某些含硫/氮杂原子的有机半导体材料分子设计及载流子传输性质理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年以来,有机光电材料因其质轻、价廉、性质可调、能大面积制备等优势在微电子器件中得到了广泛的应用。大量理论和实验研究表明,电荷载流子传输效率是影响有机半导体器件性能至关重要的因素,因此从理论上研究有机半导体材料载流子迁移率对设计和开发具有特殊功能的新型有机光电材料具有重要的理论与实践意义。本论文以几类含硫、氮杂原子的有机小分子光电材料分子设计及载流子迁移率理论模拟为主要研究内容,在分子和晶体水平上深入分析了所研究化合物分子结构(如取代基)、电子性质(如前线分子轨道能级、电离势和电子亲和势)、固态分子堆积模式(如晶体结构)等因素对其电荷传输性质的影响。另外,我们也讨论了取代基对光谱性质的影响。本文研究为设计和合成具有高载流子迁移率和空气稳定性的有机光电材料提供了理论参考。论文主要包括以下四部分内容:
     1.以蒽并[2,3-c]噻吩(AcTH)为基本结构单元,设计并研究了一系列5,10--取代的蒽并[2,3-c]噻吩衍生物分子结构、电子性质、光学稳定性、内重组能和载流子迁移率等性质。计算结果表明,氰基取代和乙炔化能增强母体化合物分子刚性,是设计低重组能有机半导体材料的有效方法。此外,还利用简单的一维电荷传输模型和半经验的Marcus-Hush电子转移速率理论,在分子水平上评估了化合物AcTH、DCHC-AcTH、DCN-AcTH的空穴迁移率,并与相同条件下Pentacene的预测值进行了比较。结果表明,这三个化合物在同一评估模型中表现出比Pentacene更强的空穴传输能力。尽管模型本身较为简单,但结果预示AcTH、DCHC-AcTH. DCN-AcTH应该是性能良好的空穴传输材料,值得进一步实验研究。
     2.研究了7,8,15,16-tetraazaterrylene(TAT)及其系列吸电子基(-Cl,-F,-CN)四取代衍生物分子结构、电子性质、光谱性质和电子迁移率等信息。研究发现氟基(-F)、氯基(-C1)、氰基(-CN)等强吸电子基的引入能显著降低化合物前线分子轨道能级和电子注入势垒,提高其氧化-还原稳定性,并且引入这些基团也能增强主电荷传输通道的电子转移积分,从而提高这类材料的电子传输能力。特别是4CN-TAT绝热电子亲和势高达3.599eV,预计是相当稳定的电子传输材料。采用量子校正的Marcus-Levich-Jortner(MLJ)电子转移速率模型结合随机行走模拟和Einstein方程预测了TAT晶体的载流子迁移率。结果表明,TAT单晶室温下(300K)电子迁移率达到3.404×10-2cm2·V-1·s-1。吸收和发射光谱模拟表明,引入吸电子取代基致使最大吸收和发射峰红移,光吸收和发射强度增大,其中最强吸收和发射峰均归属于HOMO和LUMO轨道之间的电子跃迁。
     3.以2-((10H-benzothieno[3,2-b]indol-2-yl)methylene)malononitrile(BTMN)和2-((11H-benzo[a]carbazol-9-yl)methylene)malononitrile(BCMN)为研究对象,采用量子校正的Marcus-Levich-Jortner(MLJ)电子传输速率模型和Einstein方程,研究了分子晶体BTMN和BCMN的空穴和电子迁移率。结果表明,BTMN晶体空穴迁移率室温下(300K)达到6.387×10-2cm-2·V-1·s-1,电子迁移率达到1.936×10-2cm2·V-1·-1;BCMN晶体空穴迁移率室温下达到2.404×10-1cm2·V-1·s-1,电子迁移率达到1.418×10-1cm2·V-1·s-1.预测结果表明两种分子晶体空穴和电子迁移率均比较大,而且处在同一数量级上。尤其是BCMN,两种载流子迁移率预测值均超过具有实际应用价值的OFET装置载流子迁移率临界值(0.1cm2·V-1·s-1),因此BCMN是非常有应用前景的两极传输材料,值得实验上进一步器件化研究。吸收和发射光谱模拟表明,最强吸收和发射峰均归属于HOMO-1和LUMO轨道之间的电子跃迁,光吸收/发射过程为光诱导的分子内电子在并四环和二氰乙烯基之间的转移过程。
     4.利用密度泛函理论(DFT)计算结合晶体结构预测和不连续的电荷跳跃模型,在分子和晶体水平上研究了四个氮掺杂二氰基取代的并五苯洐生物(PBD1, PBD2, PBD3, PBD4)分子结构、电子性质、晶体结构及电子传输参数。结果表明,氮原子掺杂及氰基取代不但不会破坏并环体系骨架结构,而且能显著降低体系的HOMO和LUMO分子轨道能级,是设计高空气稳定电子传输材料的合理策略。晶体结构预测表明,所研究化合物在晶体中可沿某些晶轴方向形成近距离的面对面分子堆积。以预测的分子晶体结构为基础,采用传统的Marcus-Hush电荷传输模型和Einstein方程研究了其电子迁移率。结果表明,所研究晶体室温下(300K)具有较高的电子迁移率(0.518~1.052cm2·V-1·s-1),是一类相当有应用前景的电子传输材料,值得实验上进一步合成并器件化研究。迁移率各向异性模拟表明,电子在这些分子晶体中传输时表现出显著的各向异性行为,电子迁移率最大值沿着晶轴方向。
In the last decades, organic photoelectron materials have been widely used in microelectronic devices for several obvious advantages, such as lightweight, low-cost, flexible adjustion of properties, and convenient large-area fabrication. Numerous theoretical and experimental investigations have demonstrated clearly that the charge carrier transport effeciency is the most important factor that determines the performance of photoelectron devices. Hence, it is very significant to theoretically investigate the charge carrier mobility of organic photoelectron materials for designing and developing new organic semiconductor materials with some special functions. In this dissertation, based upon the systematical study on the the molecular design and charge carrier mobility for several newly-synthesized small molecules containing sulfur and nitrogen heteroatoms, we have analyzed in detail the influences of molecular geometries (such as substituents), electronic properties (such as frontier molecular orbital levels, ionization potentials, and electron affinities), and molecular packing patterns in solid phases (such as crystal structures) on the charge carrier mobility at the molecular and crystal levels. In addition, the substituent effects on the light absorption and emission properties of these compounds have also been discussed. Our study may provide several valuable references for designing and synthesizing new photoelectronic materials with the high carrier mobility and air stability. The whole dissertation mainly includes the following four sections,
     1. Based on anthra[2,3-c]thiophene unit (AcTH), a set of5,10-disubstituted anthra [2,3-c]thiophene derivatives have been designed, and their molecular structures, electronic properties, optical stability, inner reorganization energies, and hole mobilities have been investigated. Our calculations reveal that cyano group substitution and ethinylation, which can enhance the molecular rigidity of parent compound, are efficient strategies designing organic semiconductor materials with the low inner reorganization energy. In addition, upon the simple one dimensional charge transport model and semiempirical Marcus-Hush electron transfer theory, the hole mobilities of AcTH, DCHC-AcTH, and DCN-AcTH have been estimated and compared with that of Pentacene. The result shows that these three compounds have higher hole mobilities under the same condition than Pentacene, which indicates AcTH, DCHC-AcTH, and DCN-AcTH may be promising p-channel OFET materials and worthy of being studied further in experiments.
