液晶共轭聚合物的分子设计与结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液晶共轭聚合物(LCCP)是近几年发展起来的一类新型的功能高分子,它兼有液晶聚合物和共轭聚合物的双重特性,集液晶性和发光性于一身。利用液晶基元在外力场下能自发取向的特点,可以有效地提高和控制高分子主链的共轭长度,从而得到具有优良的光、电、磁学性能的有机高分子材料。
     由于三联苯具有良好的致晶作用和发光性能,本文将液晶基元同时设计成发光基团,合成了一系列分别基于聚炔、聚噻吩和聚苯不同共轭主链的含三联苯液晶基元的侧链型液晶共轭聚合物,研究了其结构和性能之间的关系,特别是三联苯液晶基元既作为液晶基元又作为发光基团对聚合物液晶性能、热性能和发光性能的影响。
     本文设计合成了两种新型含氰基三联苯双取代乙炔单体4-[(4'-氰基-4-三联苯基)氧基]-1-丁基-1-丁炔A(bu)TPhCN和3-[(4'-氰基-4-三联苯基)氧基]-1-苯-1-丙炔A(Ph)TPhCN。以WCl_6/PhSn_4为催化剂成功聚合了含丁基取代基的单体A(bu)TPhCN,获得了含氰基三联苯液晶基元双取代聚乙炔PA(bu)TPhCN。由于体积效应,含苯基取代基的单体A(Ph)TPhCN的聚合反应没有获得成功。利用红外光谱(FT-IR)、核磁共振(~1H NMR)对单体和聚合物的结构进行了表征,利用差示扫描量热仪(DSC)、带热带的偏光显微镜(POM)、X射线衍射(XRD)、紫外光谱(UV)和荧光光谱(PL)对单体和聚合物的液晶性能进行了研究。结果表明:单体和聚合物均具有预期结构。两种单体都呈现互变的近晶相(SmA),由于主链与液晶基元之间的偶合作用,使得聚合物呈现出向列相(N)。同时,氰基三联苯的存在赋予了单体和聚合物很强的紫外吸收和良好的光致发光性能,其中聚合物PA(bu)TPhCN光致发光最大发射峰波长为411 nm。
     通过Suzuki偶联和酯化等反应,还合成了一类基于不同末端基(-CN和-OCH_3)含有三联苯液晶基元的双取代丙炔酸酯单体[C_5H_(11)C≡CCOO-terphenyl-R; R=CN, A(COO)TPhCN; R=OCH_3, A(COO)TPhOMe],在这类单体中,液晶基元通过酯键直接和乙炔三键相连。研究了单体的聚合反应,研究了三联苯液晶基元和末端基对其热性能、液晶性能和发光性能的影响。结果表明:利用MoCl_5-和WCl_6-类催化聚合单体,反应没有成功。这是由于结构中存在过多的极性基团,导致了催化剂中毒,同时,大体积的三联苯和烷基双取代基的位阻效应进一步遏制了反应的进行。含氰基末端基的单体A(COO)TPhCN具有单向向列相液晶态,而含甲氧基单体A(COO)TPhOMe呈现出互变的向列相和SmA_d相。单体的紫外光谱和荧光光谱显示出三联苯赋予了单体很强的紫外吸收和光致发光性能,此外,单体的紫外吸收和发光性能还受末端基结构的影响,电子推吸效应有助于提高其紫外吸收和发光性能。
     将三联苯液晶基元连接于聚噻吩主链3位上,合成了一类基于不同末端基含有三联苯液晶基元的发光性聚噻吩衍生物{-[Thiopheneyl-CH_2COO-terphenyl-R]_n-; R=CN, PT(0)TPhCN; R=OCH_3, PT(0)TPhOMe; -[Thiopheneyl-CH_2COO-(CH_2)_6-O-terphenyl-CN]_n-, PT(6)TPhCN}。探讨了三联苯液晶基元、间隔基长度和末端基种类对单体和聚合物性能的影响。利用红外光谱(FT-IR)、核磁共振(~1HNMR)对单体和聚合物的结构进行了表征,证实了单体和聚合物具有预期结构。所有聚合物均具有良好的溶解性能和较高的热稳定性,其热分解温度可达300℃以上。单体都呈现出良好的液晶性能,但聚合以后,具有短间隔基的聚合物PT(0)TPhOMe和PT(0)TPhCN失去了液晶性能,而具有长间隔基的聚合物PT(6)TPhCN却呈现出SmA_d相,这是由于长间隔基可降低主链与侧链之间的偶合作用,有助于液晶基元的有序排列。三联苯的存在还赋予了聚合物良好的光致发光性能,且随着间隔基的增长和电子推吸效应的增加而增强。
     以聚对苯为主链,将三联苯液晶基元以侧链形式连接于主链上,得到一类含有不同间隔基长度和末端基种类(-CN和-OCH_3)的聚对苯类液晶共轭聚合物{-[C_6H_3-COO-terphenyl-CN]_n-, PP(0)TPhCN; -[C_6H_3-COO-(CH_2)_6-O-terphenyl-R]_n-; R=CN, PP(6)TPhCN; R=OCH_3, PP(6)TPhOMe}。研究发现,单体和聚合物均呈现出互变的液晶相,即使是以短的酯基为间隔基的聚合物PP(0)TPhCN也具有互变的近晶相。在紫外光激发下,聚合物都具有发蓝色光特性,其中具有长间隔和氰基末端基的聚合物PP(6)TPhCN,其光致发光波长可延伸到600nm的可见光区。另外,利用圆二色谱(CD)还研究了聚合物主链的二级结构,首次发现,由于大体积液晶基元的位阻效应和取向作用,液晶基元环绕主链进行取向的同时诱导聚合物的主链在长程范围内呈螺旋取向。计算机分子结构模拟也证实了,随着重复单元的增长,聚合物主链具有明显的螺旋取向。因此,不需引入任何手性基团,即可获得主链具有螺旋结构的聚合物,且具有短间隔基的聚合物PP(0)TPhCN相对于具有长间隔基的PP(6)TPhCN和PP(6)TPhOMe具有更强的Cotton效应。
     此外,本文还将甲壳型液晶高分子和共轭聚合物在分子水平上有效结合,首次合成了一种新型以聚噻吩为共轭主链,对苯二甲酸双(对甲氧基苯)酯液晶基元以重心位置直接连接于共轭主链上的新型甲壳型液晶共轭聚合物,对其其结构和性能之间的关系进行了初探。从设计合成单体入手,以FeCl_3为催化剂,CHCl_3为溶剂,得到了该新型聚合物。表征了单体和聚合物的结构,对其结构与性能之间的关系进行了初步探讨。结果表明:该聚合物为无规聚合物,具有良好的热稳定性,且光致发光最大发射峰为550nm。通过偏光显微镜观察,单体为向列相热致型液晶。与主链为柔性链的甲壳型液晶聚合物不同,当主链为刚性的共轭链时,主链与液晶基元之间具有强烈的偶合作用,因而使得聚合物却失去了液晶性能。
Combining liquid crystallinity and luminescence into the polymer, liquid crystalline conjugated polymers (LCCP) are currently drawing interest from the viewpoint of multifunctional electrical and optical materials. The introduction of orientable mesogenic moieties onto a conjugated polymer backbone might increase the conjugation in the main chain and the spontaneous orientation and externally forced alignment of the mesogens enable us to control electrical and optical properties and to obtain the materials with excellent properties. The terphenyl is not only a chromophore but also a mesogenic core. Thus, in this paper, terphenyl mesogenic group was introduced onto different conjugated main chain, such as polyacetylene, polythiophene and poly(p-phenylene), to obtain novel LCCP containing terphenyl mesogenic pendant. The effects of the structural variation on their properties, especially their mesomorphism and photoluminescence behaviors, were studied.
