超临界体系相平衡的实验与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界流体技术作为一种新型高效绿色化工技术在许多重要工业领域显示出了巨大的应用前景。超临界体系相平衡的研究是超临界流体科学与技术发展的重要组成部分。本文对固体溶质及其混合物在含夹带剂超临界流体中的相平衡进行了系统深入的实验和理论研究。论文主要研究工作如下:
     (1)改进和完善了超临界体系相平衡研究的实验装置,采用流动法测定固体溶质在含夹带剂的超临界流体中的相平衡数据,并使用紫外分光光度计法分析单一及混合固体溶质在超临界流体中的溶解度。
     (2)实验所用的超临界流体为CO2;测定了4种单一固体溶质的溶解度,包括:3,5-二硝基苯甲酸(3,5-DNBA)、3-硝基苯甲酸(3-NBA)、2-硝基苯甲酸(2-NBA)和3-氨基苯甲酸(3-ABA);测定了3种混合固体溶质(质量比1:1)的溶解度,包括:3,5-DNBA+3-NBA、3,5-DNBA+2-NBA和3-NBA+3-ABA;夹带剂包括:乙醇、乙酸乙酯、乙二醇及正丙醇;实验温度分别为308K,318K和328K,压力范围为8.0-21.0MPa,夹带剂浓度分别为1.5mol%,3.5mol%和5.5mol%;共测定了273组实验数据。
     (3)基于实验数据,考察了实验温度、压力、夹带剂的种类和浓度对单一及混合固体溶质在超临界CO_2中的溶解度的影响;定义了溶解度增强效应因子e,研究夹带剂对固体溶质在超临界CO_2中的溶解度的增强效果,并分析了温度、压力及夹带剂浓度对溶解度增强效应因子的影响;比较了不同固体溶质的分子结构及官能团的种类、数量和位置对溶质在超临界CO_2中的溶解度的影响;研究了在单一和混合体系下同一溶质在超临界CO_2中的溶解度差异,通过定义溶解度增强效应系数SE来分析变化趋势。定义了混合溶质的分离因子μ和分离效率HE,通过分析实验条件对分离因子和分离效率的影响,来确定使用超临界CO_2分离混合固体溶质适宜的操作条件。
     (4)采用7种常用的半经验模型关联了固体溶质在纯超临界CO_2中的平衡溶解度数据;采用3种常用的半经验模型关联了固体溶质在含夹带剂的超临界CO_2中的平衡溶解度数据;比较分析了不同半经验模型对不同溶质溶解度数据的关联能力,讨论了决定模型关联精度的影响因素。
     (5)通过关联文献中49种不同固体溶质的溶解度数据,比较了常用的7种半经验模型的关联能力。结果表明模型表达式中的溶剂密度函数和模型拟合参数决定了模型的关联能力。模型的密度函数描述溶质溶解度和溶剂密度的关系越精确,拟合参数越能反映温度、压力对溶质溶解度的影响,模型的关联准确度越高;分析了这7种半经验模型对含不同代表性官能团的化合物的溶解度数据的关联能力,并分析了实验温度、压力、溶质溶解度和实验点数对模型关联性的影响。结果表明,对于含不同官能团的不同化合物,模型的适用性不同;温度、压力和实验点数的增大会降低模型的关联精度,溶质溶解度的增大会略微提高模型的关联精度。
     (6)基于Kumar-Johnston (KJ)模型,依据溶解理论,提出了改进的KJ模型,通过关联本实验的153组溶解度数据和文献中23种不同固体溶质在超临界CO_2中的748组溶解度数据(包括13种二元体系,13种三元体系和1种四元体系)共901组溶解度数据,对改进的KJ模型进行了验证,结果表明本文提出的改进的KJ模型与KJ模型相比,更适合于描述并预测单一固体及其混合物在超临界CO_2中的溶解度。
     (7)基于Sovova模型,依据温度对溶解度的影响,通过引入温度项,提出了改进的Sovova模型。通过关联本实验的120组溶解度数据和文献中17种固体化合物在含夹带剂的超临界CO_2中的实验溶解度数据(共有1311组实验数据点包含12种不同的夹带剂)共1431组溶解度数据,验证了改进的Sovova模型的准确性。结果表明本文提出的改进的Sovova模型更适合于描述并预测固体溶质在含夹带剂的超临界CO_2中的溶解度。
     (8)在原有Bartle模型的基础上,依据溶解理论,提出了以新的密度函数为架构的计算模型。通过关联本实验的153组溶解度数据和文献中49种不同固体化合物在超临界CO_2中的可靠的1061组溶解度数据共1214组数据,验证了本文新提出的模型的关联精确性。结果表明,新模型能较好地描述固体溶质在超临界CO_2中的溶解度。以上研究结果对超临界流体技术的开发设计和工业化应用具有指导意义。本项目研究获得了国家自然科学基金(编号为20776006)和教育部中央高校基本科研业务费资助项目(编号为ZZ1103)的资助。
As a new-type, high-efficiency and green chemical technology,supercritical fluid technology has shown great prospects of application inmany significant industry fields. The study on phase equilibrium ofsupercritical system is an important constituent part of supercritical fluidscience and technology. In this thesis, the experimental and theoretical studyon phase equilibrium of pure and mixed solid solutes in supercritical fluidwith cosolvent was carried out in-depth. The main works in this thesis are asfollows:
     (1) The experimental apparatus of the study on phase equilibrium ofsupercritical system was improved. The equilibrium solubility of solidsolutes in supercritical fluid with cosolvent was measured using aflow-type apparatus and the equilibrium solubility of pure and mixedsolid solutes in supercritical fluid was analyzed by ultravioletspectrophotometer successfully.