     2. The molecular geometries, electronic properties, spectral properties, and electron mobilities have been studied for7,8,15,16-tetraazaterrylene (TAT) and its three tetrasubstituted derivates with the electron-withdrawing groups (-F,-Cl,-CN). Our calculation shows that the introduction of strong electron-withdrawing groups can remarkably lower the frontier molecular orbital energy levels and the electron injection potential barrier, and enhance the oxido-reduction stability. More important, introducing these groups can also increase the hole and electron transfer integrals in the dominant charge transfer channel, and then the electron transport ability. Especially,4CN-TAT possesses a quite large adiabatic electron affinity of3.599eV, and so it is very stability as n-channel OFET materials exposed to water and oxygen. Lastly, upon the quantum-corrected Marcus-Levich-Jortner (MLJ) rate model coupled with the random-walk simulation of diffusion coefficient and the Einstein equation, the electron mobility for TAT molecular crystal is predicted to be as high as3.404×10-2cm2·V-1·s-1, which suggestes that TAT crystal may be a promising n-channel OFET material and is worthy of being studied further in experiments. In addition, the simulation for the spectral properties indicates that the strongest absorption and emission peaks red shift with the introduction of electron-withdrawing groups and these peaks are dominated by the transition between HOMO and LUMO.
     3. Based on two newly-synthesized small molecular compounds with the dicyanovinyl group, including BTMN and BCMN, the hole and electron mobilities have been theoretically investigated with the quantum-corrected Marcus-Levich-Jortner (MLJ) electron transfer rate formulation and the Einstein equation. The results show that the hole and electron mobilities at room temperature (T=300K) reach6.387×10-2cm2·V and1.936×10-2cm2·V-1·-s-1for BTMN crystal,2.404×10-1cm·V-1·-s-1and1.418×10-1'cm2·V-1·s-1for BCMN crystal. Our prediction reveals that BTMN and BCMN should be potential ambipolar transport OFET materials for their close hole and electron mobilities. More important, BCMN crystal displays large carrier mobilities, which are even more than the threshold value of0.1cm2·V-1·s-1, that is enough high for applying in practical OFET devices. Hence, BCMN is expected to be promising ambiploar transport materials and deeply be studied in experiments. In addition, the simulation for the light absorption and emission properties indicates that the strongest absorption and emission peaks are mainly dominated by the transition between HOMO-1and LUMO. Practically, the light absorption and emission in the studied compounds are the intramolecular electron transfer process induced by light between the fused ring and the dicyanovinyl group.
     4. In this section, the molecular structures, electronic properties, crystal structures, and electron transport parameters for four novel nitrogen-rich pentacene derivatives with two cyano groups (PBD1, PBD2, PBD3, and PBD4) have been investigated at the molecular and crystal levels by means of density functional theory (DFT) calculations coupled with the prediction of crystal structures and the incoherent charge-hopping model. Calculations reveal that the nitrogen doping and cyano group substitution can lower remarkably the HOMO and LUMO energy levels, and do not break the parent's planar structure, then which are viewed as the efficient strategies designing organic electron transport materials with the high air-stability. The prediction of crystal.--structures indicates that these compounds in crystals can stack the close face-to-face style with the short interplanar distance along the crystal axis direction. In addition, based on the crystal structures obtained with the molecular mechanics (MM) method coupled with the Marcus-Hush charge transfer model and the Einstein equation, the electron mobility of these molecular crystals have been studied. Our calculations show that these crystals may be potential n-channl OFET materials for their high electron mobility (0.518~1.052cm2·V-1·s-1), and worthy of being investigated further in experiments. Furthermore, we find the electron transport in these crystals shows remarkable anisotropic, and the maximum μe value appears along a certain crystal axis direction.
引文
[1]胡文平.有机场效应晶体管[M].北京:科学出版社,2011:15.
    [2]Lundstrom M. Moore's Law Forever?[J]. Science,2003,299:210-211.
    [3]吴沛.有机场效应管的制作及特性研究[D].南京:东南大学,2005.
    [4]李荣金,李洪祥,胡文平,等.功能聚合物:从薄膜器件到纳米器件[J].物理,2006,35(6):476-486.
    [5]周建林.有机场效应晶体管的研制[D].兰州:兰州大学,2008.
    [6]Grimsdale A. C, Chan K. L, Martin R. E, et al. Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices[J]. Chem. Rev,2009,109:897-1091.
    [7]Wei D. C, Wu B, Guo Y. L, et al. Controllable Chemical Vapor Deposition Growth of Few Layer Graphene for Electronic Devices[J]. Acc. Chem. Res. 2013,46:106-115.
    [8]Lo S.-C, Burn P. L. Development of Dendrimers:Macromolecules for Use in Organic Light-Emitting Diodes and Solar Cells[J]. Chem. Rev,2007,107: 1097-1116.
    [9]高洪泽.典型有机载流子传输材料的理论研究[D].吉林:吉林大学,2009.
    [10]叶坚,陈红征,施敏敏,等.有机电子传输材料研究新进展[J].自然科学进展,2002,12(8):800-805.
    [11]Dong H. L, Wang C. L, Hu W. P. High Performance Organic Semiconductors for Field-effect Transistors[J]. Chem. Commun,2010,46:5211-5222.
    [12]杨定宇,蒋孟衡,杨军,等.有机电致发光材料研究进展[J].西南民族大学学报(自然科学版),2006,32(6):1231-1235.