     Novel acetylene monomers containing cyanoterphenyl groups, namely, 4-[(4'-cyano-4-terphenylyl)oxy]-1-butyl-1-butyne A(bu)TPhCN and 3-[(4'-cyano-4-terphenylyl)oxy]-1-phenyl-1-proyne A(Ph)TPhCN were synthesized. A(bu)TPhCN was polymerized with WCl_6/PhSn_4 catalyst successfully to give the liquid crystalline conjugated disubstituted polyacetylene containing cyanoterphenyl mesogenic pendant PA(bu)TPhCN. Polymerization of monomer A(Ph)TPhCN with phenyl substitute did not obtain any product. The results indicate that the stereoeffect of the bulky cyanoterphenyl group and phenyl seems to inhibit the reaction. The structures and properties of the disubstituted polyacetylene and monomers were characterized and evaluated with nuclear magnetic resonance (~1H NMR), infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized optical microscopy (POM), ultraviolet spectroscopy (UV), and photoluminescence (PL). The monomers show enantiotropic smectic phases in the heating and cooling processes, while the polymer PA(bu)TPhCN exhibits a nematic phase, due the coupling between the mesogen and main chain. The existence of the chromophoric cyanoterphenyl core endows the monomers with strong UV absorption and high photoluminescence, and the polymer PA(bu)TPhCN can emit a strong light of 411 nm.
     Novel disubstituted propiolates [C_5H_(11)C≡CCOO-terphenyl-R; R=CN, A(COO)TPhCN; R=OCH_3, A(COO)TPhOMe] bearing chromophoric terphenylene mesogenic groups with different terminal groups were synthesized by Suzuki coupling and esterification, where the terphenyl groups were connected to the C≡C through ester linkage directly. The polymerization and properties of the monomers were investigated. Using transition-metal catalysts such as the classical MoCl_5- and WCl_6-based metathesis catalysts, the polymerization of the monomers were carried out in a series of different solution, however, did not obtain any products. It suggests that the WCl_6- and MoCl_5- based catalysts are poisoned by the polar groups, on the other hand, the bulk terphenyl groups and the long alkyl chain around the C≡C bond might inhibit the reaction. The monomer with CN terminal group displays monotropic nematicity, whereas the one with OCH_3 terminal group exhibits enantiotropic nematicity and smecticity (SmA_d) with a bilayer arrangement. Ultraviolet spectroscopy and photoluminescence measurements also show that the terphenyl groups endow disubstituted propiolates with strong UV light absorption and high photoluminescence. The polymers with donor-acceptor pairs luminescent more strongly than those without such push-pull pairs.
     Series of polythiophenes containing terphenyl mesogenic side chain at the 3rd position with different terminal groups and spacer length {-[Thiopheneyl-CH_2COO-terphenyl-R]_n-; R=CN, PT(0)TPhCN; R=OCH_3, PT(0)TPhOMe; -[Thiopheneyl-CH_2COO-(CH_2)_6-O-terphenyl-CN]_n-, PT(6)TPhCN} were synthesized. The structures and properties of the monomers and polymers were characterized and evaluated. All of the polymers are stable, losing little of their weights when heated to≥300℃. The polymers show good solubility and can be dissolved in common solvents. The monomers all exhibit enantiotropic mesogen phases, while the polymer PT(0)TPhOMe and PT(0)TPhCN with short spacers could not exhibit liquid crystallinty at elevated temperature. With the space length increasing, the PT(6)TPhCN shows enantiotropic SmA_d phase, due to the longer spacer decreases the coupling between mesogen and main chain and favors the better packing arrangements. The existence of the chromophoric terphenyl core endows the polymers with high photoluminescence. Furthermore, push-pull pairs and the longer spacer favor the enabling light emission.
