新型电子给/受体材料的设计、合成及在聚合物太阳电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物太阳电池因其具有质轻、廉价、柔性、可大面积溶液加工等优点引起了各国科学家的广泛关注。尽管近十年来聚合物太阳电池领域取得了重大的进展,离实际的商业化应用还是有较大的距离。理想的有机活性层材料,包括电子给体聚合物和电子受体,需要满足很多的性能要求,如宽吸收、高载流子迁移率、匹配很好的能级结构、给/受体间很好的相容性以及低廉的制造成本。目前为止富勒烯衍生物是聚合物太阳电池中性能最好的电子受体材料。但是它们也有一些自身的弱点,比如制备成本很高、能级调控困难、在可见光区及近红外区的吸收十分弱。一些窄带隙的D-A聚合物显示出了比被研究最多的聚3-己基噻吩(P3HT)更优越的光伏性能,如俞陆平等开发的聚(苯并双噻吩-alt-噻吩并[3,4-b]噻吩)(PTB)体系。但是几乎所有性能优越的D-A聚合物的合成路线十分繁冗,高的制造成本不利于进一步的商业化应用。基于上述这些考虑,在本论文中,我们设计合成了一系列的新型电子给/受体聚合物材料,它们的合成路线均较简易。我们对聚合物的化学结构、热稳定性、吸收特性、HOMO/LUMO能级结构以及光伏性能进行了详细的讨论。聚合物显示出较宽的吸收光谱、较优的能级结构以及较好的光伏性能。主要工作如下:
     1.通过2,7-咔唑与芳香酰亚胺单元的交替共聚合成了一系列新型窄带隙共轭聚合物。芳香酰亚胺单元包括萘酰亚胺、苝酰亚胺以及它们的二噻吩取代物。通过循环伏安法,表明这些聚合物是典型的n型半导体,它们的LUMO能级高于常用的[6,6]-苯基-C61-丁酸甲酯(PCBM)。以这些聚合物为电子受体,与电子给体P3HT复合制备了全聚合物太阳电池器件,其中基于2,7-咔唑与二噻吩苝酰亚胺的共聚物PCDTPDI的光伏性能最佳。基于P3HT:PCDTPDI的电池器件的光电转换效率为0.68%。
     2.考虑到在聚合物的侧链上引入吸电官能团可以有效降低聚合物的HOMO能级,以合成十分简易的3-酯基噻吩作为缺电单元,分别与富电单元联噻吩、苯并双噻吩共聚得到了两个新型酯基修饰的聚噻吩衍生物,PCTDT和PCTBDT。聚合物的吸收特性类似P3HT,但是HOMO能级相比P3HT降低很多。以聚合物为电子给体,与电子受体PCBM复合制备聚合物太阳电池器件。其中基于PCTBDT:PCBM的电池器件的光电转换效率为4.03%,开路电压达0.80V。
     3.通过将合成简易的3,4-二酯基噻吩以无规共聚的形式引入到聚合物中,合成了三个新型酯基修饰的聚噻吩并[3,4-b]噻吩衍生物(P1-P3)。聚合物的光学带隙为1.23~1.42eV。随着聚合物中3,4-二酯基噻吩含量的不断增加,聚合物的HOMO能级不断下降。以聚合物为电子给体,与电子受体PCBM复合初步制备了聚合物太阳电池器件。其中P1的光伏性能最佳,器件的光电转换效率为1.02%,基于P3:PCBM的电池器件可以获得0.71V的开路电压。
     4.通过将3,4-二酯基噻吩引入到含吡咯并吡咯烷酮(DPP)基团的聚合物中,合成了两个新型酯基修饰的含DPP基团的窄带隙共轭聚合物,无规的PCTDPP和规整的PDCTDPP.聚合物具有小于1.40eV的光学带隙及较低的HOMO能级。以聚合物为电子给体,与电子受体PCBM复合制备了聚合物太阳电池器件。其中基于PCTDPP:PCBM的电池器件的光电转换效率为3.52%,基于PDCTDPP:PCBM的电池器件的开路电压高达0.84V。
     5.通过Stille偶联反应合成了基于双噻吩吡咯(DTP)和噻吩酰亚胺(TPD)的交替共聚物PDTPTPD.由于引入了吸电性的TPD单元,聚合物具有较窄的光学带隙(1.62eV)及较低的HOMO能级(-5.09eV)。以聚合物为电子给体,与电子受体PCBM复合初步制备了聚合物太阳电池器件。基于PDTPTPD:PCBM的电池器件的光电转换效率为1.9%,开路电压可达0.74V。
     6.通过在聚合物主体中同时引入强弱两种吸电基团,合成得到了一系列基于吡咯并吡咯烷酮(DPP)的-(D-A1-D-A2)n型的聚合物P4~P10。所有聚合物均具有窄的光学带隙(1.27~1.48eV)与低的HOMO能级(-5.25~-5.44eV)。以聚合物为电子给体,与电子受体PCBM复合初步制备了聚合物太阳电池器件。电池器件均具有较高的开路电压(Voc=0.72-0.91V),其中P8的光伏性能最佳,器件的光电转换效率为1.33%。此外,我们发现-(D-A1-D-A2)n这种分子设计可以有效获得高性能的双极性场效应晶体管,其中P7的电子与空穴迁移率相当平衡,均高达1.0cm2/V/s左右。
Polymer solar cells (PSCs) have recently attracted considerable attention due to their advantages of low cost, light weight, flexibility, and facile large-area solution processability. Though impressive progresses have been made in this field over the past ten years, it is still far away from the industrial commercialization. The ideal active layer materials including the electron donor polymer and the electron acceptor should meet the requirements such as broad absorption, high carrier mobility, well matched energy levels, good compatibility with each other and low production cost. To date, fullerene derivatives are the most successful electron acceptors in PSCs. However, they still have many drawbacks such as high production cost, difficulty to tune the energy levels and poor absorption in the visible-to-near-infrared ranges. The photovoltaic performances of a few low band-gap donor-acceptor (D-A) polymers have exceed that of the most used poly(3-hexythiophene)(P3HT), such as the poly(benzodithiophene-alt-thieno[3,4-b]thiophene)(PTB) series discovered by L.P. Yu. However, the synthetic routes toward almost all excellent D-A polymers are very complicated which is not beneficial for industrial commercialization. With the above considerations in mind, in this dissertation, we designed and synthesized a series of new electron donor/acceptor polymers through few reaction steps. The chemical structure, thermal stability, optical absorption, HOMO/LUMO energy levels and photovoltaic properties of obtained polymers were studied. The polymers showed broad absorption, optimized energy levels and good photovoltaic performances. The works are listed as follows:
     1. A series of low band-gap conjugated polymers based on2,7-carbazole and arylene diimides (naphthalene diimide NDI and perylene diimide PDI) or dithienyl-arylene diimides were synthesized via Suzuki cross-coupling reaction. Through cyclic voltammetry measuremnts, it was found that all copolymers were n-type materials and their LUMO energy levels were higher than that of [6,6]-phenyl-C61butyric acid methyl ester (PCBM). Photovoltaic properties of the copolymers blended with P3HT as electron donor were investigated. Among four copolymers, the copolymer PCDTPDI alternating2,7-carbazole and dithienyl-perylene diimide exhibited the best photovoltaic performance with a power conversion efficiency (PCE) of0.68%.
     2. Considering that the HOMO energy level could be efficiently reduced by introducing the electron-accepting groups into the polymer side chain, the easily synthesized thiophene-3-carboxylate (CT) was chosen as the electron deficient units to copolymerize with electron-rich units like bithiophene (DT) and benzodithiophene (BDT). Thus, two new ester group functionalized polythiophene derivatives, PCTDT and PCTBDT, were obtained. The copolymers exhibited broad and strong absorptions in the visible region, which was similar to that of P3HT. Both copolymers showed lower HOMO energy levels than P3HT. Photovoltaic properties of the copolymers blended with PCBM as electron acceptor were investigated. PSC made from PCTBDT:PCBM blend showed a PCE up to4.03%with an open circuit voltage (Voc) of0.78V, a short circuit current (Isc) of8.19mA/cm2, a fill factor (FF) of63.2%.
     3. Three random ester-functionalized polythieno[3,4-b]thiophene derivatives (P1-P3) were synthesized by incorporating different contents of thiophene-3,4-dicarboxylate moiety into the polymer backbone. The copolymers exhibited low optical band gaps of1.23-1.42eV. The HOMO energy levels of the copolymers gradually decreased with increasing the content of the thiophene-3,4-dicarboxylate moiety. Preliminary photovoltaic properties of the copolymers blended with PCBM as electron acceptor were investigated. Among the three copolymers, PI exhibited the best photovoltaic performance with a PCE of1.02%and a Voc up to0.71V was achieved in the solar cell based on P3:PCBM blend.
     4. Two new ester-functionalized diketopyrrolopyrrole (DPP) containing polymers (random PCTDPP and regular PDCTDPP) were synthesized by incorporating thiophene-3,4-dicarboxylate moiety into the polymer backbone. The copolymers exhibited low optical band gaps below1.40eV and relatively low HOMO energy levels. Photovoltaic properties of the copolymers blended with PCBM as electron acceptor were investigated. PSC made from PCTDPP:PCBM blend showed a PCE of3.52%and a Voc up to0.84V was achieved in the solar cell based on PDCTDPP:PCBM blend.
     5. A new conjugated polymer (PDTPTPD) alternating dithienopyrrole (DTP) and thienopyrroledione (TPD) units was synthesized by Stille coupling reaction. The resulting copolymer showed both a low optical band gap of1.62eV and a low HOMO energy level of-5.09eV owing to the electronegativity of TPD moiety. Preliminary photovoltaic properties of the copolymers blended with PCBM as electron acceptor were investigated. PSC made from PDTPTPD:PCBM blend shows a PCE of1.9%and a Voc up to0.74V could be achieved.
     6. A series of-(D-A1-D-A2)n-type diketopyrrolopyrrole (DPP) containing polymers P4-P10were synthesized by incorporating both strong and weak electron-accepting units into the polymer backbone. The resulting copolymers exhibited both low optical band gap of1.27-1.48eV and deep HOMO energy levels of-5.25~-5.44eV. Preliminary photovoltaic properties of the copolymers blended with PCBM as electron acceptor were investigated. All photovoltaic devices featured high Voc (0.72-0.91V) and P8exhibited the best photovoltaic performance with a PCE of1.33%. Furthermore, we found the above molecule design is an efficient strategy to obtain high performance ambipolar field-effect transistors. P7showed quite balanced and high hole and electron field-effect mobilities with both around1.0cm2/V/s.
引文
[1]史文婧,张晓玉,我国能源结构,北京大学能源安全与国家发展研究中心工作论文系列(No.20120101).
    [2]M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar Cell Efficiency Tables. Prog. Photovolt:Res. Appl.,2012,20 (5),606-614.
    [3]L.A. Koster, S.E. Shaheen, J.C. Hummelen, Pathways to a New Efficiency Regime for Organic Solar Cells. Adv. Energy Mater.,2012,2 (10),1246-1253.
    [4]D. Kearns, M. Calvin, Photovoltaic Effect and Photoconductivity in Laminated Organic Systems. J. Chem. Phys.,1958,29 (4),950-951.
    [5]B.R. Weinberger, M. Akhtar, S.C. Gau, Polyacetylene Photovoltaic Devices, Synth. Metals, 1982,4(3),187-197.
    [6]S. Glenis, G. Tourillon, F. Gamier, Influence of the Doping on (he Photovoltaic Properties of Thin Films of Poly-3-methylthiophene, Thin Solid Films,1986,139 (3),221-231.
    [7]S. Karg, W. Riess, V. Dyakonov, Electrical and Optical Characterization of Poly(phenylene-vinylene) Light Emitting Diodes. Synth. Metals,1993,54 (1-3),427-433.
