金属力学性能[M].北京:机械工业出版社,1995:21
    [45]Yuang Z Z, Dai Q X, Cheng X N, et al. In situ SEM tensite test of high-nitrogen austenitic stainless steels[J]. Mater. Charact, 2006, 56: 79-83
    [46][印度]U.卡曼奇.曼德里, R.贝德威著;李晶,黄运华译. 高氮钢和不锈钢-生产、性能与应用[M].北京:化学工业出版社,2006
    [47]戴起勋,火树鹏.含N奥氏体钢的穿晶脆断[J].机械工程学报,1994,30(3):14-18
    [48]Dai Q X, Yang R Z, Chen K M. Deformation Behaviorof Fe-Mn-Cr-N Austenitic Steels [J ].Mater Char, 1999, 42(1): 21-25
    [49]Dai Q X, Wang A D, Cheng X N, et al. Stacking FaultEnergy of Cryogenic Austenitic Steels[J]. Chinese Physics, 2002, 11(6) : 596-600
    [50]戴起勋,火树鹏,陈康敏.高锰奥氏体钢超低温拉伸形变特性[J].钢铁研究学报,1995,7(3):40-44
    [51]钟鹏,田永江.失效分析基础知识[M].北京:机械工业出版社,1990,100-102
    [52]L.恩格,H.克林格.金属损伤图谱[M].北京:机械工业出版社,1990,79-82
    [53]王栓柱.金属疲劳[M].福州:福建科学技术出版社,1986.44-45.
    [54]G.亨利,D.豪斯特曼合著.宏观断口学及显微断口学[M].北京:机械工业出版社,1990
    [55]李顺仁.金属的延迟断裂及防护[M].哈尔滨:哈尔滨工业出版社,1992
    [56]上海交通大学金属断口分析编写小组.金属断口分析[M].北京:国防工业出版社,1979