    [13]徐征,雷刚,李岚,等.新型交流薄膜电致发光器件的研究[J].光电子技术,1991,11(3):26-30.
    [14]环翱,惠贵兴,徐美华.高灰度视频OLED显示控制系统设计与应用[J].液晶与显示,2012,7(5):622-627.
    [15]Pope M, Kallmann H. P, Magnantel P. Electroluminescence in Organic Crystals [J]. J. Chem. Phys,1963,38:2042-2043.
    [16]Tang C. W, VanSlyke S. A. Organic Electroluminescent Diodes[J]. Appl. Phys. Lett,1987,51:915-917.
    [17]Burroughes J. H, Bradley D. D. C, Brown A. R, et al. Light-emitting Diodes based on Conjugated Polymers[J]. Nature,1990,347:539-541.
    [18]邱勇.有机光电材料研究进展与发展趋势[J].前沿科学,2010,4(3):8-14.
    [19]黄剑,曹镛.有机电致发光材料研究进展[J].化工新型材料,2001,29(9):10-15.
    [20]蒋泉.透明OLED器件及全彩PMOLEDS显示系统的研究[D].成都:电子科技大学,2008.
    [21]张春林.绿色有机电致发光器件(OLED)的研究[D].兰州:兰州大学,2011.
    [22]孙三春,福田武司,曹进,等.高亮度微腔有机电致发光器件[J].光电子·激光,2009,20(5):609-611.
    [23]陈金伙.有机场效应晶体管的研究与试制[D].兰州:兰州大学,2006.
    [24]Tsumura A, Koezuka H, Ando T. Macromolecular Electronic Device:Field-effect Transistor with A Polythiophene Thin Film[J]. Appl. Phys. Lett,1986,49: 1210-1212.
    [25]Assadi A, Svensson C, Willander M, et al. Field-effect Mobility of Poly (3-hexylthiophene)[J]. Appl. Phys. Lett,1988,53:195-197.
    [26]Fuchigami H, Tsumura A, Koezuka H. Polythienylenevinylene Thin-film Transistor with High Carrier Mobility[J]. Appl. Phys. Lett,1993,63:1372-1374.
    [27]Gamier F, Hajlaoui R, Yassar A, et al. All-polymer Field-effect Transistor Realized by Printing Techniques[J]. Science,1994,16:1684-1686.
    [28]Gundlach D. J, Lin Y. Y, Jackson T. N, et al. Pentacene Organic Thin-film Transistors-Molecular Ordering and Mobility[J]. IEEE Electron Dev. Lett,1997, 18:87-89.
    [29]Klauk H, Halik M, Zschieschang U, et al. High-mobility Polymer Gate Dielectric Pentacene Thin Film Transistors[J]. J. Appl. Phys,2002,92:5259-5263.
    [30]Sundar V. C, Zaumseil J, Podzorov V, et al. Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals[J]. Science,2004, 303:1644-1646.
    [31]Fukuda H, Yamagishi Y, Ise M, et al. Gas Sensing Properties of Poly-3-hexylthiophene Thin Film Transistors[J]. Sens. Actuators B,2005,108:414-417.
    [32]Zhang X.-H, Domercq B, Kippelen B. High-performance and Electrically Stable C60 Organic Field-effect Transistors[J]. Appl. Phys. Lett,2007,91: 092114.
    [33]Wang C. L, Dong H. L, Hu W. P, et al. Semiconducting π-Conjugated Systems in Field-Effect Transistors:A Material Odyssey of Organic Electronics[J]. Chem. Rev,2012,112:2208-2267.
    [34]Di C.-A, Liu Y. Q, Yu G, et al. Interface Engineering:An Effective Approach toward High-Performance Organic Field-Effect Transistors[J]. Acc. Chem. Res, 2009,42:1573-1583.
    [35]聂国政.有机薄膜晶体管制备和性能研究[D].广州:华南理工大学,2011.
    [36]李亚丹.硅太阳能池关键技术研究[D].哈尔滨:黑龙江大学,2009.
    [37]Chen J. W, Cao Y. Development of Novel Conjugated Donor Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic DevicesfJ]. Acc. Chem. Res, 2009,42:1709-1718.
    [38]宋群梁.有机小分子太阳能电池的界面研究[D].上海:复旦大学,2006.
    [39]陈德明,徐刚.太阳能热利用技术概况[J].物理,2007,36(11):840-847.
    [40](a) Windera C, Matt G, Hummelen J. C, et al. Sensitization of Low Bandgap Polymer Bulk Heterojunction Solar Cells[J]. Thin. Solid. Films,2002,403-404: 373-379. (b) Meskers S. C. J, Hiibner J, Oestreich M, et al. Dispersive Relaxation Dynamics of Photoexcitations in a Polyfluorene Film Involving Energy Transfer: Experiment and Monte Carlo Simulations[J]. J. Phys. Chem. B,2001,105: 9139-9149.
    [41]曹康丽.新型共轭聚合物的设计、合成及光电性能研究[D].上海:上海交通大学,2012.
    [42]刘震,徐丰,严大东.聚合物-富勒烯太阳能电池器件物理研究进展[J].化学学报,2014,72(1):171-184.
    [43]Burschka J, Pellet N, Moon S.-J, et al. Sequential Deposition as A Route to High-performance Perovskite-sensitized Solar Cells[J]. Nature,2013,499:316-319.
    [44]朱文娟.溶液中电子转移反应速率的理抢研究[D].合肥:中国科学技术大学,2009.
    [45]Eyring H, Glasstone S, Laidler K. J. Application of the Theory of Absolute Reaction Rates to Overvoltage[J]. J. Chem. Phys,1939,7:1053-1065.
    [46]Marcus R. A. On the Theory of Chemiluminescent Electron-Transfer Reactions [J]. J. Chem. Phys,1965,43:2654-2657.
    [47]Newton M. D, Sutin N. Electron Transfer Reactions in Condensed Phases[J]. Ann. Rev. Phys. Chem,1984,35:437-480.
    [48]Landau L. Zur Theorie der Energieubertragung. Ⅱ.[J]. Phys. Z. Sowjet,1932,2: 46-51.
    [49]同济大学出版社.高等数学·上册[M].上海:同济大学出版社,1998:154.
    [50](a) Jortner J. Temperature Dependent Activation Energy for Electron Transfer between Biological Molecules[J]. J. Chem. Phys,1976,64:4860-4867. (b) Barbara P. F, Meyer T. J, Ratner M. A. Contemporary Issues in Electron Transfer Research[J]. J. Phys. Chem,1996,100:13148-13168.