    [8]C.W. Tang, Two-Layer Organic Photovoltaic Cell. Appl. Phys. Lett.,1986,48 (2),183-185.
    [9]N.S. Sariciftci, L. Smilowitz, A.J. Heeger, Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. F. Wudl, Science,1992,258,1474-1476.
    [10]J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes, Exciton Diffusion and Dissociation in a Poly(p-phenylenevinylene)/C60 Heterojunction Photovoltaic Cell. Appl. Phys. Lett.,1996,68 (22),3120-3122.
    [11]G. Yu, J. Gao, J.C. Hummelen, F. Wudl, Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of internal Donor-Acceptor Heterojunctions. A.J. Heeger, Science,1995,270 (5243),1789-1791.
    [12]S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, J.C. Hummelen,2.5% Efficient Organic Plastic Solar Cells. Appl. Phys. Lett.,2001,78 (6),841-843.
    [13]C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, P. Denk, Effect of Lif/Metal Electrodes on the Performance of Plastic Solar Cells. Appl. Phys. Lett.,2002,80 (7), 1288-1290.
    [14]G. Li, V. Shrotriya, J. Huang, Y. Yao, Y. Yang, High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends. Nat. Mater.,2005,4, 864-868.
    [15]W.L. Ma, C.Y. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the interpenetrating Network Morphology. Adv. Funct. Mater.,2005,15 (10),1617-1622.
    [16]H. Hoppe, N.S. Sariciftci, Polymer Solar Cells. Adv. Polym. Sci.,2008,214,1-86.
    [17]J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency Enhancement in Low-Bandgap Polymer Solar Cells by Processing with Alkane Dithiols. Nat. Mater.,2007,6,497-500.
    [18]J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science,2007,317 (5835),222-225.
    [19]S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc. K. Lee, A.J. Heeger, Bulk Heterojunction Solar Cells with internal Quantum Efficiency Approaching 100%. Nat. Photon.,2009,3,297-302.
    [20]Y.Y. Liang, Y. Wu, D.Q. Feng, S.T. Tsai, H.J. Son, G. Li, L.P. Yu, Development of New Semiconducting Polymers for High Performance Solar Cells. J. Am. Chem. Soc.,2009,131 (1),56-57.
    [21]Z.C. He, C.M. Zhong, S.J. Su, M. Xu, H.B. Wu, Y. Cao, Enhanced Power-Conversion Efficiency in Polymer Solar Cells Using an inverted Device Structure. Nat. Photon.,2012,6, 591-595.
    [22]G. Li, R. Zhu, Y. Yang, Polymer Solar Cells. Nat. Photon.,2012,6,153-161.
    [23]B.C. Thompson, J.M.J. FreChet, Polymer-Fullerene Composite Solar Cells. Angew. Chem. int. Ed.,2008,47 (1),58-77.
    [24]S. Gunes, H. Neugebauer, N.S. Sariciftci, Conjugated Polymer-Based Organic Solar Cells. Chem. Rev.,2007,107 (4),1324-1338.
    [25]J. Roncali, Molecular Engineering of the Band Gap of p-Conjugated Systems:Facing Technological Applications. Macromol. Rapid Commun.,2007,28 (17),1761-1775.
    [26]K. Tajima, Y. Suzuki, K. Hashimoto, Polymer Photovoltaic Devices Using Fully Regioregular Poly[(2-methoxy-5-(3,7-dimethyloctyloxy))-1,4-phenylenevinylene]. J. Phys. Chem. C,2008,112 (23),8507-8510.
    [27]G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-Fullerene Bulk-Heterojunction Solar Cells. Adv. Mater.,2009,21 (13),1323-1338.
    [28]Y. Kim, S. Cook, S. Tuladhar, S. Choulis, J. Nelson, J. Durrant, D. Bradley, M. Giles, I. Mcculloch, C. Ha, M. Ree, A Strong Regioregularity Effect in Self-Organizing Conjugated Polymer Films and High-Efficiency Polythiophene:Fullerene Solar Cells. Nat. Mater., 2006,5,197-203.
    [29]Y.J. He, H.-Y. Chen, J.H. Hou, Y.F. Li, Indene-C60 Bisadduct:A New Acceptor for High-Performance Polymer Solar Cells. J. Am. Chem. Soc,2010,132 (4),1377-1382.
    [30]Y.F. Li, Molecular Design of Photovoltaic Materials For Polymer Solar Cells:Toward Suitable Electronic Energy Levels and Broad Absorption. Acc. Chem. Res.,2012,45 (5), 723-733.
    [31]X. Guo, C.H. Cui, M.J. Zhang, L.J. Huo,Y. Huang, J.H. Hou, Y.F. Li, High Efficiency Polymer Solar Cells Based on Poly(3-Hexylthiophene)/indene-C7o Bisadduct with Solvent Additive. Energy Environ. Sci.,2012,5 (7),7943-7949.
    [32]L.H. Nguyen, H. Hoppe, T. Erb, S. Gunes, G. Gobsch, N.S. Sariciftci, Effects of Annealing on the Nanomorphology and Performance of Poly(Alkylthiophene):Fullerene Bulk-Heterojunction Solar Cells. Adv. Funct. Mater.,2007,17 (7),1071-1078.
    [33]G.L. Schulz, X.W. Chen, S. Holdcroft, High Band Gap Poly(9,9-dihexylfluorene-alt-bithiophene) Blended with [6,6]-Phenyl C61 Butyric Acid Methyl Ester for Use in Efficient Photovoltaic Devices. Appl. Phys. Lett.,2009,94 (2),023302-023304.
    [34]S.Z. Zhang, C. He, Y. Liu, X.W. Zhan, J.W. Chen, Synthesis of a Soluble Conjugated Copolymer Based on Dialkyl-Substituted Dithienothiophene and its Application in Photovoltaic Cells. Polymer,2009,50 (15),3595-3599.
    [35]M.J. Tan, W.-P. Goh, J. Li, G. Pundir, V. Chellappan, Z.-K. Chen, Charge Mobility and Recombination in a New Hole Transporting Polymer and its Photovoltaic Blend. ACS Appl. Mater. Interfaces,2010,2 (5),1414-1420.
    [36]J.H. Hou, LJ. Huo, C. He, C.H. Yang, Y.F. Li, Synthesis and Absorption Spectra of Poly(3-(phenylenevinyl)thiophene)s with Conjugated Side Chains. Macromolecules,2006, 39 (2),594-603.
    [37]J.H. Hou, C.H. Yang, C. He, Y.F. Li, Poly[3-(5-octyl-thienylene-vinyl)-thiophene]:A Side-Chain Conjugated Polymer with very Broad Absorption Band. Chem. Commun,2006, 8,871-873.
    [38]J.H. Hou, Z.A. Tan, Y. Yan, Y.J. He, C.H. Yang, Y.F. Li, Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains. J. Am. Chem. Soc.,2006,128 (14),4911-4916.
    [39]J.H. Hou, Z.A. Tan, Y.J. He, C.H. Yang, Y.F. Li, Branched Poly(thienylene vinylene)s with Absorption Spectra Covering the Whole Visible Region. Macromolecules,2006,39 (14), 4657-4662.
    [40]C.-H. Cho, H.J. Kim, H. Kang, T.J. Shin, B.J. Kim, The Effect of Side-Chain Length on Regioregular Poly[3-(4-N-alkyl)phenylthiophene]/PCBM and ICBA Polymer Solar Cells. J. Mater. Chem.,2012,22 (28),14236-14245.
    [41]T.W. Holcombe, C.H. Woo, D.F.J. Kavulak, B.C. Thompson, J.M.J. Frechet, All-Polymer Photovoltaic Devices of Poly(3-(4-N-octyl)-phenylthiophene) from Grignard Metathesis (GRIM) Polymerization. J. Am. Chem. Soc.,2009,131 (40),14160-14161.
    [42]M. Svensson, F. Zhang, S.C. Veenstra, W.J.H. Verhees, J.C. Hummelen, J.M. Kroon, O. inganas, M.R. andersson, High-Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative. Adv. Mater.,2003,15 (12),988-991.
    [43]M.-H. Chen, J. Hou, Z. Hong, G. Yang, S. Sista, L.-M. Chen, Y. Yang, Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions. Adv. Mater.,2009,21 (42),4238-4242.
    [44]E. Perzon, X.J. Wang, S. Admassie, O. Inganas, M.R. Andersson, An Alternating Low Band-Gap Polyfluorene for Optoelectronic Devices. Polymer,2006,47 (12),4261-4268.
    [45]Y. Lee, W.H. Jo, Fine-Tuning of Molecular Energy Level of Alternating Copolymers on the Basis of [1,2,5]Thiadiazolo[3,4-g]quinoxaline Derivatives for Polymer Photovoltaics. J. Phys. Chem. C,2012,116 (15),8379-8386.
    [46]E.J. Zhou, S. Yamakawa, K. Tajima, C.H. Yang, K. Hashimot, Synthesis and Photovoltaic Properties of Diketopyrrolopyrrole-Based Donor-Acceptor Copolymers. Chem. Mater., 2009,21 (17),4055-4061.
    [47]L.J. Zhang, C. He, J.W. Chen, P. Yuan, L. Huang, C. Zhang, W.Z. Cai, Z.T. Liu, Y. Cao, Bulk-Heterojunction Solar Cells with Benzotriazole-Based Copolymers as Electron Donors: Largely Improved Photovoltaic Parameters by Using PFN/A1 Bilayer Cathode. Macromolecules,2010,43(23),9771-9778.
    [48]M.-J. Baek, W. Jang, S.-H. Lee, Y.-S. Lee, Synthesis of New Alternating Conjugated Copolymers Consisting of Tetrazine/Carbazole or Tetrazine/Fluorene Derivatives Along with Thiophene Spacers for Photovoltaic Applications. Synth. Metals,2012,161 (23-24), 2785-2791.
    [49]J.W. Jo, S.S. Kim, W.H. Jo, Synthesis of Thieno[3,4-d]thiazole-Based Conjugated Polymers. Org. Electron.,2012,13 (8),1322-1328.
    [50]J.N. Pei, S.P. Wen, Y.H. Zhou, Q.F. Dong, Z.Y. Liu, J.B. Zhang, W.J. Tian, A Low Band Gap Donor-Acceptor Copolymer Containing Fluorene and Benzothiadiazole-Units: Synthesis and Photovoltaic Properties. New J. Chem.,2011,35 (2),385-393.
    [51]C. Du, C.H. Li, W.W. Li, X. Chen, Z.S. Bo, C. Veit, Z.F. Ma, U. Wuerfel, H.F. Zhu, W.P. Hu, F.L. Zhang,9-Alkylidene-9H-fluorene-Containing Polymer For High-Efficiency Polymer Solar Cells. Macromolecules,2011,44 (19),7617-7624.
    [52]J. Liu, H. Choi, J.Y. Kim, C. Bailey, M. Durstock, L.M. Dai, Highly Crystalline and Low Bandgap Donor Polymers for Efficient Polymer Solar Cells. Adv. Mater.2012,24 (4), 538-542.
    [53]N. Blouin, A. Michaud, M. Leclerc, A Low-Bandgap Poly(2,7-Carbazole) Derivative for Use in High-Performance Solar Cells. Adv. Mater.,2007,19 (17),2295-2300.
    [54]T.-Y Chu, S. Alem, P.G. Verly, S. Wakim, J.P. Lu, Y. Tao, Highly Efficient Polycarbazole-Based Organic Photovoltaic Devices. Appl. Phys. Lett.,2009,95 (6),063304-063306.
    [55]J.S. Moon, J. Jo, A.J. Heeger, Nanomorphology of PCDTBT:PC7oBM Bulk Heterojunction Solar Cells. Adv. Energy Mater.,2012,2 (3),304-308.
    [56]C. Shim, M. Kim, S.-G. Ihn, Y.S. Choi, Y. Kim, K. Cho, Controlled Nanomorphology of PCDTBT-Fullerene Blends via Polymer End-Group Functionalization for High Efficiency Organic Solar Cells. Chem. Commun.,2012,48 (57),7206-7208.