     (2) In this experiment, CO_2was used as a supercritical fluid; the solubilityof4kinds of pure solid solutes were measured, included3,5-dinitrobenzoic acid (3,5-DNBA),3-nitrobenzoic acid (3-NBA), 2-nitrobenzoic acid (2-NBA) and3-aminobenzoic acid (3-ABA); thesolubility of3kinds of mixed solid solutes (mass ratio as1:1) weremeasured, included3,5-DNBA+3-NBA,3,5-DNBA+2-NBA and3-NBA+3-ABA. Ethanol, ethyl acetate, n-propanol, and ethyleneglycol were used as a cosolvent, respectively. The experiment wasinvestigated at (308,318, and328) K from (8.0to21.0) MPa. The molefraction of cosolvent was0.015,0.035, and0.055, respectively. Thenumber of experimental data was amount to273.
     (3) On the basis of experimental data, the effects of temperature, pressure,the type and concentration of cosolvent on the solubility of pure andmixed solid solutes in supercritical CO_2were investigated; the solubilityenhancement effect factor e was defined in order to study theenhancement effect of cosolvents on the solubility of solutes; moreover,the effects of temperature, pressure and the concentration of cosolventon the enhancement effect factor were analysed; the effects of thedifferent molecular structures and the type, quantity and position offunctional groups on the solubility of solutes were compared; thedifference of the solubility of identical solute in pure or mixed systemwas discussed, and the solubility enhancement coefficient SE wasdefined to study the tendency; the appropriate condition for separatingmixed solids in supercritical CO_2was confirmed by defining the mixtureseparation factor μ and the separation efficiency HE.
     (4) The solubility data of solid solutes in pure supercritical CO_2werecorrelated by7common used semi-empirical models; the solubility dataof solid solutes in supercritical CO_2with cosolvents were correlated by3common used semi-empirical models; the correlative abilities of thesesemi-empirical models were compared and the influencing factor of theprecision of correlation was discussed.
     (5) Solubility data from49different compounds of different functionalgroups were collected from literature to compare and evaluate7common used semi-empirical models. The results indicated that thecorrelative and predictive capability of models depend on the accuracyof the expression of density’s function and the fitting-parameters. Themore precisely the expression of density’s function describes therelationship between the solubility of solute and the density of solvent,or the more exactly the fitting-parameters reflect the effects oftemperature and pressure on the solubility of solute, the more accuratelythe models correlate. The predictive capability and applicability of thesemodels for different types of solutes at different conditions aredemonstrated in this work. The results indicated that with uppertemperature and pressure, all of the accuracy of the models decreasesobviously; with a higher mole fraction solubility of solute, most of theaccuracy of the models increases a little; with more experimental datapoints, most of the accuracy of the models decreases.