     Novel liquid crystalline poly(p-phenylene)s bearing cyanoterphenyl mesogenic pendants with varying spacer lengths and terminal groups{-[C_6H_3-COO-terphenyl-CN]_n-, PP(0)TPhCN; -[C_6H_3-COO-(CH_2)_6-O-terphenyl-R]_n-; R=CN, PP(6)TPhCN; R=OCH_3, PP(6)TPhOMe} were designed and synthesized, and the effects of structural variations on the liquid crystallinity behaviors and the optical properties of the polymers were studied. All the monomers and polymers show enantiotropic smectic phases, even including the polymer PP(0)TPhCN with short spacers. Photoexcitation of their solutions induces strong blue light emission. The PL of PP(6)TPhCN is much stronger and red-shifted to the visible spectral region, even extending to 600 nm, than that of PP(0)TPhCN, because the longer spacer may have better segregated the backbone and hence enhances the stronger emission in the photoluminescence. Push-pull pairs also exert influence on the photoluminescence. Another interesting and outstanding property also could be found in this type of polymers. Due to the stric crowding, without introducing any chiral center, terphenyl mesogen pendants orientating around the main chain forces the main chain showing spiral conformation along the main chain in the long region and a short spacer is favorable.
     Furthermore, we have attempted to synthesis a novel Mesogen-jacketed liquid crystalline conjugated polymer—polythiophene with directly attached bis(4-methoxyphenyl)terephthalate mesogen as pendant at the centrobaric position using FeCl_3 as the catalyst, CHCl_3 as the solvent. The structures and properties of the monomer and polymer were characterized and evaluated. The result indicates that the polymer has the expected structure, and the polymer is a random polymer with high thermal stability. Upon photoexcitation, the polymer can emit strong yellow light at 550nm. Different from the Mesogen-jacketed liquid crystalline polymers with flexible main chain, due to the strong interaction between the mesogen side chain and backbone, the polymer with rigid backone could not show any optical anisotropy, although its monomer possesses nematic phase.
引文
[1] Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R. Electroluminescence in conjugated polymers. Nature, 1999,397(6715): 121-128.
    [2] Forrest S, Burrows P, Thompson M. The dawn of organic electronics. IEEE Spectrum. 2000, 37(8): 29-34.
    [3] McGehee M D, Diaz-Garcia M A, Hide F, Gupta R, Miller E K, Moses D, Heeger A J.Semiconducting polymer distributed feedback lasers. Applied Physics Letters, 1998,72(13):1536-1538.
    [4] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347(6293): 539-41.
    [5] Braun D, Heeger A J. Visible light emission from semiconducting polymer diodes. Applied Physics Letters, 1991, 58(18): 1982-1984.
    [6] 陈义旺,查代军,周丹,秦志勇,谌烈.侧链液晶聚乙炔的合成及性能表征.高分子材料科学与工程,2008,7:24-37.
    [7] 马谆.共轭聚合物的合成、自组装行为及其光电性质研究.复旦大学博士学位论文,2007.
    [8] Lu S, Liu T X, Ke L, Ma D G, Chua S J, Huang W. Polyfluorene-based light-emitting rod-coil block copolymers. Macromolecules. 2005,38(20): 8494-8502.
    [9] Arakawa R, Shimomac Y, Morikawa H, Ohara K, Okuno S. Mass spectrometric analysis of low molecular mass Polyesters by laser desorption/ionization on porous silicon. Journal of Mass Spectrometry. 2004, 39(8): 961-965.
    [10] 高琨.有机共轭聚合物中的光电特性研究.山东大学博士学位论文,2007.
    [11] Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells. Advanced Functional Materials, 2001, 11(1):15-26.
    [12] Xiong Z H, Wu D, Vardeny Z V; Shi J. Giant magnetoresistance in organic spin-valves. Nature, 2004,427(6977): 821-824.
    [13] Scholes G D, Rumbles G. Excitons in nanoscale systems. Nature Materials 2006, 5(9): 683-696.
    [14] Mukamel S, Wang H X. Nonlinear optical response of conjugated polymers: electron-hole anharmonic-oscillator picture. Physical Review Letters, 1992,69(1): 65-68.
    [15] 佟拉嘎.含烷基、烷氧基侧基聚噻吩的合成、表征与发光性能.大连理工大学博士学位论文,2003.
    [16] Heeger A J, Kivelson S, Schrieffer J R, Su W P. Solitons in conducting polymers. Reviews of Modern Physics, 1988, 60(3): 781-850.
    [17] Liu X J, Gao K, Fu J Y, Li Y, Wei J H, Xie S J. Effect of the electric field mode on the dynamic process of a polaron. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(17): 172301/1-172301/4.
    [18] Castro G, Hornig J F. Multiple-charge-carrier generation processes in anthracene. Journal of Chemical Physics, 1965,42(4): 1459-1460.
    [19] Lyons L E, Milne K A. One-photon intrinsic photogeneration in anthracene crystals. Journal of Chemical Physics, 1976, 65(4): 1474-1484.
    [20] Miranda P B, Moses D, Heeger A J. Ultrafast photogeneration of charged polarons in conjugated polymers. Physical Review B: Condensed Matter and Materials Physics, 2001, 64(8): 081201/1-081201/4.
    [21] Miranda P B, Moses D, Heeger A J. Ultrafast photogeneration of charged polarons on conjugated polymer chains in dilute solution. Physical Review B: Condensed Matter and Materials Physics 2004, 70(8): 085212/1-085212/9.
    [22] Silva C, Stevens M A, Russell D M, Setayesh S, Mullen K, Friend R H. Ultrafast charge photogeneration in conjugated polymer thin films. Synthetic Metals, 2001,116(1-3): 9-13.
    [23] Arkhipov V I, Emelianova E V, Bassler H. Hot Exciton Dissociation in a Conjugated Polymer. Physical Review Letters, 1999, 82(6): 1321-1324.
    [24] Basko D M, Conwell E M. Hot exciton dissociation in conjugated polymers. Physical Review B: Condensed Matter and Materials Physics, 2002,66(15): 155210/1-155210/7.
    [25] Virgili T, Marinotto D, ManZoni C, Cerullo G, LanZani G Ultrafast Intrachain Photoexcitation of Polymeric Semiconductors. Physical Review Letters, 2005, 94(11): 117402/1-117402/4.