    [57]C.H. Duan, C.M. Zhong, C.C. Liu, F. Huang, Y. Cao, Highly Efficient Inverted Polymer Solar Cells Based on an Alcohol Soluble Fullerene Derivative Interfacial Material. Chem. Mater.,2012,24 (9),1682-1689.
    [58]J.H. Seo, A. Gutacker, Y.M. Sun, H.B. Wu, F. Huang, Y. Cao, U. Scherf, A.J. Heeger, G.C. Bazan, Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer. J. Am. Chem. Soc.,2011,133 (22),8416-8419.
    [59]R.P. Qin, W.W. Li, C.H. Li, C. Du, C. Veit, H.-F. Schleiermacher, M. andersson, Z.S. Bo, Z.P. Liu, O. inganas, U. Wuerfel, F.L. Zhang, A Planar Copolymer for High Efficiency Polymer Solar Cells. J. Am. Chem. Soc.,2009,131 (41),14612-14613.
    [60]B. Zhang, X.W. Hu, M.Q. Wang, H.P. Xiao, X. Gong, W. Yang, Y. Cao, Highly Efficient Polymer Solar Cells Based on Poly(carbazole-alt-thiophene-benzofurazan). New J. Chem., 2012,36 (12),2042-2047.
    [61]Y. Sun, B.Q. Lin, H. Yang, X.H. Gong, Improved Bulk-Heterojunction Polymer Solar Cell Performance through Optimization of the Linker Groupin Donor-Acceptor Conjugated Polymer. Polymer,2012,53 (7),1535-1542.
    [62]S.K. Lee, W.-H. Lee, J.M. Cho, S J. Park, J.-U. Park, W.S. Shin, J.-C. Lee, I.-N. Kang, S.-J. Moon, Synthesis and Photovoltaic Properties of Quinoxaline-Based Alternating Copolymers for High-Efficiency Bulk-Heterojunction Polymer Solar Cells. Macromolecules,2011,44 (15),5994-6001.
    [63]W. Zhao, W.Z. Cai, R.X. Xu, W. Yang, X. Gong, H.B. Wu, Y. Cao, Novel Conjugated Alternating Copolymer Based on 2,7-Carbazole and 2,1,3-Benzoselenadiazole. Polymer, 2010,51 (14),3196-3202.
    [64]J. Kim, M.H. Yun, G.-H. Kim, J.Y. Kim, C. Yang, Replacing 2,1,3-Benzothiadiazole with 2,1,3-Naphthothiadiazole in PCDTBT:Towards a Low Bandgap Polymer with Deep HOMO Energy Level. Polym. Chem.,2012,3 (12),3276-3281.
    [65]Q. Peng, X.J. Liu, Y.C. Qin, D. Zhou, J. Xu, Thieno[3,4-b]pyrazine-Based Low Bandgap Photovoltaic Copolymers:Turning the Properties by Different Aza-Heteroaromatic Donors. J. Polym. Sci. Part A:Polym. Chem.,2011,49 (20),4458-4467.
    [66]Y. Dong, W.Z. Cai, X.W. Hu, C.M. Zhong, F. Huang, Y. Cao, Synthesis of Novel Narrow-Band-Gap Copolymers Based on [1,2,5]Thiadiazolo[3,4-f]benzotriazole and their Application in Bulk-Heterojunction Photovoltaic Devices. Polymer,2012,53 (7),1465-1472.
    [67]B. Peng,A. Najari, B. Liu, P. Berrouard, D. Gendron,Y.H. He, K. Zhou, M. Leclerc, Y.P. Zou, A New Dithienylbenzotriazole-Based Poly(2,7-Carbazole) for Efficient Photovoltaics. Macromol. Chem. Phys.,2010,211 (18),2026-2033.
    [68]S.K. Lee, J.M. Cho, Y. Goo, W.S. Shin, J.-C. Lee, W.-H. Lee, I.-N. Kang, H.-K. Shim, S.-J. Moon, Synthesis and Characterization of a Thiazolo[5,4-d]thiazole-Based Copolymer for High Performance Polymer Solar Cells. Chem. Commun.,2011,47 (6),1791-1793.
    [69]Z.H. Lin, J. Bjorgaard, A.G. Yavuz, A. Iyer, M.E. Kose, Synthesis, Photophysics, and Photovoltaic Properties of Low-Band Gap Conjugated Polymers Based on Thieno[3,4-c]pyrrole-4,6-dione:A Combined Experimental and Computational Study. RSC Adv.,2012,2 (2),642-651.
    [70]P.T. Boudreault, A. Michaud, M. Leclerc, A New Poly(2,7-Dibenzosilole) Derivative in Polymer Solar Cells. Macromol. Rapid Commun.,2007,28 (22),2176-2179.
    [71]E. Wang, L. Wang, L. Lan, C. Luo, W. Zhuang, J. Peng, Y. Cao, High-Performance Polymer Heterojunction Solar Cells of a Polysilafluorene Derivative. Appl. Phys. Lett., 2008,92 (3),033307-033309.
    [72]J.S. Song, C. Du, C.H. Li, Z.S. Bo, Silole-Containing Polymers for High-Efficiency Polymer Solar Cells. J. Polym. Sci. Part A:Polym. Chem.,2011,49 (19),4267-4274.
    [73]N. Allard, R.B. Aich, D. Gendron, P.-L.T. Boudreault, C. Tessier, S. Alem, S.-C. Tse, Y. Tao, M. Leclerc, Germafluorenes:New Heterocycles for Plastic Electronics. Macromolecules,2010,43 (5),2328-2333.
    [74]Z.G. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber, C. Brabec, Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications. Macromolecules,2007,40 (6),1981-1986.
    [75]B.D. Muhlbacher, M. Scharber, M. Morana, Z.G. Zhu, D. Waller, R. Gaudiana, C. Brabec, High Photovoltaic Performance of a Low-Bandgap Polymer. Adv. Mater.,2006,18 (21), 2884-2889.
    [76]J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim, K. Lee, G.C. Bazan, Alan J. Heeger, Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. J. Am. Chem. Soc.,2008,130 (11),3619-3623.
    [77]W. Yue, Y. Zhao, S.Y. Shao, H.K. Tian, Z.Y. Xie, Y.H. Geng F.S. Wang, Novel NIR-Absorbing Conjugated Polymers for Efficient Polymer Solar Cells:Effect of Alkyl Chain Length on Device Performance. J. Mater. Chem.,2009,19 (15),2199-2206.
    [78]J.H. Hou, H.-Y. Chen, S.Q. Zhang, G. Li,Y. Yang, Synthesis, Characterization, and Photovoltaic Properties of A Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. J. Am. Chem. Soc.,2008,130 (48),16144-16145.
    [79]J.S. Kim, Z.P. Fei, D. T. James, M. Heeney J.-S. Kim, A Comparison Between Dithienosilole and Dithienogermole Donor-Acceptor type Copolymers for Organic Bulk Heterojunction Photovoltaic Devices. J. Mater. Chem.,2012,22 (19),9975-9982.
    [80]S.C. Price, A.C. Stuart, W. You, Polycyclic Aromatics with Flanking Thiophenes:Tuning Energy Level and Band Gap of Conjugated Polymers for Bulk Heterojunction Photovoltaics. Macromolecules,2010,43 (2),797-804.
    [81]J.H. Hou, M.-H. Park, S.Q. Zhang, Y. Yao, L.-M. Chen, J.-H. Li, Y. Yang, Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b']dithiophene. Macromolecules,2008,41 (16),6012-6018.
    [82]L.J. Huo, H.-Y. Chen, J.H. Hou, T.L. Chen Y. Yang, Low Band Gap Dithieno[3,2-b:2',3'-d]silole-Containing Polymers, Synthesis, Characterization and Photovoltaic Application. Chem. Commun.,2009,37,5570-5572.
    [83]A. Abbotto, M. Seri, M.S. Dangate, F.D. Angelis, N. Manfredi, E. Mosconi, M. Bolognesi, R. Ruffo, M.M. Salamone, M. Muccini, A Vinylene-Linked Benzo[1,2-b:4,5-b'] dithiophene-2,1,3-benzothiadiazole Low-Bandgap Polymer. J. Polym. Sci. Part A:Polym. Chem.,2012,50 (14),2829-2840.
    [84]S.M. Zhang, Y.L. Guo, H.J. Fan, Y. Liu, H.-Y. Chen, G.W.Yang, X.W. Zhan, Y.Q. Liu, Y.F. Li, Y. Yang, Low Bandgap p-Conjugated Copolymers Based on Fused Thiophenes and Benzothiadiazole:Synthesis and Structure-Property Relationship Study. J. Polym. Sci. Part A:Polym. Chem.,2009,47 (20),5498-5508.
    [85]S.C. Price, A.C. Stuart, W. You, Low Band Gap Polymers Based on Benzo[1,2-b:4,5-b']dithiophene:Rational Design of Polymers Leads to High Photovoltaic Performance. Macromolecules,2010,43 (10),4609-4612.
    [86]H.X. Zhou, L.Q. Yang, A.C. Stuart, S.C. Price, S.B. Liu, W. You, Development of Fluorinated Benzothiadiazole as a Structural Unit for a Polymer Solar Cell of 7□% Efficiency. Angew. Chem.,2011,123 (13),3051-3054.
    [87]K.-H. ong, S.-L. Lim, H.-S. Tan, H.-K. Wong, J. Li, Z. Ma, L. C. H. Moh, S.-H. Lim, J. C. D. Mello, Z.-K. Chen, A Versatile Low Bandgap Polymer for Air-Stable, High-Mobility Field-Effect Transistors and Efficient Polymer Solar Cells. Adv. Mater.,2011,23 (11), 1409-1413.
    [88]S. Albrecht, S. Janietz, W. Schindler, J. Frisch, J. Rurpiers, J. Kniepert, S. inal, P. Pingel, K. Fostiropoulos, N. Koch, D. Neher, Fluorinated Copolymer PCPDTBT with Enhanced Open-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells. J. Am. Chem. Soc.,2012,134 (36),14932-14944.
    [89]Y. Zhang, J.Y. Zou, C.-C. Cheuh, H.-L. Yip, A.K.-Y. Jen, Significant Improved Performance of Photovoltaic Cells Made from a Partially Fluorinated Cyclopentadithiophene/Benzothiadiazole Conjugated Polymer. Macromolecules,2012,45 (13),5427-5435.
    [90]L.J. Huo, J.H. Hou, S.Q. Zhang, H.-Y. Chen, Y. Yang, A Polybenzo[1,2-b:4,5-b'] dithiophene Derivative with Deep HOMO Level and its Application in High-Performance Polymer Solar Cells. Angew. Chem. int. Ed.,2010,49 (8),1500-1503.
    [91]X.C. Wang, S. Chen, Y.P. Sun, M.J. Zhang, Y.F. Li, X.Y. Li, H.Q. Wang, A Furan-Bridged D-p-A Copolymer with Deep HOMO Level:Synthesis and Application in Polymer Solar Cells. Polym. Chem.,2011,2 (12),2872-2877.
    [92]E.J. Zhou, J.Z. Cong, K. Hashimoto, K. Tajima, A Benzoselenadiazole-Based Low Band Gap Polymer:Synthesis and Photovoltaic Application. Macromolecules,2013,46 (3), 763-768.
    [93]S.J. Chen, Q.Y. Zhang, H.P. Zhang, J.W. Gu, M.L. Ma, T.J. Xin, Y.Y. Zhou, J. Zhou, Q. Liu, Three New Conjugated Polymers Based on Benzo[2,1-b:3,4-b']dithiophene:Synthesis, Characterization, Photoinduced Charge Transfer and Theoretical Calculation Studies. Polym. Chem.,2012,3 (8),2244-2253.