     (6) Based on the Kumar-Johnston (KJ) model, the modified KJ model wasproposed by the theory of solution. The modified KJ model was verifiedby901groups of solubility data containing153groups of experimentaldata and748groups of data in literature. The results indicated thatcomparing with KJ model, the modified KJ model proposed in thisthesis is more suitable to describe and predict the solubility of pure andmixed solids in supercritical CO_2.
     (7) Based on the Sovova model, considering the effects of temperature onthe solubility, the modified Sovova model was proposed by introducinga function of temperature. The modified Sovova model was verified by1431groups of solubility data containing120groups of experimentaldata and1311groups of data in literature. The results indicated thatcomparing with the Sovova model, the modified Sovova modelproposed in this thesis is more suitable to describe and predict thesolubility of solid solutes in supercritical CO_2with cosolvent.
     (8) Based on the Bartle model, a new semi-empirical model consists of anew density function was proposed by the theory of solution. Theprecision of new proposed model in this thesis was tested by1214groups of solubility data containing153groups of experimental data and1061groups of reliable data in literature. The results indicated that thenew proposed model can describe the solubility of solid solutes insupercritical CO_2better.
     All the research in our work would be used for the development, design andindustrial application of the supercritical fluid technology.
     This project research was financially supported by the funds awarded byNational Natural Science Foundation of China (No.20776006) and theCentral University Basic Scientific Research Projects of the Ministry ofEducation (No. ZZ1103).
引文
[1]徐兆瑜.超临界技术在化学工业中的应用浅析[J].甘肃化工,2006,1:11–17
    [2]蒋超,曹键.超临界CO2的最新应用进展[J].化学工程师,2004,6:29–32
    [3] Muth O, Hirth Th, Vogel H. Investigation of sorption and diffusion of supercritical carbondioxide into poly(vinyl chloride)[J]. J. Supercrit. Fluids,2001,19(3):299–306
    [4] Tang M, Du T B, Chen Y P. Sorption and diffusion of supercritical carbon dioxide inpolycarbonate[J]. J. Supercrit. Fluids,2004,28(2-3):207–218
    [5] Rozzi N L, Singh R K. Supercritical fluids and the food industry[J]. Compr. Rev Food Sci F.,2002,1(1):33–44
    [6]郭昌明,李雪琼.超临界流体中化学反应的研究进展[J].河北化工,2006,29(5):44–48
    [7]陈华,张惠静,毕颖楠.超临界二氧化碳技术在医药领域的应用[J].时珍国医国药,2006,17(5):826–827
    [8] Modey W K, Mulholland D A, Raynor M W. Analytical supercritical fluid extraction of naturalproducts[J]. Phytochem. Anal,1996,7(1):1–15
    [9] SovováH, Opletal L, BártlováM, SajfrtováM, K enková M. Supercritical fluid extraction oflignans and cinnamic acid from Schisandra chinensis[J]. J. Supercrit. Fluids,2007,42(1):88–95
    [10] Cavero S, García-Risco M R, Marín F R, Jaime L, Santoyo S, Se oráns F J, Reglero G, Iba ez E.Supercritical fluid extraction of antioxidant compounds from oregano chemical and functionalcharacterization via LC–MS and in vitro assays[J]. J. Supercrit. Fluids,2006,38(1):62–69