    [51]Zhu W. J, Zhao Y. Quantum Effect of Intramolecular High-frequency Vibrational Modes on Diffusion-controlled Electron Transfer Rate:From the Weak to the Strong Electronic Coupling Regions[J]. J. Chem. Phys,2007,126:184105.
    [52]Dirac P. A. M. The Quantum Theory of Emission and Absorption of Radiation[J]. Proc. R. Soc. London. Ser. A,1927,114:243-265.
    [53]Coropceanu V, Cornil J, da Silva Filho D. A, et al. Charge Transport in Organic Semiconductors[J]. Chem. Rev,2007,107:926-952.
    [54]汤肖丹,高洪泽,耿允,等.二邻苯二胺合镍(Ⅱ)载流子传输性能的理论研究[J].高等学校化学学报,2010,31(4):766-771.
    [55]Oliver H, Leblanc J. Band Structure and Transport of Holes and Electrons in Anthracene[J]. J. Chem. Phys,1961,35:1275-1280.
    [56]Holstein T. Studies of Polaron Motion:Part Ⅱ. The "small" Polaron[J]. Ann. Phys,1959:343-389.
    [57]Holstein T. Studies of Polaron Motion:Part Ⅰ. The Molecular-crystal Model[J]. Ann. Phys,1959,8:325-342.
    [58]Marcus R. A. Electron Transfer Reactions in Chemistry. Theory and Experiment [J]. Rev. Mod. Phys,1993,65:599-610.
    [59]Schein L. B, McGhie A. R. Band-hopping Mobility Transition in Naphthalene and Deuterated Naphthalene[J]. Phys. Rev. B,1979,20:1631-1639.
    [60]Pasveer W. F, Cottaar J, Tanase C, et al. Unified Description of Charge-Carrier Mobilities in Disordered Semiconducting Polymers[J]. Phys. Rev. Lett,2005,94: 206601.
    [61]Bluestone S. A Monte Carlo Simulation for a Uniform Ladder of Energy Levels: Statistical Thermodynamic Properties[J]. J. Chem. Educ,1995,72:606-607.
    [62]Inoue Y, Sakamoto Y, Suzuki T, et al. Organic Thin-Film Transistors with High Electron Mobility Based on Perfluoropentacene[J]. J. Appl. Phys,2005,44: 3663-3668.
    [63]徐光宪,黎乐民,王德民.量子化学(第2版)[M].北京:科学出版社,2007:1-2.
    [64]林梦海.量子化学简明教程[M].北京:化学工业出版社,2005:1-2.
    [65]Born M, Oppenheimer R. Zur Quantentheorie der Molekeln[J]. Annalen der Physik,1927,389:457-484.
    [66]淘成君,顾强.玻色气体的磁性[J].物理,39(1):44-50.
    [67]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev,1964,136: B864-B871.
    [68]Kohn W, Sham L. J. Self-consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev,1965,140:A1133-A1138.
    [69]苏乃强,徐听.XYG3型双杂化密度泛函方法新进展:从能量到能量的解析梯度[J].中国科学:化学,2013,43(12):1761-1779.
    [70]傅献彩,沈文霞,姚天扬,等.物理化学·下册(第5版)[M].北京:高等教育出版社,2006:271-272.
    [71]Frisch M. J, Trucks G W, Schlegel H. B, et al. Gaussian 09, in:Revision C.03, Gaussian Inc., Wallingford, CT,2010.
    [72](a) Malagoli M, Bredas J. L. Density Functional Theory Study of the Geometric Structure and Energetics of Triphenylamine-based Hole-transporting Molecules [J]. Chem. Phys. Lett,2000,327:13-17. (b) Lemaur V, da Silva Filho D. A, Coropceanu V, et al. Charge Transport Properties in Discotic Liquid Crystals:A Quantum-Chemical Insight into Structure-Property Relationships[J]. J. Am. Chem. Soc,2004,126:3271-3279.
    [73](a) Kwon O, Coropceanu V, Gruhn N. E, et al. Characterization of the Molecular Parameters Determining Charge Transport in Anthradithiophene[J]. J. Chem. Phys,2004,120:8186-8194. (b) Sanchez-Carrera R. S, Coropceanu V, da Silva Filho D. A, et al. Vibronic Coupling in the Ground and Excited States of Oligoacene Cations[J]. J. Phys. Chem. B,2006,110:18904-18911. (c) Bredas J.-L, Beljonne D, Coropceanu V, et al. Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers:A Molecular Picture[J]. Chem. Rev,2004,104:4971-5004.
    [74](a) Weber P, Reimers J. R. Ab Initio and Density-Functional Calculations of the Vibrational Structure of the Singlet and Triplet Excited States of Pyrazine[J]. J. Phys. Chem. A,1999,103:9830-9841. (b) Cai Z.-L, Reimers J. R. The Low-Lying Excited States of Pyridine[J]. J. Phys. Chem. A,2000,104:8389-8408.
    [75]闵玮,孙琳.有机共轭体系电子转移反应的溶剂重组能[J].物理化学学报,2001,17(10):924-930.
    [76](a) McMahon D. P, Troisi A. Evaluation of the External Reorganization Energy of Polyacenes[J]. J. Phys. Chem. Lett,2010,1:941-946. (b) Norton J. E, Bredas J.-L. Polarization Energies in Oligoacene Semiconductor Crystals[J]. J. Am. Chem. Soc,2008,130:12377-12384.
    [77]Duan Y.-A, Geng Y, Li H.-B, et al. Theoretical Study on Charge Transport Properties of Cyanovinyl-substituted Oligothiophenes[J]. Org. Electron,2012, 13:1213-1222.
    [78](a) Cornil J, Beljonne D, Calbert J.-P, et al. Interchain Interactions in Organic π-Conjugated Materials:Impact on Electronic Structure,Optical Response, and ChargeTransport[J]. Adv. Mater,2001,13:1053-1067. (b) Datta A, Mohakud S, Pati S. K. Comparing the Electron and Hole Mobilities in the a and ? Phases of Perylene:Role of π-stacking[J]. J. Mater. Chem,2007, 17:1933-1938.
    [79]Grzegorczyk W. J, Savenije T. J, Valeton J. J. P, et al. Optical and Conductive Properties of Large-area Liquid Crystalline Monodomains of Terthiophene Derivatives[J]. J. Phys. Chem. C,2007,111:18411-18416.