    [94]W.Y. Nie, C.M. Macneill, Y. Li, R.E. Noftle, D.L. Carroll, R.C. Coffin, A Soluble High Molecular Weight Copolymer of BeBzo[1,2-b:4,5-b']dithiophene and Benzoxadiazole for Efficient Organic Photovoltaics. Macromol. Rapid Commun.,2011,32 (15),1163-1168.
    [95]H.-C. Chen, Y.-H. Chen, C.-C. Liu, Y.-C. Chien, S.-W. Chou, P.-T. Chou, Prominent Short-Circuit Currents of Fluorinated Quinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of 8.0%. Chem. Mater.,2012,24 (24),4766-4772.
    [96]M. Wang, X.W. Hu, P. Liu, W. Li, X. Gong, F. Huang, Y. Cao, Donor-Acceptor Conjugated Polymer Based on Naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells. J. Am. Chem. Soc.,2011,133 (25),9638-9641.
    [97]T.B. Yang, M. Wang, C.H. Duan, X.W. Hu, L. Huang, J.B. Peng, F. Huang, X. Gong, Inverted Polymer Solar Cells with 8.4% Efficiency by Conjugated Polyelectrolyte. Energy Environ. Sci.,2012,5 (8),8208-8214.
    [98]A.J. MoulE, A. Tsami, T.W. Brunnagel, M. forster, N.M. Rronenberg, M. Scharber, M. Koppe, C.J. Brabec, K. Meerholz, U. Scherf, Two Novel Cyclopentadithiophene-Based Alternating Copolymers as Potential Donor Components for High Efficiency Bulk Heterojunction-Type Solar Cells. Chem. Mater.,2008,20 (12),4045-4050.
    [99]Z.J. Li, D. Zhou, L.X. Li, Y. Li, Y.J. He, J. Liu, Q. Peng, Synthesis and Characterization of Copolymers Based on Benzotriazoles and Different Atom-Bridged Dithiophenes for Efficient Solar Cells. Polym. Chem.,2013,4 (8),2496-2505.
    [100]E. Bundgaard, O. Hagemann, M. Manceau, M. J(?)rgensen, F.C. Krebs, Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells. Macromolecules,2010,43 (19), 8115-8120.
    [101]J. Min, Z.G. Zhang, S.Y. Zhang, M.J. Zhang, J. Zhang, Y.F. Li, Synthesis and Photovoltaic Properties of D-A Copolymers Based on Dithienosilole and Benzotriazole. Macromolecules,2011,44 (19),7632-7638.
    [102]Z.B. Lim, B.F. Xue, S. Bomma, H.R. Li, S.Y. Sun, Y.M. Lam, W.J. Belcher, P.C. Dastoor, A.C. Grimsdale, New Moderate Bandgap Polymers Containing Alkoxysubstituted-Benzo[c] [1,2,5]thiadiazole and Thiophene-Based Units. J. Polym. Sci. Part A:Polym. Chem.,2011,49 (20),4387-4397.
    [103]J.M. Jiang, P.A. Yang, C.-M. Yu, H.-K. Lin, K.-C. Huang, K.-H. Wei, The New Low-Band Gap Polymers Comprising C-, Si-, Or N-Bridged Dithiophene and Alkoxy-Modified 2,1,3-Benzooxadiazole Units for Bulk Heterojunction Solar Cells. J. Polym. Sci. Part A: Polym. Chem.,2012,50 (19),3960-3969.
    [104]S.C. Price, C. Stuart, L.Q. Yang, H.X. Zhou, W. You, Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer-Fullerene Solar Cells. J. Am. Chem. Soc.,2011,133 (12),4625-4631.
    [105]P. Ding, C.-C. Chu, B. Liu, B. Peng, Y.P. Zou, Y.H. He, K. Zhou, C.-S. Hsu, A High-Mobility Low-Bandgap Copolymer for Efficient Solar Cells. Macromol. Chem. Phys., 2010,211 (24),2555-2561.
    [106]Y.P. Zou, A. Najari, P. Berrouard, S. BeauprE, B.R. Aich, Y. Tao, M. Leclerc, A Thieno[3,4-c]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells. J. Am. Chem. Soc., 2010,132 (15),5330-5331.
    [107]Y. Zhang, S.K. Hau, H.-L. Yip, Y. Sun, O. Acton, A.K.-Y. Jen, Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione. Chem. Mater., 2010,22 (9),2696-2698.
    [108]G.B. Zhang, Y. Fu, Q. Zhang, Z.Y. Xie, Benzo[l,2-b:4,5-b']dithiophene-Dioxopyrrolothiophen Copolymers for High Performance Solar Cells. Chem. Commun.,2010, 46 (27),4997-4999.
    [109]C. Piliego, T.W. Holcombe, J.D. Douglas, C.H. Woo, P.M. Beaujuge, J.M.J. Frechet, Synthetic Control of Structural Order in N-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells. J. Am. Chem. Soc.,2010,132 (22),7595-7597.
    [110]C. Cabanetos, A.E. Labban, J.A. Bartelt, J.D. Douglas, W.R. Mateker, J.M.J. Frechet, M.D. Mcgehee, P.M. Beaujuge, Linear Side Chains in Benzo[1,2-b:4,5-b']dithiophene-Thieno[3,4-c]pyrrole-4,6-dione Polymers Direct Self-Assembly and Solar Cell Performance. J. Am. Chem. Soc.,2013,135 (12),4656-4659.
    [111]A. Najari, S. Beaupre, P. Berrouard, Y.P. Zou, J.-R. Pouliot, C. L.-Perusse, M. Leclerc, Synthesis and Characterization of New Thieno[3,4-c]pyrrole-4,6-dione Derivatives for Photovoltaic Applications. Adv. Funct. Mater.,2011,21 (4),718-728.
    [112]Y. Zhang, J.Y. Zou, H.-L. Yip, Y. Sun, J.A. Davies, K.-S. Chen, O. Acton, A.K.-Y. Jen, Conjugated Polymers Based on C, Si and N-Bridged Dithiophene and Thienopyrroledione Units:Synthesis, Field-Effect Transistors and Bulk Heterojunction Polymer Solar Cells. J. Mater. Chem.,2011,21 (11),3895-3902.
    [113]Z. Li, S.-W. Tsang, X.M. Du, L. Scoles, G. Robertson, Y.G. Zhang, F. Toll, Y. Tao, J.P. Lu, J.F. Ding, Alternating Copolymers of Cyclopenta[2,1-b;3,4-b']dithiophene and Thieno[3,4-c] pyrrole-4,6-dione for High-Performance Polymer Solar Cells. Adv. Funct. Mater.,2011,21 (17),3331-3336.
    [114]T.-Y. Chu, J.P. Lu, S. Beaupre, Y.G. Zhang, J.-R. Pouliot, S. Wakim, J.Y. Zhou, M. Leclerc, Z. Li, J.F. Ding, Y. Tao, Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:2',3'-d]silole Copolymer with a Power Conversion Efficiency of 7.3%. J. Am. Chem. Soc.,2011,133 (12),4250-4253.
    [115]T.-Y. Chu, J.P. Lu, S. Beaupre, Y.G. Zhang, J.-R. Pouliot, J.Y. Zhou, A. Najari, M. Leclerc, Y. Tao, Effects of the Molecular Weight and the Side-Chain Length on the Photovoltaic Performance of Dithienosilole/Thienopyrrolodione Copolymers. Adv. Funct. Mater.,2012, 22 (11),2345-2351.
    [116]D. Gendron, P.-O. Morin, P. Berrouard, N. Allard, B.R. Aich, C.N. Garon, Y. Tao, M. Leclerc, Synthesis and Photovoltaic Properties of Poly(Dithieno[3,2-b:2',3'-d]-Germole) Derivatives. Macromolecules,2011,44 (18),7188-7193.
    [117]C.M. Amb, S. Chen, K.R. Graham, J. Subbiah, C.E. Small, F. So, J.R. Reynolds, Dithienogermole as a Fused Electron Donor in Bulk Heterojunction Solar Cells. J. Am. Chem. Soc,2011,133 (26),10062-10065.
    [118]C.E. Small, S. Chen, J. Subbiah, C.M. Amb, S.-W. Tsang, T.-H. Lai, J.R. Reynolds, F. So, High-Efficiency Inverted Dithienogermole-Thienopyrrolodione-Based Polymer Solar Cells. Nat. Photon.,2012,6 (2),115-120.
    [119]M.-S. Su, C.-Y. Kuo, M.-C. Yuan, U. Jeng, C.-J. Su, K.-H. Wei, Improving Device Efficiency of Polymer/Fullerene Bulk Heterojunction Solar Cells Through Enhanced Crystallinity and Reduced Grain Boundaries Induced by Solvent Additives. Adv. Mater.,2011, 23 (29),3315-3319.
    [120]C. Kanimozhi, P. Balraju, G. D. Sharma, S. Patil, Synthesis of Diketopyrrolopyrrole Containing Copolymers:A Study of their Optical and Photovoltaic Properties. J. Phys. Chem. B,2010,114 (9),3095-4103.
    [121]A.P. Zoombelt, S.G.J. Mathijssen, M.G.R. Turbiez, M.M. Wienk, R.A.J. Janssen, Small Band Gap Polymers Based on Diketopyrrolopyrrole. J. Mater. Chem.,2010,20 (11), 2240-2246.
    [122]G.-Y. Chen, C.-M. Chiang, D. Kekuda, S.-C. Lan, C.-W. Chu, K.-H. Wei, Synthesis and Characterization of a Narrow-Bandgap Polymer Containing Alternating Cyclopentadithiophene and Diketo-pyrrolo-pyrrole Units for Solar Cell Applications. J. Polym. Sci. Part A:Polym. Chem.,2010,48 (7),1669-1675.
    [123]E.J. Zhou, Q.S Wei, S. Yamakawa, Y. Zhang, K. Tajima, C. Yang, K. Hashimoto, Diketopyrrolopyrrole-Based Semiconducting Polymer for Photovoltaic Device with Photocurrent Response Wavelengths up to 1.1 um. Macromolecules,2010,43 (2),821-826.
    [124]L. Ye, S.Q. Zhang, W. Ma, B.H. Fan, X. Guo, Y. Huang, H. Ade, J.H. Hou, From Binary to Ternary Solvent:Morphology Fine-Tuning of D/A Blends in PDPP3T-Based Polymer Solar Cells. Adv. Mater.,2012,24 (47),6335-6341.
    [125]J.C. Bijleveld, V.S.Gevaerts, D.D. Nuzzo, M. Turbiez, S.G.J. Mathijssen, D.M. De Leeuw, M.M. Wienk, R.A.J. Janssen, Efficient Solar Cells Based on an Easily Accessible Diketopyrrolopyrrole Polymer. Adv. Mater.,2010,22 (35), E242-E246.
    [126]M. Shahid, R.S. Ashraf, Z.G. Huang, A.J. Kronemeijer, T. Mccarthy-Ward, I. Mcculloch, J.R. Durrant, H. Sirringhaus, M. Heeney, Photovoltaic and Field Effect Transistor Performance of Selenophene and Thiophene Diketopyrrolopyrrole Copolymers with Dithienothiophene. J. Mater. Chem.,2012,22 (25),12817-12823.
    [127]J.W. Jung, F. Liu, T.P. Russell, W.H. Jo, A High Mobility Conjugated Polymer Based on Dithienothiophene and Diketopyrrolopyrrole for Organic Photovoltaics. Energy Environ. Sci.,2012,5 (5),6857-6861.
    [128]J.W. Jung, J.W. Jo, F. Liu, T.P. Russell, W.H. Jo, A Low Band-Gap Polymer Based on Unsubstituted Benzo[1,2-b:4,5-b']dithiophene for High Performance Organic Photovoltaics. Chem. Commun.,2012,48 (55),6933-6935.