    [11] Reverchon E, de Marco I. Supercritical fluid extraction and fractionation of natural matter[J]. J.Supercrit. Fluids,2006,38(2):146–166
    [12] Rodrigues R F, Tashima A K, Pereira R M S, Mohamed R S, Cabral F A. Coumarin solubility andextraction from emburana (Torresea cearensis) seeds with supercritical carbon dioxide[J]. J.Supercrit. Fluids,2008,43(3):375–382
    [13] Filho G L, De Rosso V V, Meireles M A A, Rosa P T V, Oliveira A L, Mercadante A Z, Cabral FA.Supercritical CO2extraction of carotenoids from pitanga fruits (Eugenia uniflora L.)[J]. J.Supercrit. Fluids,2008,46(1):33–39
    [14] Piantino C R, Aquino F W B, Follegatti-Romero L A, Cabral F A. Supercritical CO2extraction ofphenolic compounds from Baccharis dracunculifolia[J]. J. Supercrit. Fluids,2008,47(2):209–214
    [15] Cossuta D, Simándi B, Vági E, Hohmann J, Prechl A, Lemberkovics é, Kéry á, Keve T.Supercritical fluid extraction of Vitex agnus castus fruit[J]. J. Supercrit. Fluids,2008,47(2):188–194
    [16]王姿媛,何泽民,姜笑寒.荜澄茄超临界萃取物工艺筛选及药效学研究[J].时珍国医国药,2008,19(7):1722–1724
    [17]朱凯,朱新宝.超临界CO2萃取八角茴香油及其化学成分研究[J].现代化工,2006,26(增2):178–180
    [18]柴倩,乔宇,范刚,潘思轶.超临界CO2流体及夹带剂萃取锦橙精油研究[J].食品科学,2007,28(12):205–207
    [19]吉礼,车振明,夏云空.橙皮的再生利用-超临界CO2萃取橙皮精油的研究[J].食品科技,2008,33(11):81–83
    [20]孙国峰,李凤飞,杨文江,卢庆国.花椒有效成分的CO2超临界萃取工艺[J].食品与生物技术学报,2011,30(6):899–904
    [21]刘小莉,黄开红,周剑忠,朱佳娜,孟璐.黑莓籽油的超临界萃取及脂肪酸成分分析[J].农业工程学报,2011,27(增2):312–315
    [22]叶鑫,石冰洁,张泽廷,于恩平.超临界CO2萃取黄水中香料物质的研究[J].酿酒,2004,31(4):18–20
    [23]王戈,陆方,吴浩,王进,张泽廷.超临界CO2萃取绿竹叶中叶绿素的实验研究[J].北京化工大学学报,2007,34(增17):36–38
    [24]吴浩,金君素,张泽廷,王戈,陆方,李雪.超临界CO2萃取毛竹叶中的叶绿素[J].北京化工大学学报,2007,34(1):92–94
    [25]张珊珊,王喜平,赵晓红,王彬.不同浓度乙醇作为夹带剂对超临界CO2提取竹叶黄酮得率的影响[J].食品研究与开发,2011,32(1):57-60
    [26]吴珺婷,秦礼康,金毅,姚翔,闵方.超临界CO2及夹带剂萃取顶坛花椒籽油工艺优化[J].油脂加工,2011,36(4):16–19
    [27]尹文红,陈克勋.夹带剂对穿心莲内酯超临界萃取的影响[J].中成药,2011,33(6):985–962
    [28] Anikeev V I, Il’ina I V, Kurbakova S Y, Nefedov A A, Volcho K P, Salakhutdinov N F.Oxidation of α-pinene by atmospheric oxygen in the supercritical CO2—ethyl acetate system in thepresence of Co (II) complexes[J]. Russ. J. Phys. Chem. A,2012,86(2):190–195
    [29] Han X, Poliakoff M. Continuous reactions in supercritical carbon dioxide: problems, solutions andpossible ways forward[J]. Chem. Soc. Rev.,2012,41(4):1428–1436
    [30] Benjamin A A A, Jeremy D G, Klaus A. Synthesis and characterisation of bonded mercaptopropylsilica intermediate stationary phases prepared using multifunctional alkoxysilanes insupercritical carbon dioxide as a reaction solvent[J]. J. Chromatogr., A,2012,1222:38–45
    [31] Simoncelli S, Hoijemberg P A, Japas M L, Aramendía P F. Proton transfer from2-naphthol toaliphatic amines in supercritical CO2[J]. J. Phys. Chem. A,2011,115(50):14243–14248
    [32] Lyubimov S E, Verbitskaya T A, Rastorguev E A, Petrovskii P V, Kalinin V N, Davankov V A.Allyl substitution in a supercritical carbon dioxide medium catalyzed by complexes of palladiumwith phosphite-type ligands[J]. Russ. J. Phys. Chem. B,2011,5(7):1130–1134