    [26] Hendry E, Schins J M, Candeias L P, Siebbeles L D A, Bonn M. Efficiency of exciton and charge carrier photogeneration in a semiconducting polymer. Physical Review Letters, 2004,92(19): 196601/1-196601/4.
    [27] Gulbinas V, Zaushitsyn Y, Bassler H, Yartsev A, Sundstrom V. Dynamics of charge pair generation in ladder-type poly(para-phenylene) at different excitation photon energies. Physical Review B: Condensed Matter and Materials Physics, 2004, 70(3): 035215/1-035215/7.
    [28] Muller J G, Lemmer U, Feldmann J, Scherf U. Precursor States for Charge Carrier Generation in Conjugated Polymers Probed by Ultrafast Spectroscopy. Physical Review Letters, 2002,88(14): 147401/1-147401/4.
    [29] Gulbinas V, Zaushitsyn Y, Sundstrom V, Hertel D, Bassler Heinz, Yartsev Arkady. Dynamics of the electric field-assisted charge carrier photogeneration in ladder-type poly(para-phenylene) at a low excitation intensity. Physical Review Letters, 2002, 89(10):107401/1-107401/4.
    [30] Takahashi K, Kuraya N, Yamaguchi T, Komura T, Murata K. Three-layer organic solar cell with high-power conversion efficiency of 3.5%. Solar Energy Materials & Solar Cell, 2000, 61(4): 403-416
    [31] Ruseckas A, Theander M, Andersson M R, Svensson M, Prato M, Inganas O, Sundstrom V. Ultrafast photogeneration of inter-chain charge pairs in polythiophene films. Chemical Physics Letters, 2000, 322(12): 136-142.
    [32] An Z, Wu C Q, Sun X. Dynamics of photogenerated polarons in conjugated polymers. Physical Review Letters, 2004,93(21): 216407/1-216407/4.
    [33] Barth S, Bassler H. Intrinsic Photoconduction in PPV-Type Conjugated Polymers. Physical Review Letters 1997, 79(22): 4445-4448.
    [34] D(?)ubler T K, Cimrova V, Pfeiffer S, H(?)rhold H H, Neher D. Electric Field and Wavelength Dependence of Charge Carrier Photogeneration in Soluble Poly(p-phenylenevinylene) Derivatives. Advanced Materials, 1999,11(15): 1274-1277.
    [35] Campbell I H, Davids P S, Smith D L, Barashkov N N, Ferraris J P. The Schottky energy barrier dependence of charge injection in organic light-emitting diodes. Applied Physics Letters, 1998, 72(15): 1863-1865.
    [36] Vissenberg M C J M, de Jong M J M. Theory of exciton migration and field-induced dissociation in conjugated polymers. Physical Review Letters 1996,77(23): 4820-4823.
    [37] Blom P W M, Vissenberg M. C. J. M. Dispersive Hole Transport in Poly(p-Phenylene Vinylene). Physical Review Letters, 1998,80(17): 3819-3822.
    [38] Colak D G, Cianga I, Yagci Y, Cirpan A, Karasz F E. Novel Poly(phenylene vinylenes) with Well-Defined Poly(E-caprolactone) or Polystyrene as Lateral Substituents: Synthesis and Characterization. Macromolecules, 2007,40(15): 5301-5310.
    [39] Grem G, Martin V, Meghdadi F, Paar C, Stampfl J, Sturm J, Tasch S, Leising G Stable poly(para-phenylene)s and their application in organic light emitting devices. Synthetic Metals, 1995,71(1-3): 2193-2194.
    [40] Demirel A L, Yurteri S, Cianga I, Yagci Y. Layered Morphology of Poly(phenylene)s in Thin Films Induced by Substitution of Well-Defined Poly(ε-caprolactone) Side Chains. Macromolecules, 2005,38:6402-6410.
    [41] Yutaka O, Keiro M, Katsumi Y. Temperature dependence of carrier concentration and mobility in Sehottky gated field effect transistors utilizing poly(3-alkylthioPhene) films. Technology Reports of the Osaka University, 1992,42(2101-2123): 307-312.
    [42] Berggren M, Inganas O, Gustafsson G. Light-emitting diodes with variable colors from polymer blends. Nature, 1994, 372: 444-446.
    [43] Berggren M, Gustafsson G, Inganas O. White light from an electro luminescent diode made from poly[3(4-octylphenyl)-2,2'-bithiophene] and an oxadiazole derivative. Journal of Applied Physics, 1994,76(11): 7530-7534.
    [44] Andersson M R, Seise D, Berggren M, Jaervinen H, Hjertberg T, Inganaes O, Wennerstroem O, Oesterholm J -E. Regioselective polymerization of 3-(4-octylphenyl)thiophene with FeCl_3. Macromolecules, 1994,27(22): 6503-6506.
    [45] Arif M, Yun M, Gangopadhyay S, Ghosh K, Fadiga L, Galbrecht F, Scherf U, Guha S. Polyfluorene as a model system for space-charge-limited conduction. Los Alamos National Laboratory, Preprint Archive, Condensed Matter, 2007:1-13
    [46] Gamerith S, Gadermaier C, Seherf U, List E J W. The origin ofthe green emission band in polyfluorene type polymers. Physics of Organic Semiconductors, 2005: 153-181.
    [47] Cheun H, Galbreht F, Nehls B, Seherf U, Winokur M J. Temperature dependent spectroscopy of Poly[9,9-bis-(2-ethyl)hexylfluorene]/(9,9-di-n-octylfluorene) copolymers. Journal of Luminescence, 2007,122-123:212-217.
    [48] Ling Q D, E T Kang, Neoh K G. Synthesis and nearly monochromatic photoluminescence properties of conjugated copolymers containing fluorene and rare earth complexes. macromolecules, 2003,36:6995-7003.
    [49] Reinitzer F. Beitrage zur kenutniss des cholesterins. Monatshefte fuer Chemie. 1888, 9: 421-441.