    [129]W.W. Li, W.S.C. Roelofs, M.M. Wienk, R.A.J. Janssen, Enhancing the Photocurrent in Diketopyrrolopyrrole-Based Polymer Solar Cells via Energy Level Control. J. Am. Chem. Soc.,2012,134 (33),13787-13795.
    [130]P.P. Khlyabich, B. Burkhart, B.C. Thompson, Compositional Dependence of the Open-Circuit Voltage in Ternary Blend Bulk Heterojuaction Solar Cells Based on two Donor Polymers. J. Am. Chem. Soc.,2012,134 (22),9074-9077.
    [131]J. Li, K-H. ong, S-L. Lim, G-M. Ng, H-S. Tan, Z-K. Chen, A Random Copolymer Based on Dithienothiophene and Diketopyrrolopyrrole Units for High Performance Organic Solar Cells. Chem. Commun.,2011,47 (33),9480-9482.
    [132]C.-H. Chen, Y.-J. Cheng, C.-Y.-Chang, C.-S. Hsu, Donor-Acceptor Random Copolymers Based on a Ladder-Type Nonacyclic Unit:Synthesis, Characterization, and Photovoltaic Applications. Macromolecules,2011,44 (21),8415-8424.
    [133]L. Dou, J. Gao, E. Richard, J.B. You, C.-C. Chen, K. C. Cha, Y.J. He, G. Li, Y. Yang, Systematic Investigation of Benzodithiophene-and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells. J. Am. Chem. Soc,2012,134 (24),10071-10079.
    [134]L. Dou, J.B. You, J. Yang, C.-C. Chen, Y.J. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer. Nat. Photon.,2012,6 (3),180-185.
    [135]Y.Y. Liang, D.Q. Feng, Y. Wu, S.-T. Tsai, G. Li, C. Ray, L.P. Yu, Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. J. Am. Chem. Soc.,2009,131 (22),7792-7799.
    [136]Y.Y. Liang, Z. Xu, J.B. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L.P. Yu, For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Adv. Mater.2010,22 (20), E135-E138.
    [137]J.H. Hou, H.-Y. Chen, S.Q. Zhang, R.I. Chen, Y. Yang, Y. Wu, G. Li, Synthesis of a Low Band Gap Polymer and its Application in Highly Efficient Polymer Solar Cells. J. Am. Chem. Soc.,2009,131 (43),15586-15587.
    [138]H.-Y. Chen, J.H. Hou, S.Q. Zhang, Y.Y. Liang, G.W. Yang, L.P.Yu, Y. Yang, Y. Wu, G. Li, Polymer Solar Cells with Enhanced Open-Circuit Voltage and Efficiency. Nat. Photon.,2009, 3,649-653.
    [139]LJ. Huo, S.Q. Zhang, X. Guo, F. Xu, Y.F. Li, J.H. Hou, Replacing Alkoxy Groups with Alkylthienyl Groups:A Feasible Approach to Improve the Properties of Photovoltaic Polymers. Angew Chem. int. Ed.,2011,50 (41),9697-9702.
    [140]Y. Huang, L.J. Huo, S.Q. Zhang, X. Guo, C.C. Han, J.H. Hou, Sulfonyl:A New Application of Electron-withdrawing Substituent in Highly Efficient Photovoltaic Polymer. Chem. Commun.,2011,47 (31),8904-8906.
    [141]Y. Huang, X. Guo, F. Liu, L.J. Huo, Y.N. Chen, T.P. Russell, C.C. Han, Y.F. Li, J.H. Hou, Improving the Ordering and Photovoltaic Properties by Extending p-Conjugated Area of Electron-Donating Units in Polymers with D-A Structure. Adv. Mater.,2012,24 (25), 3383-3389.
    [142]X.H. Li, W.C.H. Choy, L.J. Huo, F.X. Xie, W.E.I. Sha, B.F. Ding, X. Guo, Y.F. Li, J.H. Hou, J.B. You, Y. Yang, Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells. Adv. Mater.,2012,24 (22),3046-3052.
    [143]Z.C. He, C.M. Zhong, X. Huang, W.Y. Wong, H.B. Wu, L.W. Chen, SJ. Su, Y. Cao, Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells. Adv. Mater.,2011,23 (40),4636-4643.
    [144]X. Guo, M.J. Zhang, L.J. Huo, C.H. Cui, Y. Wu, J.H. Hou, Y.F. Li, Enhanced Open Circuit Voltage and Efficiency of Donor-Acceptor Copolymer Solar Cells by Using Indene-C60 Bisadduct. Macromolecules,2012,45 (17),6930-6937.
    [145]S. Subramaniyan, H. Xin, F.S. Kim, S. Shoaee, J.R. Durrant, S.A. Jenekhe, Effects of Side Chains on Thiazolothiazole-Based Copolymer Semiconductors for High Performance Solar Cells. Adv. Energy Mater.,2011,1 (5),854-860.
    [146]M.J. Zhang, H.J. Fan, X. Guo, Y.J. He, Z.G. Zhang, J. Min, J. Zhang, G.J. Zhao, X.W. Zhan, Y.F. Li, Synthesis and Photovoltaic Properties of a Copolymer of Benzo[1,2-b:4,5-b'] dithiophene and Bithiazole. Macromolecules,2010,43 (21),8714-8717.
    [147]Q.Q. Shi, H.J. Fan, Y. Liu, W.P. Hu, Y.F. Li, X.W. Zhan, A Copolymer of Benzodithiophene with TIPS Side Chains for Enhanced Photovoltaic Performance. Macromolecules,2011,44 (23),9173-9179.
    [148]I.H. Jung, J.Y. Yu, E. Jeong, J. Kim, S. Kwon, H. Kong, K. Lee, H.Y. Woo, H.-K. Shim, Synthesis and Photovoltaic Properties of Cyclopentadithiophene-Based Low-Bandgap Copolymers that Contain Electron-withdrawing Thiazole Derivatives. Chem. Eur. J.,2010, 16 (12),3743-3752.
    [149]R. Stalder, C. Grand, J. Subbiah, F. So, J.R. Reynolds, An Isoindigo and Dithieno [3,2-b:2',3'-d]silole Copolymer for Polymer Solar Cells. Polym. Chem.,2012,3 (1),89-92.
    [150]E.G. Wang, Z.F. Ma, Z. Zhang, K. Vandewal, P. Henriksson, O.I. inganas, F.L. Zhang, M.R. andersson, An Easily Accessible Isoindigo-Based Polymer for High-Performance Polymer Solar Cells. J. Am. Chem. Soc.,2011,133 (36),14244-14247.
    [151]Z. Li, J.F. Ding, N. Song, J.P. Lu, Y. Tao, Development of A New S-tetrazine-Based Copolymer for Efficient Solar Cells. J. Am. Chem. Soc.,2010,132 (38),13160-13161.
    [152]J.F. Ding, N.H. Song, Z. Li, Synthesis, Characterization and Photovoltaic Applications of a Low Band Gap Polymer Based on S-tetrazine and Dithienosilole. Chem. Commun.,2010, 46 (45),8668-8670.
    [153]J. Kim, S.H. Kim, I.H. Jung, E. Jeong, Y.J. Xia, S. Cho, I.-W. Hwang, K. Lee, H. Sun, H.-K. Shim, H.Y. Woo, Synthesis and Characterization of Indeno[1,2-b]fluorene-Based Low Bandgap Copolymers for Photovoltaic Cells. J. Mater. Chem.,2010,20 (8),1577-1586.
    [154]Y.J. Xia, X.H. Su, Z.C. He, X. Ren, H.B. Wu, Y. Cao, D.W. Fan, An Alternating Copolymer Derived From Indolo[3,2-b]carbazole and 4,7-Di(thieno[3,2-b]thien-2-yl)-2,1,3-Benzothiadiazole for Photovoltaic Cells. Macromol. Rapid Commun.,2010,31 (14), 1287-1292.
    [155]Q.D. Zheng, B.J. Jung, J. Sun, H.E. Katz, Ladder-Type Oligo-p-phenylene-Containing Copolymers with High Open-Circuit Voltages and Ambient Photovoltaic Activity. J. Am. Chem. Soc.,2010,132 (15),5394-5404.
    [156]Y.Wu, Z.J. Li, X. Guo, H.L. Fan, L.J. Huo, J.H. Hou, Synthesis and Application of Dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene in Conjugated Polymer. J. Mater. Chem.,2012,22 (40),21362-21365.
    [157]C.-A. Tseng, J.-S. Wu, T.-Y. Lin, W.-S. Kao, C.-E. Wu, S.-L. Hsu, Y.-Y. Liao, C.-S. Hsu, H.-Y. Huang, Y.-Z. Hsieh, Y.-J. Cheng, A Pentacyclic Nitrogen-Bridged Thienyl-Phenylene-Thienyl Arene for Donor-Acceptor Copolymers:Synthesis, Characterization, and Applications in Field-Effect Transistors and Polymer Solar Cells. Chem. Asian J.,2012,7 (9),2102-2110.
    [158]Y.-C. Chen, C.-Y. Yu, Y.-L. Fan, L.-I. Hung, C.-P. Chen, C. Ting, Low-Bandgap Conjugated Polymer for High Efficient Photovoltaic Applications. Chem. Commun.,2010, 46 (35),6503-6505.
    [159]Y. Zhang, S.-C. Chien, K.-S. Chen, H.-L. Yip, Y. Sun, J.A. Davies, F.-C. Chen, A.K.-Y. Jen, increased Open Circuit Voltage in Fluorinated Benzothiadiazole-Based Alternating Conjugated Polymers. Chem. Commun.,2011,47 (39),11026-11028.
    [160]Y.-X. Xu, C.-C.Chueh, H.-L. Yip, F.-Z. Ding, Y.-X. Li, C.-Z. Li, X.S. Li, W.-C. Chen, A.K.-Y. Jen, Improved Charge Transport and Absorption Coefficient in Indacenodithieno [3,2-b]thiophene-Based Ladder-Type Polymer Leading to Highly Efficient Polymer Solar Cells. Adv. Mater.,2012,24 (47),6356-6361.
    [161]F. He, W. Wang, W. Chen, T. Xu, S.B. Darting, J. Strzalka, Y. Liu, L.P. Yu, Tetrathienoanthracene-Based Copolymers for Efficient Solar Cells. J. Am. Chem. Soc., 2011,133 (10),3284-3287.
    [162]J.-S. Wu, Y.-J. Cheng, M. Dubosc, C.-H. Hsieh, C.-Y.Chang, C.-S. Hsu, Donor-Acceptor Polymers Based on Multi-Fused Heptacyclic Structures:Synthesis, Characterization and Photovoltaic Applications. Chem. Commun.,2010,46 (19),3259-3261.
    [163]C.-Y.Chang, Y.-J. Cheng, S.-H. Hung, J.-S. Wu, W.-S. Kao, C.-H. Lee, C.-S. Hsu, Combination of Molecular, Morphological, and interfacial Engineering to Achieve Highly Efficient and Stable Plastic Solar Cells. Adv. Mater.,2012,24 (4),549-553.
    [164]F. Huang, K.-S. Chen, H.-L. Yip, S.K. Hau, O. Acton, Y. Zhang, J. Luo, A.K.Y. Jen, Development of New Conjugated Polymers with Donor-p-Bridge-Acceptor Side Chains for High Performance Solar Cells. J. Am. Chem. Soc.,2009,131 (39),13886-13887.
    [165]Z.G. Zhang, K.L. Zhang, G. Liu, C.X. Zhu, K.-G. Neoh, E.-T. Kang, Triphenylamine-Fluorene Alternating Conjugated Copolymers with Pendant Acceptor Groups: Synthesis, Structure-Property Relationship, and Photovoltaic Application. Macromolecules, 2009,42 (8),3104-3111.