    [80](a) Troisi A, Orlandi G. Dynamics of the Intermolecular Transfer Integral in Crystalline Organic Semiconductors[J]. J. Phys. Chem. A,2006,110:4065-4070. (b) Fujita T, Nakai H, Nakatsuji H. Ab Initio Molecular Orbital Model of Scanning Tunneling Microscopy[J] J. Chem. Phys,1996,104:2410-2417.
    [81]Troisi A, Orlandi G. Hole Migration in DNA:a Theoretical Analysis of the Role of Structural Fluctuations[J]. J. Phys. Chem. B,2002,106:2093-2101.
    [82]Yin S. W, Yi Y. P, Li Q. X, et al. Balanced Carrier Transports of Electrons and Holes in Silole-Based Compounds:A Theoretical Study[J]. J. Phys. Chem. A, 2006,110:7138-7143.
    [83]Valeev E. F, Coropceanu V, da Silva Filho D. A, et al. Effect of Electronic Polarization on Charge-Transport Parameters in Molecular Organic Semiconductors[J]. J. Am. Chem. Soc,2006,128:9882-9886.
    [84]帅志刚,邵久书.理论化学原理与应用[M].北京:科学出版社,2008:698.
    [85]Cave R. J, Newton M. D. Generalization of the Mulliken-Hush Treatment for the Calculation of Electron Transfer Matrix Elements[J]. Chem. Phys. Lett,1996, 249:15-19.
    [86](a) Deng W.-Q, Goddard Ⅲ W. A. Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations[J]. J. Phys. Chem. B,2004,108:8614-8621. (b) Song Y. B, Di C. A, Yang X. D, et al. A Cyclic Triphenylamine Dimer for Organic Field-Effect Transistors with High Performance[J]. J. Am. Chem. Soc, 2006,128:15940-15941.
    [87]Wang L. J, Nan G. J, Yang X. D, et al. Computational Methods for Design of Organic Materials with High Charge Mobility[J]. Chem. Soc. Rev,2010,39:423 434.
    [88](a) Yang X. D, Wang L. J, Wang C. L, et al. Influences of Crystal Structures and Molecular Sizes on the Charge Mobility of Organic Semiconductors: Oligothiophenes[J]. Chem. Mater,2008,20:3205-3211. (b) Nan G J, Yang X. D, Wang L. J, et al. Nuclear Tunneling Effects of Charge Transport in Rubrene, Tetracene, and Pentacene[J]. Phys. Rev. B,2009,79: 115203.
    [89](a) Wen S.-H, Li A, Song J. L, et al. First-Principles Investigation of Anistropic Hole Mobilities in Organic Semiconductors[J].J. Phys. Chem. B,2009,113: 8813-8819. (b) Huang J.-D, Wen S.-H, Deng W.-Q, et al. Simulation of Hole Mobility in a-Oligofuran Crystals[J]. J. Phys. Chem. B,2011,115:2140-2147.
    [90]Yin S. W, Li L. L, Yang Y. M, et al. Challenges for the Accurate Simulation of Anisotropic Charge Mobilities through Organic Molecular Crystals:The β Phase of mer-Tris(8-hydroxyquinolinato)aluminum(Ⅲ)(Alq3) Crystal[J]. J. Phys. Chem. C,2012,116:14826-14836.
    [91]Material Studio 5.5. Accelrys Software Inc.2010.
    [92]Gdanitz R. J. Prediction of Molecular Crystal Structures by Monte Carlo Simulated Annealing without Reference to Diffraction Data[J]. Chem. Phys. Lett, 1992,190:391-396.
    [93]van Eijck B. P, Kroon J. Upack Program Package for Crystal Structure Prediction:Force fields and Crystal Structure Generation for Small Carbohydrate Molecules[J]. J. Comput. Chem,1999,20:799-812.
    [94]Day G. M, Chisholm J, Shan N, et al. An Assessment of Lattice Energy Minimization for the Prediction of Molecular Organic Crystal Structures[J]. Cryst. Growth Des,2004,4:1327-1340.
    [95]Hains A. W, Liang Z, Woodhouse M. A, et al. Molecular Semiconductors in Organic Photovoltaic Cells[J]. Chem. Rev,2010,110:6689-6735.
    [96](a) Niimi K, Kang M. J, Miyazaki E, et al. General Synthesis of Dinaphtho [2,3-b:2,3-fJthieno[3',2'-b]thiophene (DNTT) Derivatives[J]. Org. Lett,2011,13: 3430-3433. (b) Yamamoto T, Takimiya K. Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2',3'-f|chalcogenopheno[3,2-b]chalcogeno phenes, and Their Application to Field-Effect Transistors[J]. J. Am. Chem. Soc, 2007,129:2224-2225.
    [97](a) Liu C.-C, Mao S.-W, Kuo M.-Y. Cyanated Pentaceno[2,3-c]chalcogeno phenes for Potential Application in Air-Stable Ambipolar Organic Thin-Film Transistors[J]. J. Phys. Chem. C,2010,114:22316-22321. (b) Kuo M.-Y, Liu C.-C. Molecular Design toward High Hole Mobility Organic Semiconductors:Tetraceno[2,3-c]thiophene Derivatives of Ultrasmall Reorganization Energies[J]. J. Phys. Chem. C,2009,113:16303-16306.
    [98]Cias P, Slugovc C, Gescheidt G. Hole Transport in Triphenylamine based OLED Devices:From Theoretical Modeling to Properties Prediction[J]. J. Phys. Chem. A,2011,115:14519-14525.
    [99]Brown H. C, Okamoto Y. Electrophilic Substituent Constants[J]. J. Am. Chem. Soc,1958,80:4979-4987.
    [100](a) El-Azhary A. A, Suter H. U. Comparison between Optimized Geometries and Vibrational Frequencies Calculated by the DFT Methods[J]. J. Phys. Chem. 1996,100:15056-15063. (b) Siddle J. S, Ward R. M, Collings J. C, et al. Synthesis, Photophysics and Molecular Structures of Luminescent 2,5-bis(phenylethynyl)thiophenes(BPETs) [J]. New J. Chem,2007,31:841-851. (c) Song P, Ma F. Tunable Electronic Structures and Optical Properties of Fluorenone-Based Molecular Materials by Heteroatoms[J]. J. Phys. Chem. A, 2010,114:2230-2234.
    [101]Huang J. S, Kertesz M. Intermolecular Transfer Integrals for Organic Molecular Materials:Can Basis Set Convergence be Achieved?[J]. Chem Phys. Lett,2004, 390:110-115.