    [50] Madhusudana N V, Savithramma K L, Chandrasekhar S. Short range orientational order in nematic liquid crystals. Pramana, 1977,8(1): 22-35.
    [51] Dyreklev P, Berggren M, Inganas O, Andersson M R, Wennerstrom O, Hjertberg T. Polythiophene in a Light-Emitting Diode. Advanced Materials, 1995, 7:43-45.
    [52] Montali A, Bastiaansen C, Smith P, Weder C. Polarizing Energy Transfer in Photoluminescent Materials for Display Applications. Nature, 1998, 392: 261-264.
    [53] O'Brien D, Bleyer A, Lidzey D G, Bradley D C, Tsutsui T. Efficient multilayer electroluminescence devices with poly(phenylenevinylene-co-2,5-dioctyloxy-p-phenylene-vinylene) as the emissive layer. Journal of Applied Physics, 1997, 82(5): 2662-2670.
    [54] Akagi K, Shirakawa H. Current trends in polymer science. Alexander J C, Eds., Research Trends, 1997, Chapter 2:107-112.
    [55] Zheng S J, Akagi k, Xu Q, Cao S K, Zhou, Q F. Synthesis and properties of Shish-kebab-type liquid crystalline poly(p-phenylene)s. Chinese Journal of Polymer Science, 2006,3:256-271.
    [56] Akagi K, Goto H, Shirakawa H. Synthesis and properties of liquid crystalline conjugated polymers. Kobynshi Ronbunshu, 1999, 56: 217-233.
    [57] Neher D. Substituted rigid rod-like polymers-building blocks for photonic devices. Advanced Materials, 1995,7: 691-702.
    [58] Bao Z, Chen Y, Cai R, Yu L. Conjugated linuid crystalline polymers-soluble and fusible poly(Phenylenevinylene) by the heck coupling reaction. Macromolecules, 1993, 26: 5281-5286.
    [59] Yu L, Bao Z. Conjugated polymers exhibiting liquid crystallinity. Advanced Materials, 1994,6:156-159.
    [60] Memeger W. Novel thermotropic main-chain polyhydrocarbons and block copoly (hydrocarbon-azomethines). Macromolecules, 1989,22: 1577-1583.
    [61] Oberski J, Festag R, Schmidt C, Luessem G, Wendorff J H, Greiner A, Hopmeier M, Motamedi F. Synthesis and structure-property relationships of processable liquid crystalline polymers with arylenevinylene segments in the main chain for light-emitting applications. Macromolecules, 1995, 28: 8676-8682.
    [62] Lüssem G, Festag R, Greiner A, Schmidt C, Unterlechner C, Heitz W, Wendorff J H, Hopmeier M, Feldmann J. Polarized Photoluminescence of liquid crystalline polymers with isolated arylenevinylene segments in the main chain. Advanced Materials, 1995, 7:923-925.
    [63] Akagi K, Shirakawa H. Morphological alignment of liquid crystalline conducting polyacetylene derivatives. Macromolecular Symposia, 1996,104: 137-158.
    [64] Akagi K, Shirakawa H. The Polymeric Materials Encyclopedia, Synthesis, Properties and Applications, 1996, Vol. 5, p. 3669, CRC Press.
    [65] Akagi K, Shirakawa H. Electrical and Optical Polymer Systems: Fundamentals, Methods, and Applications. Eds. D. L. Wise, 1998, Vol. 28, p. 983, Marcel Dekker.
    [66] Oh S Y, Akagi K, Shirakawa H., Araya K. Synthesis and properties of liquid-crystalline polyacetylenes with a phenylcyclohexyl mesogenic moiety in the side group. Macromolecules, 1993,26:6203-6206.
    [67] Akagi K, Goto H., Kadokura Y, Shirakawa H, Oh S Y, Araya K. Synthesis and properties of liquid-crystalline polyacetylene derivatives. Synthetic Metals, 1995,69(1-3): 13-16.
    
    [68] Lam J W Y, Law C K, Dong Y P, J N Wang, Ge W K, Tang B Z. Mesomorphic and luminescent properties of disubstituted polyacetylenes bearing biphenyl pendants. Optical Materials, 2002, 21(1-3): 321-324.
    [69] O'Neill M, Kelly S M. Liquid crystals for charge transport, luminescence, and photonics. Advanced Materials, 2003,15: 1135-1146.
    [70] Stagnaro P, Cavazza B, Trefiletti V, Costa G, Gallot B, Valenti B. Polyacetylenes bearing mesogenic side groups: Synthesis and properties, Mesogenic substituents with a short flexible spacer. Macromolecular Chemistry and Physics, 2001,202 (10): 2065-2073.
    [71] Lam J W Y, Dong Y, Cheuk KKL, Luo J, Xie Z,. Kwok H S, Mo Z, Tang B Z. Liquid crystalline and light emitting polyacetylenes: Synthesis and properties of biphenyl-containing poly(1-alkynes) with different functional bridges and spacer lengths. Macromolecules, 2002,35(4): 1229-1240.
    [72] Dong Y, Lam J W Y, Peng H, Cheuk K K L, Kwok H S, Tang B Z. Syntheses and mesomorphic and luminescent properties of disubstituted polyacetylenes bearing biphenyl pendants. Macromolecules, 2004, 37(17): 6408-6417.
    [73] Tang B Z, Kong X, Wan X, Feng X -D, Kwok H S. Synthesis and properties of stereoregular polyacetylenes containing cyano groups, Poly[[4-[[[n-[(4'-cyano-4-biphenyl-yl)oxy]alkyl]oxy]carbonyl]phenyl]acetylenes]. Macromolecules, 1998,31: 7118.
    [74] Soto J P, Diaz F R, Valle M A, Nunez C M, Bernede J C. Synthesis of new materials based on polythiophenes substituted with mesogen groups. Europe Polymer Journal, 2006, 42: 935-945.