    [166]Z.G. Zhang, Y.L. Liu, Y. Yang, K. Hou, B. Peng, G.J. Zhao, M.J. Zhang, X. Guo, E.-T. Kang, Y.F. Li, Alternating Copolymers of Carbazole and Triphenylamine with Conjugated Side Chain Attaching Acceptor Groups Synthesis and Photovoltaic Application. Macromolecules,2010,43 (22),9376-9383.
    [167]S.-L. Hsu, C.-M. Chen, K.-H. Wei, Carbazole-Based Conjugated Polymers Incorporating Push/Pull Organic Dyes:Synthesis, Characterization, and Photovoltaic Applications. J. Polym. Sci. Part A:Polym. Chem.,2010,48 (22),5126-5134.
    [168]C.H. Duan, K.-S. Chen, F. Huang, H.-L. Yip, S.J. Liu, J. Zhang, A.K.Y. Jen, Y. Cao, Synthesis, Characterization, and Photovoltaic Properties of Carbazole-Based Two-Dimensional Conjugated Polymers with Donor-p-Bridge-Acceptor Side Chains. Chem. Mater.,2010,22 (23),6444-6452.
    [169]H. Tan, X.P. Deng, J.T. Yu, B.F. Zhao, Y.F. Wang, Y. Liu, W.G. Zhu, H.B. Wu, Y. Cao, A Novel Benzo[1,2-b:4,5-b']dithiophene-Based Conjugated Polymer with a Pendant Diketopyrrolopyrrole Unit for High-Performance Solar Cells. Macromolecules,2013,46 (1), 113-118.
    [170]W.-Y. Wong, X.-Z. Wang, Z. He, A.B. Djurisic, C.-T. Yip, K.-Y. Cheung, H. Wang, C.S.K. Mak, W.-K. Chan, Metallated Conjugated Polymers as a New Avenue Towards High-Efficiency Polymer Solar Cells. Nat. Mater.,2007,6,521-527.
    [171]L.J. Huo, Y. Huang, B.H. Fan, X. Guo, Y. Jing, M.J. Zhang, Y.F. Li, J.H. Hou, Synthesis of a 4,8-Dialkoxy-benzo[1,2-b:4,5-b']difuran Unit and its Application in Photovoltaic Polymer. Chem. Commun.,2012,48 (27),3318-3320.
    [172]L.J. Huo, L. Ye, Y. Wu, Z.J. Li, X. Guo, M.J. Zhang, S.Q. Zhang, J.H. Hou, Conjugated and Nonconjugated Substitution Effect on Photovoltaic Properties of Benzodifuran-Based Photovoltaic Polymers. Macromolecules,2012,45 (17),6923-6929.
    [173]E.G. Wang, L.T. Hou, Z.Q. Wang, S. Hellstrom, F.L. Zhang, O. inganas, M.R. andersson, An Easily Synthesized Blue Polymer for High-Performance Polymer Solar Cells. Adv. Mater., 2012,22(46),5240-5244.
    [174]P.A. Troshin, H. Hoppe, J. Renz, M. Egginger, J.Y. Mayorova, A.E. Goryachev, A.S. Peregudov, R.N. Lyubovskaya, G. Gobsch, N.S. Sariciftci, V.F. Razumov, Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells. Adv. Funct. Mater.,2009,19 (5),779-788.
    [175]Y. Zhang, H.L. Yip, O. Acton, S.K. Hau, F. Huang, A.K.Y. Jen, A Simple and Effective Way of Achieving Highly Efficient and Thermally Stable Bulk-Heterojunction Polymer Solar Cells Using Amorphous Fullerene Derivatives as Electron Acceptor. Chem. Mater.,2009,21 (13),2598-2600.
    [176]G.J. Zhao, Y.J. He, Z. Xu, J.H. Hou, M.J. Zhang, J. Min, H.Y. Chen, M.F. Ye, Z.R. Hong, Y. Yang, Y.F. Li, Effect of Carbon Chain Length in the Substituent of PCBM-Like Molecules on their Photovoltaic Properties. Adv. Funct. Mater.,2010,20 (9),1480-1487.
    [177]R.B. Ross, C.M. Cardona, D.M. Guldi, S.G. Sankaranarayanan, M.O. Reese, N. Kopidakis, J. Peet, B. Walker, G.C. Bazan, E.V. Keuren, B.C. Holloway, M. Drees, Endohedral Fullerenes for Organic Photovoltaic Devices. Nat. Mater.,2009,8,208-212.
    [178]M. Lenes, G.J.A.H. Wetzelaer, F.B. Kooist, S.J. Veenstra, J.C. Hummelen, P.W.M. Blom, Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells. Adv. Mater.,2008,20 (11),2116-2119.
    [179]G. Ye, S. Chen, Z. Xiao, Q.Q. Zuo, Q. Wei, L.M. Ding, o-Quinodimethane-Methano[60]Fullerene and Thieno-o-quinodimethane-methano[60]fuullerene as Efficient Acceptor Materials for Polymer Solar Cells. J. Mater. Chem.,2012,22 (42),22374-22377.
    [180]A.F. Lv, S.R. Puniredd, J.H. Zhang, Z.B. Li, H.F. Zhu, W. Jiang, H.L. Dong, Y.D. He, L. Jiang, Y. Li, W. Pisula, Q. Meng, W.P. Hu, Z.H. Wang, High Mobility, Air Stable, Organic Single Crystal Transistors of an n-Type Diperylene Bisimide. Adv Mater.,2012,24 (19), 2626-2630.
    [181]H. Yan, Z.H. Chen, Y. Zheng, C. Newman, J.R. Quinn, F. Dotz, M. Kastler, A. Facchetti, A High-Mobility Electron-Transporting Polymer for Printed Transistors. Nature,2009,457, 679-686.
    [182]V. Kamm, G. Battagliarin, I.A. Howard, W. Pisula, A. Mavrinskiy, C. Li, K. MuLlen, F. Laquai, Polythiophene:Perylene Diimide Solar Cells-the Impact of Alkyl-Substitution on the Photovoltaic Performance. Adv. Energy Mater.,2011,1 (2),297-302.
    [183]J.H. Hou, S.Q. Zhang, T.L. Chen, Y. Yang, A New n-Type Low Bandgap Conjugated Polymer P-co-CDT:Synthesis and Excellent Reversible Electrochemical and Electrochromic Properties. Chem. Commun.,2008,45,6034-6036.
    [184]E.J. Zhou, J.Z. Cong, Q.S. Wei, K. Tajima, C.H. Yang, K. Hashimoto, All-Polymer Solar Cells From Perylene Diimide Based Copolymers:Material Design and Phase Separation Control. Angew. Chem. int. Ed.,2011,50 (12),2799-2803.
    [185]X.W. Zhan, Z.A. Tan, B. Domercq, Z.S. An, X. Zhang, S. Barlow, Y.F. Li, D.B. Zhu, B. Kippelen, S.R. Marder, A High-Mobility Electron-Transport Polymer with Broad Absorption and its Use in Field-Effect Transistors and All-Polymer Solar Cells. J. Am. Chem. Soc.,2007, 129 (23),7246-7247.
    [186]E. Kozma, D. Kotowski, F. Bertini, S. Luzzati, M. Catellani, Synthesis of Donor-Acceptor Poly(perylene diimide-alt-oligothiophene) Copolymers as n-Type Materials for Polymeric Solar Cells. Polymer,2010,51(11),2264-2270.
    [187]E.J. Zhou, K. Tajima, C.H. Yang, K. Hashimoto, Band Gap and Molecular Energy Level Control of Perylene Diimide-Based Donor-Acceptor Copolymers for All-Polymer Solar Cells. J. Mater. Chem.,2010,20 (12),2362-2368.
    [188]J.A. Mikroyannidis, K.Y. Cheung, M.K. Fung, A.B. Djurisic, Synthesis and Photovoltaic Properties of Novel Alternating Phenylenevinylene or Fluorenevinylene Copolymers Containing Perylene Bisimide. React. Funct. Polym.,2010,70 (7),426-432.
    [189]J.A. Mikroyannidis, M.M. Stylianakis, G.D. Sharma, P. Balraju, M.S. Roy, A Novel Alternating Phenylenevinylene Copolymer with Perylene Bisimide Units:Synthesis, Photophysical, Electrochemical, and Photovoltaic Properties. J. Phys. Chem. C,2009,113(18), 7904-7912.
    [190]S. Rajaram, R. Shivanna, S.K. Kandappa, K.S. Narayan, Nonplanar Perylene Diimides as Potential Alternatives to Fullerenes in Organic Solar Cells. J. Phys. Chem. Lett.,2012,3 (17), 2405-2408.
    [191]S. Fabiano, Z. Chen, S. Vahedi, A. Facchetti, B. Pignataro, M.A. Loi, Role of Photoactive Layer Morphology in High Fill Factor All-Polymer Bulk Heterojunction Solar Cells. J. Mater. Chem.,2011,21 (16),5891-5896.
    [192]M. Schubert, D. Dolfen, J. Frisch, S. Roland, R. Steyrleuthner, B. Stiller, Z. Chen, U. Scherf, N. Koch, A. Facchetti, D. Neher, Influence of Aggregation on the Performance of All-Polymer Solar Cells Containing Low-Bandgap Naphthalenediimide Copolymers. Adv. Energy Mater., 2012,2 (3),369-380.
    [193]R. Steyrleuthner, M. Schubert, I. Howard, B. Klaumunzer, K. Schilling, Z. Chen, P. Saalfrank, F. Laquai, A. Facchetti, D. Neher, Aggregation in A High-Mobility n-Type Low-Bandgap Copolymer with Implications on Semicrystalline Morphology. J. Am. Chem. Soc,2012,134 (44),18303-18317.
    [194]E. Ahmed, G. Ren, F.S. Kim, E.C. Hollenbeck, S.A. Jenekhe, Design of New Electron Acceptor Materials for Organic Photovoltaics:Synthesis, Electron Transport, Photophysics, and Photovoltaic Properties of Oligothiophene-Functionalized Naphthalene Diimides. Chem. Mater.,2011 (20),23,4563-4577.
    [195]B.P. Karsten, J.C. Bijleveld, R.A.J. Janssen, Diketopyrrolopyrroles as Acceptor Materials in Organic Photovoltaics. Macromol. Rapid Commun.,2010,31 (17),1554-1559.
    [196]P. Sonar, G.M. Ng, T.T. Lin, A. Dodabalapur, Z.K. Chen, Solution Processable Low Bandgap Diketopyrrolopyrrole (DPP) Based Derivatives:Novel Acceptors for Organic Solar Cells. J. Mater. Chem.,2010,20 (18),3626-3636.
    [197]Y.Z. Lin, P. Cheng, Y.F. Li, X.W. Zhan, A 3D Star-Shaped Non-Fullerene Acceptor for Solution-Processed Organic Solar Cells with a High Open-Circuit Voltage of 1.18 V. Chem. Commun.,2012,48 (39),4773-4775.
    [198]Y.Z. Lin, Y.F. Li, X.W. Zhan, A Solution-Processable Electron Acceptor Based on Dibenzosilole and Diketopyrrolopyrrole for Organic Solar Cells. Adv. Energy Mater., DOI: 10.1002/Aenm.201200911
    [199]M.F. Falzon, A.P. Zoombelt, M.M. Wienk, R.A.J. Janssen, Diketopyrrolopyrrole-Based Acceptor Polymers for Photovoltaic Application. Phys. Chem. Chem. Phys.,2011,13 (19), 8931-8939.
    [200]M.M. Koetse, J. Sweelssen, K.T. Hoekerd, H.F.M. Schoo, S.C. Veenstra, J.M. Kroon, X.N. Yang, J. Loos, Efficient Polymer:Polymer Bulk Heterojunction Solar Cells. Appl. Phys. Lett., 2006,88 (8),083504-083506.
    [201]Y. Kim, S. Cook, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, Organic Photovoltaic Devices Based on Blends of Regioregular Poly(3-hexylthiophene) and Poly(9,9-dioctylfluorene-co-benzothiadiazole). Chem. Mater.,2004,16 (23),4812-4818.