    [102]Kulkarni A. P, Tonzola C. J, Babel A, et al. Electron Transport Materials for Organic Light-Emitting Diodes[J]. Chem. Mater,2004,16:4556-4573.
    [103]于军胜,锁钒,黎威志,等.电极材料对NPB/Alq3有机电致发光器件性能的影响[J].物理化学学报,2007,23(11):1821-1826.
    [104]Usta H, Risko C, Wang Z. M, et al. Design, Synthesis, and Characterization of Ladder-Type Molecules and Polymers. Air-Stable, Solution-Processable n-Channel and Ambipolar Semiconductors for Thin-Film Transistors via Experiment and Theory[J]. J. Am. Chem. Soc,2009,131:5586-5608.
    [105]Kim E.-G, Coropceanu V, Gruhn N. E, et al. Charge Transport Parameters of the Pentathienoacene Crystal[J]. J. Am. Chem. Soc,2007,129:13072-13081.
    [106]Chen X.-K, Zou L.-Y, Huang S, et al. Theoretical Investigation of Charge Injection and Transport Properties of Novel Organic Semiconductor Materials-cyclic Oligothiophenes[J]. Org. Electron,2011,12:1198-1210.
    [107]Chang Y.-C, Kuo M.-Y, Chen C.-P, et al. On the Air Stability of n-Channel Organic Field-Effect Transistors:A Theoretical Study of Adiabatic Electron Affinities of Organic Semiconductors[J]. J. Phys. Chem. C,2010,114:11595-11601.
    [108]Newman C. R, Frisbie C. D, da Silva Filho D. A, et al. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors[J]. Chem. Mater,2004,16:4436-4451.
    [109]Chen H.-Y, Chao I. Effect of Perfluorination on the Charge-Transport Properties of Organic Semiconductors:Density Functional Theory Study of Perfluorinated Pentacene and Sexithiophene[J]. Chem. Phys. Lett,2005,401:539-545.
    [110](a) Stevens B, Perez S. R, Ors J. A. Photoperoxidation of Unsaturated Organic Molecules. XIV. O21△g Acceptor Properties and Reactivity[J]. J. Am. Chem. Soc, 1974,96:6846-6850. (b) Chien S.-H, Cheng M.-F, Lau K.-C, et al. Theoretical Study of the Diels-Alder Reactions between Singlet (1△g) Oxygen and Acenes[J]. J. Phys. Chem. A, 2005,109:7509-7518.
    [111]Maliakal A. J, Chen Judy Y.-C, So W.-Y, et al. Mechanism for Oxygen-Enhanced Photoconductivity in Rubrene:Electron Transfer Doping[J]. Chem. Mater,2009,21:5519-5526.
    [112]Arulmozhiraja S, Ohno T. Attractive Tetraceno[2,3-b]thiophene Derivatives for Organic Transistor Applications:A Theoretical Analysis[J]. J. Phys. Chem. C, 2008,112:16561-16567.
    [113]Hutchison G. R, Ratner M. A, Marks T. J. Hopping Transport in Conductive Heterocyclic Oligomers:Reorganization Energies and Substituent Effects.[J]. J. Am. Chem. Soc,2005,127:2339-2350.
    [114]Bredas J.-L, Calbert J. P, da Silva Filho D. A, et al. Organic Semiconductors:A Theoretical Characterization of the Basic Parameters Governing Charge Transport[J]. Proc. Natl. Acad. Sci. USA,2002,99:5804-5809.
    [115](a) Liu H. G, Kang S, Lee J. Y. Electronic Structures and Charge Transport of Stacked Annelated β-trithiophenes[J]. J. Phys. Chem. B,2011,115:5113-5120. (b) Chen X.-K, Zou L.-Y, Ren A.-M, et al. How Dual Bridging Atoms Tune Structural and Optoelectronic Properties of Ladder-type Heterotetracenes? A Theoretical Study[J]. Phys. Chem. Chem. Phys,2011,13:19490-19498. (c) Olivier Y, Lemaur V, Bredas J.-L, et al. Charge Hopping in Organic Semiconductors:Influence of Molecular Parameters on Macroscopic Mobilities in Model One-dimensional Stacks[J]. J. Phys. Chem. A,2006,110:6356-6364.
    [116](a) Lee W. H, Park J, Sim S. H, et al. Surface-directed Molecular Assembly of Pentacene on Monolayer Graphene for High-performance Organic Transistors[J]. J. Am. Chem. Soc,2012,133:4447-4454. (b) Roberson L. B, Kowalik J, Tolbert L. M, et al. Pentacene Disproportionation during Sublimation for Field-effect Transistors[J]. J. Am. Chem. Soc,2005,127: 3069-3075.
    [117](a) Takahashi Y, Hasegawa T, Horiuchi S, et al. High Mobility Organic Field-Effect Transistor Based on Hexamethylenetetrathiafulvalene with Organic Metal Electrodes[J]. Chem. Mater,2007,19:6382-6384. (b) Jurchescu O. D, Popinciuc M, van Wees B. J, et al. Interface-Controlled, High-Mobility Organic Transistors[J]. Adv. Mater,2007,19:688-692. (c) Takeya J, Yamagishi M, Tominari Y, et al. Very High-mobility Organic Single-crystal Transistors with In-crystal Conduction Channels[J]. Appl. Phys. Lett,2007,90:102120-102123.
    [118]Handa S, Miyazaki E, Takimiya K. Air-stable Solution-processed Ambipolar Organic Field-effect Transistors Based on A Dicyanomethylene-substituted Terheteroquinoid Derivative[J]. Chem. Commun,2009,45:3919-3921.
    [119]Zhao Y, Di C.-A, Gao X. K, et al. All-Solution-Processed, High-Performance n-Channel Organic Transistors and Circuits:Toward Low-Cost Ambient Electronics[J]. Adv. Mater,2011,23:2448-2453.
    [120]Zhan X. W, Facchetti A, Barlow S, et al. Rylene and Related Diimides for Organic Electronics[J]. Adv. Mater,2011,23:268-284.
    [121]Fan J, Zhang L, Briseno A. L, et al. Synthesis and Characterization of 7,8,15,16-Tetraazaterrylene[J]. Org. Lett,2012,14:1024-1026.
    [122](a) Fabiano E, Della Sala F, Cingolani R, et al. Theoretical Study of Singlet and Triplet Excitation Energies in Oligothiophenes[J]. J. Phys. Chem. A,2005,109: 3078-3085. (b) Tsai F.-C, Chang C.-C, Liu C.-L, et al. New Thiophene-Linked Conjugated Poly(azomethine)s:Theoretical Electronic Structure, Synthesis, and Properties [J]. Macromolecules,2005,38:1958-1966.