    [75] Percec V, Asandei A D, Hill D H, Crawford D. Poly(p-phenylene)s with Mesogenic Side Groups: A Potential Class of N_(Ⅱ) Side Chain Liquid Crystalline Polymers? Macromolecules, 1999, 32: 2597-2604
    [76] Onoda M, Tada K, Ozaki M, Yoshino K. An electroluminescent diode using liquid-crystalline conducting polymer. Thin Solid Films, 2000,363:9-12.
    [77] Yuan W Z, Lam J W Y, Shen X Y, Sun J Z, Mahtab F, Zheng Q, Tang B Z. Functional polyacetylenes carrying mesogenic and polynuclear aromatic pendants: polymer synthesis, hybridization with carbon nanotubes, liquid crystallinity, light emission, and electrical conductivity. Macromolecules, 2009,42(7): 2523-2531.
    [78] Zhou J -L, Chen X -F, Fan X -H, Chai C -P, Lu C -X, Zhao X -D, Pan Q -W, Tang H -Y, Gao L -C, Zhou Q -F. Synthesis and properties of azobenzene-containing poly(1-alkyne)s with different functional pendant groups. Journal of Polymer Science, Part A: Polymer Chemistry, 2006,44:4532-4545.
    [79] Yin S C, Xu H Y, Su X Y, Li G, Song Y L, Lam J W Y, Tang B Z. Optical-limiting and nonlinear optical polyacetylenes: synthesis of azobenzene-containing poly(1-alkyne)s with different spacer and tail lengths. Journal of Polymer Science, Part A: Polymer Chemistry, 2006,44(7): 2346-2357.
    [80] Zhao X, Hu X, Zheng P J, Gan L H, Lee C K P. Synthesis and characterization of polythiophenes with liquid crystalline azobenzene as side chains. Thin Solid Films, 2005, 477: 88-94.
    [81] Wang G J, Li M, Chen X F, Wu F, Tian W J, Shen J C. Preparation and characterization of a novel poly(1,4-phenylenevinylene) derivative with an azobenzene side chain. Macromolecular Rapid Communications, 1999, 20: 591-594.
    [82]王国杰,李敏,陈欣方.发光性液晶共扼聚合物的研究进展.化学通报,2001,4:212-216.
    [83] Vicentini F, Mauzac M, Laversanne R, Pochat P, Parneix J P. Coupling order and conductivity liquid-crystalline conjugated polymers. Molecular Crystals and Liquid Crystals, 1994, 16(5): 721-733.
    [84] Ting C -H, Chen J -T, Hsu C -S. Synthesis and thermal and photoluminescence properties of liquid crystalline polyacetylenes containing 4-alkanyloxyphenyl trans-4-alkylcyclohexanoate side groups. Macromolecules, 2002,35(4): 1180-1189.
    [85] Goto H, Nimori S, Akagi K. Synthesis and properties of mono-substituted liquid crystalline polyacetylene derivatives-doping, magnetic orientation, and photo-isomerization. Synthetic Metals, 2005,155(3): 576-587.
    [86] Xing C M, Lam J W Y, Zhao K Q, Tang B Z. Synthesis and liquid crystalline properties of poly(1-alkyne)s carrying triphenylene discogens. Journal of Polymer Science, Part A: Polymer Chemistry, 2008,46(9): 2960-2974.
    [87] Zhou D, Chen Y W, Chen L, Zhou W H, He X H. Synthesis and properties of polyacetylenes containing terphenyl pendent group with different spacers. Macromolecules, 2009,42:1454-1461.
    [88] Chen L, Chen Y W, Zha D J, Yang Y. Synthesis and properties of polyacetylenes with directly attached bis(4-alkoxyphenyl)terephthalate mesogens as pendants. Journal of Polymer Science, Part A: Polymer Chemistry, 2006,44: 2499-2509.
    [89] Yuan W Z, Mao Y, Zha H, Su J Z, Xu H P, Jin J K, Zheng Q, Tang B Z. Electronic interactions and polymer effect in the functionalization and solvation of carbon nanotubes by pyrene- and ferrocene-containing poly(1-alkyne)s. Macromolecules, 2008,41: 701-707.
    [90] Yuan W Z, Qin A, Lam J W. Y, Sun J Z, Dong Y, Haeussler M, Liu J, Xu H P, Zheng Q, Tang B Z. Disubstituted polyacetylenes containing photopolymerizable vinyl groups and polar ester functionality: polymer synthesis, aggregation-enhanced emission, and fluorescent pattern formation. Macromolecules, 2007,40:3159-3166.
    [91] Lam J W Y, Dong Y, Kwok H S, Tang B Z. Light-emitting polyacetylenes: synthesis and electrooptical properties of poly(1-phenyl-1-alkyne)s bearing naphthyl pendants. Macromolecules, 2006, 39: 6997-7003.
    [92] Yuan W Z, Sun J Z, Dong Y, Haeussler M, Yang F, Xu H P, Qin A, Lam J W Y, Zheng Q, Tang B Z. Wrapping carbon nanotubes in pyrene-containing poly(phenylacetylene) chains: solubility, stability, light emission, and surface photovoltaic properties. Macromolecules, 2006,39:8011-8020.
    [93] Okoshi K, Sakajiri K, Kumaki J, Yashima E. Well-defined lyotropic liquid crystalline properties of rigid-rod helical polyacetylenes. Macromolecules, 2005, 38: 4061-4064.
    [94] Akagi K, Guo S, Mori T, Goh M, Piao G, Kyotani M. Synthesis of helical polyacetylene in chiraJ nematic liquid crystals using crown ether type binaphthyl derivatives as chiral dopants. Journal of the American Chemical Society, 2005, 127: 14647-14654.
    [95] Geng J X, Zhao X G, Zhou E L, Li G, Lam J W Y, Tang B Z. High order liquid crystalline structure of poly(11-{[(4'-heptyloxy-4-biphenylyl) carbonyl]oxy}-1-undecyne). Molecular Crystals and Liquid Crystals, 2003:399:17-28.