    [202]X.M. He, F. Gao, G.L. Tu, D. Hasko, S. Huttner, U. Steiner, N.C. Greenham, R.H. Friend, W.T.S. Huck, Formation of Nanopatterned Polymer Blends in Photovoltaic Devices. Nano Lett.,2010,10 (4),1302-1307.
    [203]D. Mori, H. Benten, J. Kosaka, H. Ohkita, S. Ito, K. Miyake, Polymer/Polymer Blend Solar Cells with 2.0% Efficiency Developed by Thermal Purification of Nanoscale-Phase-Separated Morphology. ACS Appl. Mater. Interfaces,2011,3 (10),2924-2932.
    [204]R. Stalder, J.G. Mei, J. Subbiah, C. Grand, L.A. Estrada, F. So, J.R. Reynolds, n-Type Conjugated Polyisoindigos. Macromolecules,2011,44:(16),6303-6310.
    [205]Z. Li, Y.-F. Lim, J.B. Kim, S.R. Parkin, Y.-L. Loo, G.G. Malliaras, J.E. Anthony, Isomerically Pure Electron-Deficient Anthradithiophenes and their Acceptor Performance in Polymer Solar Cells. Chem. Commun.,2011,47 (27),7617-7619.
    [206]S. Ko, R. Mondal, C. Risko, J.K. Lee, S. Hong, M.D. Mcgehee, J.-L. Bredas, Z. Bao, Tuning the Optoelectronic Properties of Vinylene-Linked Donor-Acceptor Copolymers for Organic Photovoltaics. Macromolecules,2010,43 (16),6655-6698.
    [207]M.C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10□% Energy Conversion Efficiency. Adv. Mater.,2006,18 (6),789-794.
    [208]X.N. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen, Nanoscale Morphology of High-Performance Polymer Solar Cells. Nano Lett.,2005,5 (4),579-583.
    [209]C.L. Chochos, N. Tagmatarchis, V.G. Gregoriou, Rational Design on n-Type Organic Materials for High Performance Organic Photovoltaics, RSC Adv., DOI:10.1039/ C3RA22926B.
    [210]F. Wurthner, Perylene Bisimide Dyes as Versatile Building Blocks for Functional Supramolecular Architectures. Chem. Commun.,2004,14,1564-1579.
    [211]H. Langhals, O. Krotz, K. Polborn, P. Mayer, A Novel Fluorescent Dye with Strong, Anisotropic Solid-State Fluorescence, Small Stokes Shift, and High Photostability. Angew. Chem.,2005,117,2479-2480.
    [212]M.M. Shi, H.Z. Chen, J.Z. Sun, J. Ye, M. Wang, Fluoroperylene Diimide:A Soluble and Air-Stable Electron Acceptor. Chem. Phys. Lett.,2003,381 (5-6),666-671.
    [213]H.Z. Chen, M.M. Ling, X. Mo, M.M. Shi, M. Wang, Z. Bao, Air Stable n-Channel Organic Semiconductors for Thin Film Transistors Based on Fluorinated Derivatives of Perylene Diimides. Chem. Mater.,2007,19 (4),816-824.
    [214]Y.G. Wen, Y.Q. Liu, Recent Progress in n-Channel Organic Thin-Film Transistors. Adv. Mater.,2010,22 (12),1331-1345.
    [215]W.S. Shin, H.H. Jeong, M.K. Kim, S.H. Jin, J.K. Lee, J.W. Lee, Y.S. Gal, Effects of Functional Groups at Perylene Diimide Derivatives on Organic Photovoltaic Device Application. J. Mater. Chem.,2006,16 (4),384-390.
    [216]Y. Lu, H. Chen, F. Qiao, X. Hu, N.G. Siu-Choon, Synthesis, Characterization and Photovoltaic Application of N,N'-Bisfluorenyl Substituted Perylene Bisimide. Sol. Energy Mater. Sol. Cells.,2010,94 (6),2036-2041.
    [217]X.Y. Guo, L.J. Bu, Y. Zhao, Z.Y. Xie, Y.H. Geng, L.X. Wang, Controlled Phase Separation for Efficient Energy Conversion in Dye/Polymer Blend Bulk Heterojunction Photovoltaic Cells. Thin Solid Films,2009,517 (16),4654-4657.
    [218]J.L. Li, F. Dierschke, J.S. Wu, A.C. Grimsdale, K. Mullen, Poly(2,7-Carbazole) and Perylene Tetracarboxydiimide:A Promising Donor/Acceptor Pair for Polymer Solar Cells. J. Mater. Chem.,2006,16 (1),96-100.
    [219]Q.L. Zhang, A. Cirpan, T.P. Russell, T. Emrick, Donor-Acceptor Poly(thiophene-block-perylene Diimide) Copolymers:Synthesis and Solar Cell Fabrication. Macromolecules, 2009,42 (4),1079-1082.
    [220]LJ. Bu, X.Y. Guo, B. Yu, Y. Qu, Z.Y. Xie, D.H. Yan, Y.H. Geng, F.S. Wang, Monodisperse Co-oligomer Approach Toward Nanostructured Films with Alternating Donor-Acceptor Lamellae. J. Am. Chem. Soc.,2009,131 (37),13242-13243.
    [221]J. Chen, M.M. Shi, X.L. Hu, M. Wang, H.Z. Chen, Conjugated Polymers Based on Benzodithiophene and Arylene Imides:Extended Absorptions and Tunable Electrochemical Properties. Polymer,2010,51 (13),2897-2902.
    [222]Z.H. Chen, Y. Zheng, H. Yan, A. Facchetti, Naphthalenedicarboximide-Vs Perylenedicarboximide-Based Copolymers. Synthesis and Semiconducting Properties in Bottom-Gate N-Channel Organic Transistors. J. Am. Chem. Soc.,2009,131 (1),8-9.
    [223]Y.F. Wei, Q. Zhang, Y. Jiang, J.S. Yu, Novel Low Bandgap EDOT-Naphthalene Bisimides Conjugated Polymers:Synthesis, Redox, and Optical Properties. Macromol. Chem. Phys., 2009,210 (9),769-775.
    [224]P. Sonar, J.P.F. Lim, K.L. Chan, Organic Non-Fullerene Acceptors for Organic Photovoltaics. Energy Environ. Sci.,2011,4 (5),1558-1574.
    [225]F.C. Krebs, T.D. Nielsen, J. Fyenbo, M. Wadstr(?)mc, M.S. Pedersenc, Manufacture, Integration and Demonstration of Polymer Solar Cells in a Lamp for the "Lighting Africa" Initiative. Energy Environ. Sci.,2010,3 (5),512-525.
    [226]F.C. Krebs, T. Tromholt, M. J(?)argensen, Upscaling of Polymer Solar Cell Fabrication Using Full Roll-to-Roll Processing. Nanoscale,2010,2 (6),873-886.
    [227]F.C. Krebs, J. Fyenbo, M. J(?)rgensen, Product Integration of Compact Roll-to-Roll Processed Polymer Solar Cell Modules:Methods and Manufacture Using Flexographic Printing, Slot-Die Coating and Rotary Screen Printing. J. Mater. Chem.,2010,20 (41), 8994-9001.
    [228]R.R. Marisol, K. Kyungkon, L.C. David, High-Efficiency Photovoltaic Devices Based on Annealed Poly(3-hexylthiophene) and 1-(3-Methoxycarbonyl)-propyl-l-phenyl-(6,6)C61 Blends. Appl. Phys. Lett.,2005,87 (8),083506-083508.
    [229]H. Sirringhaus, R.J. Wilson, R.H. Friend, M. inbasekaran, W. Wu, E.P. Woo, M. Grell, D.D.C. Bradley, Mobility Enhancement in Conjugated Polymer Field-Effect Transistors through Chain Alignment in a Liquid-Crystalline Phase. Appl. Phys. Lett.,2000,77 (3), 406-408.
    [230]A.R. Murphy, J. Liu, C. Luscombe, D. Kavulak, J.M.J. Frechet, R.J. Kline, M.D. Mcgehee, Synthesis, Characterization, and Field-Effect Transistor Performance of Carboxylate-Functionalized Polythiophenes with Increased Air Stability. Chem. Mater., 2005,17 (20),4892-4899.
    [231]M. Pomerantz, Y. Cheng, R.K. Kasim, R.L. Elsenbaumer, Poly(alkyl thiophene-3-carboxylates). Synthesis, Properties and Electroluminescence Studies of Polythiophenes Containing a Carbonyl Group Directly Attached to the Ring. J. Mater. Chem.,1999,9 (9),2155-2163.
    [232]L.J. Huo, T.L. Chen, Y. Zhou, J.H. Hou, H.Y. Chen, Y. Yang, Y.F. Li, Improvement of Photoluminescent and Photovoltaic Properties of Poly(thienylene vinylene) by Carboxylate Substitution. Macromolecules,2009,42 (13),4377-4380.
    [233]S.A. Gevorgyan, F,C. Krebs, Bulk Heterojunctions Based on Native Polythiophene. Chem. Mater.,2008,20 (13),4386-4390.
    [234]T. Tromholt, S.A. Gevorgyan, M. Jargensen, F.C. Krebs, K.O. Sylvester, Thermocleavable Materials for Polymer Solar Cells with High Open Circuit Voltage-A Comparative Study. ACS Appl. Mater. Interfaces,2009,1 (12),2768-2777.
    [235]Y.A. Getmanenko, R.J. Twieg, Unprecedented Negishi Coupling at C-Br in the Presence of a Stannyl Group as a Convenient Approach to Pyridinylstannanes and their Application in Liquid Crystal Synthesis. J. Org. Chem.,2008,73 (3),830-839.
    [236]T.A. Chen, X. M. Wu, R. D. Rieke, Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc:their Characterization and Solid-State Properties. J. Am. Chem. Soc.,1995,117(1),233-244.
    [237]J.H. Hou,T.L. Chen, S.Q. Zhang, L.J. Huo, S. Sista, Y. Yang, An Easy and Effective Method to Modulate Molecular Energy Level of Poly (3-alkylthiophene) for High Voc Polymer Solar Cells. Macromolecules,2009,42 (23),9217-9219
    [238]M.J. Zhang, X. Guo, Y. Yang, J. Zhang, Z.G. Zhang, Y.F. Li, Downwards Tuning the HOMO Level of Polythiophene by Carboxylate Substitution for High Open-Circuit-Voltage Polymer Solar Cells. Polym. Chem.,2011,2 (12),2900-2906.
    [239]D. Gupta, S. Mukhopadhya, K. S. Narayan, Fill Factor in Organic Solar Cells. Sol. En. Mater. Sol. Cells.,2010,94 (8),1309-1313.
    [240]L.J; Zuo, X.L. Hu, T. Ye, T.R. andersen, H.Y. Li, M.M. Shi, M.S. Xu, J. Ling, Q. Zheng, J.T. Xu, E. Bundgaard, F.C. Krebs, H.Z. Chen, Effect of Solvent-Assisted Nanoscaled Organo-Gels on Morphology and Performance of Organic Solar Cells. J. Phys. Chem. C, 2012,116 (32),16893-16900.
    [241]M.M. Shi, L. Fu, X.L. Hu, L.J. Zuo, D. Deng, J. Chen, H.Z. Chen, Design and Synthesis of Carbonyl Group Modified Conjugated Polymers for Photovoltaic Application. Polym. Bull., 2012,68(7),1867-1877.
    [242]G.A. Sotzing, K. Lee, Poly(thieno[3,4-b]thiophene):□ A p-and n-Dopable Polythiophene Exhibiting High Optical Transparency in the Semiconducting State. Macromolecules,2002, 35 (19),7281-7286.
    [243]J.H. Park, Y.G. Seo, D.H. Yoon, Y.S. Lee, S.H. Lee, M. Pyo, K. Zong, A Concise Synthesis and Electrochemical Behavior of Functionalized Poly(thieno[3,4-b]thiophenes):New Conjugated Polymers with Low Bandgap. Eur. Polym. J.,2010,46 (8),1790-1795.