    [123]Wang X, Lau K.-C. Theoretical Investigations on Charge-Transfer Properties of Novel High Mobility n-Channel Organic Semiconductors-Diazapentacene Derivatives[J]. J. Phys. Chem. C,2012,116:22749-22758.
    [124](a) Parusel A. B. J, Rettig W, Sudholt W. A Comparative Theoretical Study on DMABN:Significance of Excited State Optimized Geometries and Direct Comparison of Methodologies[J]. J. Phys. Chem. A,2002,106:804-815. (b) Jacquemin D, Preat J, Wathelet V, et al. Thioindigo Dyes:Highly Accurate Visible Spectra with TD-DFT[J]. J. Am. Chem. Soc,2006,128:2072-2083.
    [125]Gao H.-Z. Theoretical Studies of Electronic Structure and Hole Drift Mobility of Host Hole Transporting Material 4,4'-N,N'-dicarbazol-biphenyl[J]. Synth. Met, 2010,160:2104-2108.
    [126]Meijer E. J, de Leeuw D. M, Setayesh S, et al. Solution-processed Ambipolar Organic Field-effect Transistors and Inverters[J]. Nat. Mater,2003,2:678-682.
    [127](a) Chang Y.-C, Chao I. An Important Key to Design Molecules with Small Internal Reorganization Energy:Strong Nonbonding Character in Frontier Orbitals[J]. J. Phys. Chem. Lett,2010,1:116-121. (b) Kuo M.-Y, Chen H.-Y, Chao I. Cyanation:Providing a Three-in-One Advantage for the Design of n-Type Organic Field-Effect Transistors[J]. Chem. Eur. J,2007,13:4750-4758.
    [128](a) Chai S, Wen S.-H, Huang J.-D, et al. Density Functional Theory Study on Electron and Hole Transport Properties of Organic Pentacene Derivatives with Electron-Withdrawing Substituent[J]. J. Comput. Chem,2011,132:3218-3225. (b) Chai S, Wen S.-H, Han K.-L. Understanding Electron-withdrawing Substituent Effect on Structural, Electronic and Charge Transport Properties of Perylene Bisimide Derivatives[J]. Org. Electron,2011,12:1806-1814.
    [129]Dong S. H, Wang W. L, Yin S. W, et al. Theoretical Studies on Charge Transport Character and Optional Properties of Alq3 and its Difluorinated Derivatives[J]. Synth. Met,2009,159:385-390.
    [130]Tang M. L, Oh J. H, Reichardt A. D, et al. Chlorination:A General Route toward Electron Transport in Organic Semiconductors[J]. J. Am. Chem. Soc,2009,131: 3733-3740.
    [131]Li H. X, Zheng R. H, Shi Q. Theoretical Study of Charge Carrier Transport in Organic Semiconductors of Tetrathiafulvalene Derivatives[J]. J. Phys. Chem. C, 2012,116:11886-11894.
    [132]林英武,汪勇先.氰基红外光谱的计算机模拟[J].计算机与应用化学,2007,24(2):182-184.
    [133](a) Di Motta S, Di Donato E, Negri F, et al. Resistive Molecular Memories: Influence of Molecular Parameters on the Electrical Bistability[J]. J. Am. Chem. Soc,2009,131:6591-6598. (b) Di Motta S, Siracusa M, Negri F. Structural and Thermal Effects on the Charge Transport of Core-Twisted Chlorinated Perylene Bisimide Semiconductors[J]. J. Phys. Chem. C,2011,115:20754-20764.
    [134](a) Rotzoll R, Mohapatra S, Olariu V, et al. Radio Frequency Rectifiers based on Organic Thin-film Transistors[J]. Appl. Phys. Lett,2006,88:123502. (b) Steudel S, De Vusser S, Myny K, et al. Comparison of Organic Diode Structures Regarding High-frequency Rectification Behavior in Radio-frequency Identification Tags[J]. J. Appl. Phys,2006,99:114519.
    [135](a) Rogers J. A, Bao Z. N, Baldwin K, et al. Paper-like Electronic Displays: Large-area Rubber-stamped Plastic Sheets of Electronics and Microencapsulated Electrophoretic Inks[J]. Proc. Natl. Acad. Sci. USA,2001,98:4835-4840. (b) Comiskey B, Albert J. D, Yoshizawa H, et al. An Electrophoretic Ink for All-printed Reflective Electronic Displays[J]. Nature,1998,394:253-255.
    [136](a) Zhou L. S, Wang A, Wu S.-C, et al. All-organic Active Matrix Flexible Display[J]. Appl. Phys. Lett,2006,88:083502. (b) Beaujuge P. M, Reynolds J. R. Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices[J]. Chem. Rev,2010,110:268-320.
    [137]Someya T, Kato Y, Sekitani T, et al. Conformable, Flexible, Large-area Networks of Pressure and Thermal Sensors with Organic Transistor Active Matrixes[J]. Proc. Natl. Acad. Sci. USA,2005,102:12321-12325.
    [138]Crone B, Dodabalapur A, Lin Y.-Y, et al. Large-scale Complementary Integrated Circuits based on Organic Transistors[J]. Nature,2000,403:521-523.
    [139](a) Zaumseil J, Sirringhaus H. Electron and Ambipolar Transport in Organic Field-Effect Transistors[J]. Chem. Rev,2007,107:1296-1323. (b) Shkunov M, Simms R, Heeney M, et al. Ambipolar Field-Effect Transistors Based on Solution-Processable Blends of Thieno[2,3-b]thiophene Terthiophene Polymer and Methanofullerenes[J]. Adv. Mater,2005,17:2608-2612.
    [140]Du C. Y, Chen J. M, Guo Y. L, et al. Dicyanovinyl Heterotetracenes:Synthesis, Solid-state Structures, and Photophysical Properties[J]. J. Org. Chem,2009,74: 7322-7327.
    [141](a) Shirota Y, Kageyama H. Charge Carrier Transporting Molecular Materials and Their Applications in Devices[J]. Chem. Rev,2007,107:953-1010. (b) Jakle F. Advances in the Synthesis of Organoborane Polymers for Optical, Electronic, and Sensory Applications[J]. Chem. Rev,2010,110:3985-4022.