    [96] Dai X M, Goto H, Akagi K, Shirakawa H. Synthesis and properties of novel ferroelectric liquid crystalline polyacetylene derivatives. Synthetic Metals, 1999,102(1-3): 1289-1290.
    [97] Goto H, Dai X, Ueoka T, Akagi K. Synthesis and properties of polymers from monosubstituted acetylene derivatives bearing ferroelectric liquid crystalline groups. Macromolecules, 2004, 37(13): 4783-4793.
    [98] Suda K, Akagi K. Electro-optical behavior of ferroelectric liquid crystalline polyphenylene derivatives. Journal of Polymer Science, Part A: Polymer Chemistry, 2008,46: 3591-3610.
    [99] Goto H, Dai X, Narihiro H, Akagi K. Synthesis of polythiophene derivatives bearing ferroelectric liquid crystalline substituents. Macromolecules, 2004,37(7): 2353-2362.
    [100] Fujii T, Shiotsuki M, Inai Y, Sanda F, Masuda T. Synthesis of helical poly(N-propargylamides) carrying azobenzene moieties in side chains. Macromolecules, 2007,40: 7079-7088.
    [101] Liu J, Yan J, Chen E, Lam J W Y, Dong Y, Liang D, Tang B Z. Chain helicity of a poly(phenylacetylene) with chiral centers between backbone and mesogenic groups on side chains. Polymer, 2008,49: 3366-3370.
    [102] Koltzenburg S, Stelzer F, Nuyken O. Synthesis and characterization of a liquid crystalline polyacetylene with cholesteryl side groups using Schrock-type molybdenum initiators. Macromolecular Chemistry and Physics, 1999,200(4): 821-827.
    
    [103] Qu J Q, Shiotsuki M, Sanda F, Masuda T. Synthesis and properties of helical polyacetylenes carrying cholesteryl moieties. Macromolecular Chemistry and Physics, 2007, 208(8): 823-S32.
    [104] Chen S H, Conger B M, Mastrangelo J C, Kende A S, Kim D U. Synthesis and optical properties of thermotropic polythiophene and poly(p-phenylene) derivatives. Macromolecules, 1998,31: 8051-8057.
    [105] Andersson M R, Yu G, Heeger A J. Photoluminescence and electroluminescence of films from soluble PPV-polymers. Synthetic Metals, 1997, 85: 1275-1276.
    
    [106] Hird M, Toyne K J, Gray G W, Day S E, McDonnell D G. The synthesis and high optical birefringence of nematogens incorporating 2,6-disubstituted naphthalenes and terminal cyano-substituents. Liquid Crystals, 1993,15:123-150.
    [107] Goulding M, Green S, Parri O, Coates D. Liquid crystals with a thiomethyl end group: lateral fluoro substituted 4-(trans-4-(n-propyl)cyclohexylethyl)-4'-thiomethylbiphenyls and 4-n-alkyl-4"-thiomethylterphenyls. Molecular Crystals and Liquid Crystals, 1995, 265:2593-2606.
    [108] Oriol L, Pinol M, Serrano J L, Martinez C, Alcala R, Cases R, Sanchez C. Synthesis and characterization of reactive liquid crystals and polymers based on terphenyl derivatives. Polymer, 2001,42: 2737-2744.
    [109] Conger B M, Mastrangelo J C L, Chen S H. Fluorescence behavior of low molar mass and polymer liquid crystals in ordered solid films. Macromolecules, 1997, 30:4049-4055.
    [110] MacDiarmid A G. "Synthetic metals": A novel role for organic polymers. Angewandte Chemie, International Edition, 2001,40(14): 2581-2590.
    [111] Shirakawa H. The discovery of polyacetylene film: the dawning of an era of conducting polymers. Angewandte Chemie, International Edition, 2001,40(14): 2575-2580..
    [112] Yashima E, Maeda K, Nishimura T. Detection and amplification of chirality by helical polymers. Chemistry-A European Journal, 2004,10(1): 42-51.
    [113] Lam J W Y, Tang B Z. Functional polyacetylenes. Accounts of chemical research, 2005, 38(9): 745-54.
    [114] Law C C W, Lam J W Y, Qin A, Dong Y, Kwok H S, Tang B Z. Synthesis, thermal stability, light emission, and fluorescent photopatterning of poly(diphenylacetylene)s carrying naphthalene pendant groups. Polymer, 2006,47(19): 6642-6651.
    [115] Lam J W Y, Tang B Z. Liquid-crystalline and light-emitting polyacetylenes. Journal of Polymer Science, Part A: Polymer Chemistry, 2003,41(17): 2607-2629.
    [116] Lam J W Y, Dong Y, Law C C W, Dong Y, Cheuk K K L, Lai L M, Li Z, Sun J, Chen H, Zheng Q, Kwok H S, Wang M, Feng X, Shen J, Tang B Z. Functional disubstituted polyacetylenes and soluble cross-linked polyenes: effects of pendant groups or side chains on liquid crystallinity and light emission of poly(1-phenyl-1-undecyne)s. Macromolecules, 2005, 38: 3290-3300.
    [117] Hua J, Lam J W Y, Yu X, Wu L, Kwok H S, Wong K S, Tang B Z. Synthesis, light emission, and photovoltaic properties of perylene-containing polyacetylenes. Journal of Polymer Science, Part A: Polymer Chemistry, 2008,46(6): 2025-2037.
    [118] Sun R G, Wang Y Z, Wang D K, Zheng Q B, Epstein A J. Hole transport in substituted polydiphenylacetylene light-emitting devices: mobility improvement through carbazole moiety. Synthetic Metals, 2000,111:403-408.
    [119] Sun R G, Masuda T, Kobayashi T. Visible electroluminescence of polyacetylene derivatives. Synthetic Metals, 1997,91(1-3): 301-303.
    [120] Teraguchi M, Masuda T. Poly(diphenylacetylene) membranes with high gas permeability and remarkable chiral memory. Macromolecules, 2002,35(4): 1149-1151.