    [244]Y.Y. Liang, L.P. Yu, A New Class of Semiconducting Polymers for Bulk Heterojunction Solar Cells with Exceptionally High Performance. Acc. Chem. Res.,2010,43 (9), 1227-1236.
    [245]M.J. Baek, S.H. Lee, K. Zong, Y.S. Lee, Low Band Gap Conjugated Polymers Consisting of Alternating Dodecyl Thieno[3,4-b]thiophene-2-carboxylate and One or Two Thiophene Rings:Synthesis and Photovoltaic Property. Synth. Metals,2010,160 (11-12),1197-1203.
    [246]X.L. Hu, M.M. Shi, J. Chen, L.J. Zuo, L. Fu, Y.J. Liu, H.Z. Chen, Synthesis and Photovoltaic Properties of Ester Group Functionalized Polythiopheae Derivatives. Macromol. Rapid Commun.,2011,32 (6),506-511.
    [247]M.M. Shi, D. Deng, L. Chen, J. Ling, L. Fu, X. L. Hu, H.Z. Chen, Design and Synthesis of Dithieno[3,2-B-:2'3'-D]Pyrrole-Based Conjugated Polymers for Photovoltaic Applications: Consensus Between Low Bandgap and Low HOMO Energy Level. J. Polym. Sci. Part A: Polym. Chem.,2011,49 (6),1453-1461.
    [248]X.L. Hu, L.J. Zuo, W.F. Fu, T.T. Larsen-Olsen, M. Helgesen, E. Bundgaard, O. Hagemann, M.M. Shi, F.C. Krebs, H.Z. Chen, incorporation of Ester Groups into Low Band-Gap Diketopyrrolopyrrole Containing Polymers for Solar Cell Applications. J. Mater. Chem., 2012,22(31),15710-15716.
    [249]X.L. Hu, M.M. Shi, L.J. Zuo, Y.X. Nan, Y.J. Liu, L. Fu, H.Z. Chen, Synthesis, Characterization, and Photovoltaic Property of A Low Band Gap Polymer Alternating Dithienopyrrole and Thienopyrroledione Units. Polymer,2011,52 (12),2559-2564.
    [250]Y.Y. Liang, S.Q. Xiao, D.Q. Feng, L.P. Yu, Control in Energy Levels of Conjugated Polymers for Photovoltaic Application. J. Phys. Chem. C,2008,112 (21),7866-7871.
    [251]W.J. Bae, C. Cilla, V.V. Duzhko, W.H. Jo, E.B. Coughlin, Synthesis and Photophysical Properties of Soluble Low-Bandgap Thienothiophene Polymers with Various Alkyl Side-Chain Lengths. J. Polym. Sci. Pol. Chem.,2011,49 (15),3260-3271.
    [252]P.M. Beaujuge, J.M.J. Frechet, Molecular Design and Ordering Effects in p-Functional Materials for Transistor and Solar Cell Applications. J. Am. Chem. Soc.,2011,133 (50), 20009-20029.
    [253]LJ. Huo, J.H. Hou, H.Y. Chen, S.Q. Zhang, Y. Jiang, T.L. Chen, Y. Yang, Bandgap and Molecular Level Control of the Low-Bandgap Polymers Based on 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione Toward Highly Efficient Polymer Solar Cells. Macromolecules,2009,42 (17),6564-6571.
    [254]Y.N. Li, P. Sonar, S.P. Singh, M.S. Soh, M. Meurs, J. Tan, Annealing-Free High-Mobility Diketopyrrolopyrrole-Quaterthiophene Copolymer for Solution-Processed Organic Thin Film Transistors. J. Am. Chem. Soc.,2011,133 (7),2198-2204.
    [255]J.D. Yuen, J. Fan, J. Seifter, B. Lim, R. Hufschmid, A.J. Heeger, F. Wudl, High Performance Weak Donor-Acceptor Polymers in Thin Film Transistors:Effect of the Acceptor on Electronic Properties, Ambipolar Conductivity, Mobility, and thermal. Stability. J. Am. Chem. Soc.,2011,133 (51),20799-20807.
    [256]J.S. Ha, K.H. Kim, D.H. Choi,2,5-Bis(2-octyldodecyl)pytrolo[3,4-c]pyrrole-l,4. (2H,5H)-dione-Based Donor-Acceptor Alternating Copolymer Bearing 5,5'-Di(thiophen-2-yl)-2,2'-biselenophene Exhibiting 1.5 cm2·V-1·S-1 Hole Mobility in Thin-Film Transistors. J.Am. Chem. Soc.,2011,133 (27),10364-10367.
    [257]H. Bronstein, Z.Y. Chen, R.S. Ashraf, W.M. Zhang, J.P. Du, J.R. Durrant, P.S, Tuladhar, K. Song, S.E. Watkins, Y. Geerts, M.M. Wienk, R.A.J. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, I. Mcculloch, Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices. J. Am. Chem. Soc.,2011,133 (10),3272-3275.
    [258]Y.N. Li, S.P. Singh, P. Sonar, A High Mobility p-Type DPP-thieno[3,2-b]thiophene Copolymer for Organic Thin-Film Transistors. Adv. Mater.,2010,22 (43),4862-4866.
    [259]T.L. Nelson, T.M. Young, J.Y. Liu, S.P. Mishra, J.A. Belot, C.L. Balliet, A.E. Javier, T. Kowalewski, R.D. Mccullough, Transistor Paint:High Mobilities in Small Bandgap Polymer Semiconductor Based on the Strong Acceptor, Diketopyrrolopyrrole and Strong Donor, Dithienopyrrole. Adv. Mater.,2010,22 (41),4617-4621.
    [260]J.C. Bijleveld, A.P. Zoombelt, S.G J. Mathijssen, M.M. Wienk, M. Turbiez, D.M. Leeuw, R.A.J. Janssen, Poly(diketopyrrolopyrrole-terthiophene) for Ambipolar Logic and Photovoltaics. J.Am. Chem. Soc.,2009,131 (46),16616-16617.
    [261]C.H. Woo, P.M. Beaujuge, T.W. Holcombe, O.P. Lee, J.M.J. Frechet, Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells. J. Am. Chem. Soc.,2010,132 (44), 15547-15549.
    [262]A.T. Yiu, P.M. Beaujuge, O.P. Lee, C.H. Woo, M.F. Toney, J.M.J. Frechet, Side-Chain Tunability of Furan-Containing Low-Band-Gap Polymers Provides Control of Structural Order in Efficient Solar Cells. J. Am. Chem.Soc.,2012,134 (4),2180-2185.
    [263]X.L. Hu, L.J. Zuo, Y.X. Nan, M. Helgesen, O. Hagemann, E. Bundgaard, M.M. Shi, F.C. Krebs, H.Z. Chen, Fine Tuning the HOMO Energy Levels of Polythieno[3,4-b]thiophene Derivatives by Incorporation of Thiophene-3,4-dicarboxylate Moiety for Photovoltaic Applications. Synth. Metals,2012,162 (23),2005-2009.
    [264]P.M. Beaujuge, C.M. Amb, J.R. Reynolds, Spectral Engineering in p-Conjugated Polymers with Intramolecular Donor-Acceptor interactions. Acc Chem. Res.,2010,43 (11), 1396-1407.
    [265]Y.X. Nan, F. Chen, L.G. Yang, H.Z. Chen, Electrochemical Synthesis and Charge Transport Properties of Cds Nanocrystalline Thin Films with Coniferlike Structure. J. Phys. Chem. C, 2010,114(27),11911-11917.
    [266]M.M. Wienk, M. Turbiez, J. Gilot, R.A.J. Janssen, Narrow-Bandgap Diketo-pyrrolo- pyrrole Polymer Solar Cells:the Effect of Processing on the Performance. Adv. Mater.,2008,20 (13), 2556-2560.
    [267]L.J. Zuo, Z. Cao, X.L. Hu, Z.W. Gu, H.B. Pan, H.Z. Chen, Immerse Precipitation as an Efficient Protocol to Optimize Morphology and Performance of Organic Solar Cells. Appl. Phys. Lett.,2012,101 (23),233306-233309.
    [268]K. Ogawa, S.C. Rasmussen, A Simple and Efficient Route to N-Functionalized Dithieno[3,2-b:2',3'-d]pyrroles:(?) Fused-Ring Building Blocks for New Conjugated Polymeric Systems. J. Org. Chem.,2003,68 (7),2921-2928.
    [269]J.Y. Liu, R. Zhang, G. Sauve, T. Kowalewski, R.D. Mccullough, Highly Disordered Polymer Field Effect Transistors:N-Alkyl Dithieno[3,2-b:2',3'-d]pyrrole-Based Copolymers with Surprisingly High Charge Carrier Mobilities. J. Am. Chem. Soc,2008,130 (39), 13167-13176.
    [270]E.J. Zhou, M. Nakamura, T. Nishizawa, Y. Zhang, Q. Wei, K. Tajima, Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2',3'-d]pyrrole. Macromolecules,2008,41 (22),8302-8305.
    [271]X. Zhang, T.T. Steckler, R.R. Dasari, S. Ohira, W.J. Potscavage, S.P. Tiwari, S. Copp, S. Ellinger, S. Barlow, J.L. Bredas, B., Kippelen, J.R. Reynolds, S.R. Marder, Dithienopyrrole-Based Donor-Acceptor Copolymers:Low Band-Gap Materials for Charge Transport, Photovoltaics and Electrochromism. J. Mater. Chem.,2010,20 (1),123-134.
    [272]C.B. Nielsen, T. Bjornhohn, New Regiosymmetrical Dioxopyrrolo-and Dihydropyrrolo-Functionalized Polythiophenes. Org. Lett.,2004,6 (19),3381-3384.
    [273]M.C. Yuan, M.Y. Chiu, S.P. Liu, C.M. Chen, K.H. Wei, A Thieno[3,4-c]pyrrole-4,6-dione-Based Donor-Acceptor Polymer Exhibiting High Crystallinity for Photovoltaic Applications. Macromolecules,2010,43 (17),6936-6938.
    [274]S.P. Mishra, A.K. Palai, R. Srivastava, M.N. Kamalasanan, M. Patri, Dithieno[3,2-b:2',3'-d] pyrrole-Alkylthiophene-Benzo[c][1,2,5]thiadiazole-Based Highly Stable and Low Band Gap Polymers for Polymer Light-Emitting Diodes. J. Polym. Sci. Part A:Polym. Chem.,2009,47 (23),6514-6525.
    [275]W. Zhang, J. Li, B. Zhang, J.G. Qin, Highly Fluorescent Conjugated Copolymers Containing Dithieno[3,2-b:2',3'-d]Pyrrole. Macromol. Rapid. Commun.,2008,29 (19), 1603-1608.
    [276]W. Yue, T.T. Larsen-Olsen, X.L. Hu, M.M. Shi, H.Z. Chen, M. Hinge, P. Fojan, F.C. Krebs, D.H. Yu, Synthesis and Photovoltaic Properties From inverted Geometry Cells and Roll-to-Roll Coated Large Area Cells From Dithienopyrrole-Based Donor-Acceptor Polymers. J. Mater. Chem. A,2013,1 (5),1785-1793.
    [277]Z.G. Zhang, J.Z. Wang, Structures and Properties of Conjugated Donor-Acceptor Copolymers for Solar Cell Applications. J. Mater. Chem.,2012,22 (10),4178-4187.
    [278]J.W. Chen, Y. Cao, Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterqjunction Photovoltaic Devices. Acc. Chem. Res.,2009,42 (11),1709-1718.
    [279]M.J. Agua, A.S. Alvarez-Insria, S.J. Conde, Bromothiophene Reactions. I. Friedel-Crafts Acylation. Heterocyclic Chem.,1981,18 (7),1345-1347.