    [142](a) Gao J. L, Alhambra C. A Hybrid Semiempirical Quantum Mechanical and Lattice-sum Method for Electrostatic Interactions in Fluid Simulations[J]. J. Chem. Phys,1997,107:1212-1217. (b) Nam K, Gao J. L, York D. M. An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations[J]. J. Chem. Theory. Comput,2005,1:2-13.
    [143]Yang S.-Y, Zhao L, Duan Y.-A, et al. The Influence of Molecular Solid Packings on the Photoluminescence and Carrier Transport Properties for Two Bow-shaped Thiophene Compounds:A Theoretical Study[J]. Theor. Chem. Acc, 2013,132:1377-1385.
    [144]Troisi A. Charge Transport in High Mobility Molecular Semiconductors: Classical Models and New Theories[J]. Chem. Soc. Rev,2011,40:2347-2358.
    [145]Hutchison G. R, Ratner M. A, Marks T. J. Intermolecular Charge Transfer between Heterocyclic Oligomers. Effects of Heteroatom and Molecular Packing on Hopping Transport in Organic Semiconductors[J]. J. Am. Chem. Soc,2005, 127:16866-16881.
    [146](a) Kohler A, Khan A. L. T, Wilson J. S, et al. The Role of C-H and C-C Stretching Modes in the Intrinsic Non-radiative Decay of Triplet States in a Pt-containing Conjugated Phenylene Ethynylene[J]. J. Chem. Phys,2012,136: 094905. (b) Lee J. Y, Lee S. J, Kim K. S. Raman Intensities of C=C Stretching Vibrational Frequencies of Polyenes:Nodal mode analysis[J]. J. Chem. Phys, 1997,107:4112-4117.
    [147]刘波.1,3-二硫杂环戊烯-2-硫酮及其衍生物的光诱导反应动力学研究[D].杭州:浙江理工大学,2010.
    [148]Gronowski M, Kolos R. Ab Initio Studies of the Structure and Spectroscopy of CHNMg Stoichiometry Molecules and van der Waals Complexes[J]. J. Phys. Chem. A,2013,117:4455-4461.
    [149](a) Podzorov V, Menard E, Rogers J, et al. Hall Effect in the Accumulation Layers on the Surface of Organic Semiconductors[J]. Phys. Rev. Lett,2005,95: 226601. (b) Karl N. Charge Carrier Transport in Organic Semiconductors[J]. Synth. Met, 2003,133-134:649-657.
    [150]Usta H, Facchetti A, Marks T. J. N-channel Semiconductor Materials Design for Organic Complementary Circuits[J]. Acc. Chem. Res.2011,44:501-510.
    [151]Menard E, Meitl M. A, Sun Y. G, et al. Micro-and Nanopatterning Techniques for Organic Electronic and Optoelectronic Systems[J]. Chem. Rev,2007,107: 1117-1160.
    [152]Cheng Y.-J, Yang S.-H, Hsu C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications[J]. Chem. Rev,2009,109:5868-5923.
    [153](a) Jurchescu O. D, Baas J, Palstra T. T. M. Effect of Impurities on the Mobility of Single Crystal Pentacene[J]. Appl. Phys. Lett,2004,84:3061-3063. (b) Zhang K. K, Tan K. J, Zou C. J, et al. Control of Charge Mobility in Single-crystal Rubrene through Surface Chemistry[J]. Org. Electron,2010,11: 1928-1934.
    [154]Podzorov V, Menard E, Borissov A, et al. Intrinsic Charge Transport on the Surface of Organic Semiconductors[J]. Phys. Rev. Lett,2004,93:086602.
    [155]Street R. A. Thin-Film Transistors[J]. Adv. Mater,2009,21:2007-2022.
    [156]Sun H. R, Putta A, Billion M. Arene Trifluoromethylation:An Effective Strategy to Obtain Air-Stable n-Type Organic Semiconductors with Tunable Optoelectronic and Electron Transfer Properties[J]. J. Phys. Chem. A,2012,116: 8015-8022.
    [157](a) Chen X.-K, Guo J.-F, Zou L.-Y, et al. A Promising Approach to Obtain Excellentn-Type Organic Field-Effect Transistors:Introducing Pyrazine Ring[J]. J. Phys. Chem. C,2011,115:21416-21428. (b) Gao B. X, Wang M, Cheng Y. X, et al. Pyrazine-Containing Acene-Type Molecular Ribbons with up to 16 Rectilinearly Arranged Fused Aromatic Rings[J]. J. Am. Chem. Soc,2008,130:8297-8306. (c) Wang H. F, Wen Y. G, Yang X. D, et al. Fused-ring Pyrazine Derivatives for n-type Field-effect Transistors[J]. ACS Appl. Mater. Interfaces,2009,1:1122-1129.
    [158]Winkler M, Houk K. N. Nitrogen-Rich Oligoacenes:Candidates for n-Channel Organic Semiconductors[J]. J. Am. Chem. Soc,2007,129:1805-1815.
    [159]Delgado M. C. R, Kim E.-G, da Silva Filho D. A, et al. Tuning the Charge-Transport Parameters of Perylene Diimide Single Crystals via End and/or Core Functionalization:A Density Functional Theory Investigation[J]. J. Am. Chem. Soc.2010,132:3375-3387.
    [160](a) Kera S, Hosoumi S, Sato K, et al. Experimental Reorganization Energies of Pentacene and Perfluoropentacene:Effects of Perfluorination[J]. J. Phys. Chem. C.2013,117:22428-22437. (b) Gruhn N. E, da Silva Filho D. A, Bill T. G, et al. The Vibrational Reorganization Energy in Pentacene:Molecular Influences on Charge Transport [J]. J. Am. Chem. Soc,2002,124:7918-7919.
    [161](a) Zhan C.-G, Nichols J. A, Dixon D. A. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy:Molecular Properties from Density Functional Theory Orbital Energies[J]. J. Phys. Chem. A,2003,107:4184-4195. (b) Rienstra-Kiracofe J. C, Tschumper G. S, Schaefer Ⅲ H. F, et al. Atomic and Molecular Electron Affinities:Photoelectron Experiments and Theoretical Computations[J]. Chem. Rev,2002,102:231-282. (c) Muscat J, Wander A, Harrison N. M. On the Prediction of Band Gaps from Hybrid Functional Theory[J]. Chem. Phys. Lett.2001,342:397-401.
    [162]Oehzelt M, Aichholzer A, Resel R, et al. Crystal Structure of Oligoacenes under High Pressure[J]. Phys. Rev. B,2006,74:104103.