    [121] Kong X, Tang B Z. Synthesis and novel mesomorphic properties of the side-chain liquid crystalline polyacetylenes containing phenyl benzoate mesogens with cyano and methoxy Tails. Chemistry of Materials, 1998,10(11): 3352-3363.
    [122] Mi Y L, Tang B Z. Advancing Macromolecular science and developing functional polymeric materials. Polymer News 2001,26: 170-176.
    [123] Lam J W Y, Kong X, Dong Y, Cheuk K K L, Xu K, Tang B Z. Synthesis and properties of liquid crystalline polyacetylenes with different spacer lengths and bridge orientations. Macromolecules, 2000, 33(14): 5027-5040.
    [124] Mariani P, Rustichelli F, Torquati G. In physics of liquid crystalline materials; Khoo I -C, Simoni F, Eds.; Gordon & Breach Science: New York, 1991, Chapter 1.
    [125] Sun R G, Masuda T, Kobayashi T. Green electroluminescent emission from substituted polyacetylenes. Japanese Journal of Applied Physics, Part 2: Letters, 1996, 35(11 A):1434-1437.
    [126] Lam J W Y, Luo J, Dong Y, Cheuk K K L, Tang B Z. Functional polyacetylenes: synthesis, thermal stability, liquid crystallinity, and light emission of polypropiolates. Macromolecules, 2002, 35(22): 8288-8299.
    [127] Pandey S S, Ram M K, Srivastava V K, Malhotra B D. Electrical properties of metal (indium)/polyaniline Schottky devices. Journal of Applied Polymer Science, 1997, 65(13): 2745-2748.
    [128] Mishra S C K, Ram M K, Pandey S S, Malhotra B D, Chandra S. Vacuum-deposited metal/polyaniline Schottky device. Applied Physics Letters, 1992,61(10): 1219-1221.
    [129] Ravichandar R, Thelakkat M, Somanathan N. Fluorescence Quenching of Substituted Polyperylene with Functionalized Polythiophenes. Journal of Fluorescence,2008, 18(5): 891-898.
    
    [130] Kijima M, Akagi K, Shirakawa H. Ferroelectric liquid crystalline conducting polymers- synthesis and properties of polyacetylene derivatives with chiroptical liquid crystalline groups. Synthetic Metals, 1997, 84(1-3): 313-316.
    [131] Sohn H -S, Yoon Y -S, Lee J C, Seoul S. Korea, Abstracts of Papers 236th ACS National Meeting, Philadelphia, PA, United States, August 17-21,2008,468.
    [132] Dai X M, Narihiro H, Goto H, Akagi K, Yokoyama H. Ferroelectric liquid crystalline polythiophene derivatives. Synthetic Metals, 2001,119(1-3): 397-398.
    [133] Jin S -H, Lee H -J, Sun Y -K, Kim H -D, Koh K -N, Gal Y -S, Park D -K. Synthesis and characterization of side chain liquid crystalline polymer with a polythiophene backbone. European Polymer Journal, 1998, 35(1): 89-94.
    [134] Goto H, Akagi K, Dai X, Narihiro H. Synthesis and dielectric property of a ferroelectric liquid crystalline polythiophene derivative. Ferroelectrics, 2007,348: 149-153.
    [135] Osaka I, Shibata S, Toyoshima R, Akagi K, Shirakawa H. Synthesis and properties of liquid crystalline polythiophene derivatives. Synthetic Metals, 1999, 102(1-3): 1437-1438.
    [136] Toyoshima R, Narita M, Akagi K, Shirakawa H. Synthesis and properties of polythiophene derivatives with liquid crystalline substituents. Synthetic Metals, 1995,69(1-3): 289-290.
    [137] Hiroyuki K, Fumio S, Takashi M, Naoyuki K. Thermal and optical properties of regioregular polythiophene derivatives containing mesogenic group in the side chain. Polymer Journal (Tokyo, Japan), 2003, 35(12): 945-950.
    [138] Radhakrishnan S, Somanathan N, Narashimhaswamy T, Thelakkat M, Schmidt H. W, Thermal studies on polythiophene containing mesogenic side chains. Journal of Thermal Analysis and Calorimetry, 2006, 85(2): 433-438.
    [139] Okano Y, Masuda T, Higashimura T. Polymerization of aliphatic acetylenes and Polymerization of tert-alkylacetylenes by molybdenum- and tungsten-based catalysts. Journal of Polymer Science, Polymer Chemistry Edition, 1985,23(9): 2521-31.
    [140] Yang C, Jacob J, Mullen K. Polyphenylenes and poly(phenyleneethynylene)s with 9,10-anthrylene subunits. Macromolecular Chemistry and Physics, 2006, 207(13): 1107-1115. .
    [141] Natori I, Natori S, Sekikawa H, Sato H. Synthesis of soluble poly(para-phenylene) with a long polymer chain: characteristics of regioregular poly(1,4-phenylene). Journal of Polymer Science, Part A: Polymer Chemistry, 2008,46(15): 5223-5231.
    [142] Osaka I, Mccullough R D. Advances in Molecular Design and Synthesis of Regioregular Polythiophenes. Accounts of Chemical Research, 2008,41(9): 1202-1214.
    [143] Cianga I, Yagci Y. New polyphenylene-based macromolecular architectures by using well defined macromonomers synthesized via controlled polymerization methods. Progress in Polymer Science, 2004,29(5): 387-399.
    [144] Goto H. Cholesteric Liquid Crystal Inductive Asymmetric Polymerization: Synthesis of Chiral Polythiophene Derivatives from Achiral Monomers in a Cholesteric Liquid Crystal. Macromolecules, 2007,40(5): 1377-1385.
    [145] Zhou Q F, Li H M, Feng X D. Synthesis of liquid-crystalline polyacrylates with laterally substituted mesogens. Macromolecules, 1987,20(1): 233-234.
    [146] 陈小芳,范星河,宛新华,周其凤.甲壳型液晶高分子研究进展与展望.高等学校化学学报,2008,1:1-12.