    [33] Alemu B L, Aagaard P, Munz I A, Skurtveit E. Caprock interaction with CO2: A laboratory study ofreactivity of shale with supercritical CO2and brine[J]. Appl. Geochem.,2011,26(12):1975–1989
    [34] Birnbaum E R, Le Lacheur R M, Horton A C, Tumas W. Metalloporphyrin-catalyzed homogeneousoxidation in supercritical carbon dioxide[J]. J. Mol. Catal. A: Chem.,1999,139(1):11–24
    [35] Hammond D A, Karel M, Klibanov A M, Krukonis V J. Enzymatic reactions in supercriticalgases[J]. Appl. Biochem. Biotechnol.,1985,11(5):393–400
    [36] Marty A, Chulalaksananukul W, Willemot R M, Condoret J S. Kinetics of lipase-catalyzedesterification in supercritical CO2[J]. Biotechnol. Bioeng.,1992,39(3):273–280
    [37] Jackson M A, King J W. Lipase-catalyzed glycerolysis of soybean oil in supercritical carbondioxide[J]. J. Am. Oil Chem. Soc.,1997,74(2):103–106
    [38]杨梅,邵荣,云志,钱仁渊.超临界流体中的化学反应[J].南京化工大学学报,2001,23(3):77–81
    [39] Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey[J]. J.Supercrit. Fluids,2001,20(3):179–219
    [40] Reverchon E, DeMarco I, Porta G D. Rifampicin microparticles production by supercriticalantisolvent precipitation[J]. Int. J. Pharm.,2002,243(1–2):83–91
    [41] Rodrigues M, Peiri o N, Matos H, de Azevedo E G, Lobato M R, Almeida A J. Microcompositestheophylline/hydrogenated palm oil from a PGSS process for controlled drug delivery systems[J]. J.Supercrit. Fluids,2004,29(1–2):175–184
    [42] Petersen R C, Smith R D. Rapid pregipition of low vapor pressure solids from supercritical fluidsolution[J]. J. Am. Chem. Soc.,1986,108(8):2100–2102
    [43] Matson D W, Fulton J L, Petersen R C, Smith R D. Rapid expansion of supercritical fluid solutionsolute formation of poeders, thin films, and fibre[J]. Ind. Eng. Chem. Res.,1987,26(11):2298–2306
    [44]王亭杰,堤敦司,金涌.用石蜡CO2超临界流体快速膨胀流化床中进行细颗粒包覆[J].化工学报,2001,19(4):42–47
    [45] Martín á, Rodríguez-Rojo S, de Pablo L, Cocero M J. Solubility of bisphenol A in supercriticalcarbon dioxide[J]. J. Chem. Eng. Data,2011,56(10):3910–3913
    [46] Reddy S N, Madras G. Solubilities of resorcinol and pyrocatechol and their mixture in supercriticalcarbon dioxide[J]. Thermochim. Acta,2011,521(1–2):41–48
    [47] Martinez-Correa H A, Gomes D C A, Kanehisa S L, Cabral F A. Measurements andthermodynamic modeling of the solubility of squalene in supercritical carbon dioxide[J]. J. FoodEng.,2010,96(1):43–50
    [48] Sun Y Y, Quan C, Li S F, Hou C X, Sun Y G. Solubility of alpha-benzene hexachloride insupercritical carbon dioxide[J]. J Taiwan Inst Chem E.,2009,40(4):471–474
    [49] de Sousa H C, Costa M S, Coimbra P, Matias A A, Duarte C M M. Experimental determination andcorrelation of meloxicam sodium salt solubility in supercritical carbon dioxide[J]. J. Supercrit.Fluids,2012,63:40–45
    [50] Hezave A Z, Mowla A, Esmaeilzadeh F. Cetirizine solubility in supercritical CO2at differentpressures and temperatures[J]. J. Supercrit. Fluids,2011,58(2):198–203
    [51] Perrotin-Brunel H, Perez P C, van Roosmalen M J E, van Spronsen J, Witkamp G J, Peters C J.Solubility of9-tetrahydrocannabinol in supercritical carbon dioxide: Experiments andmodeling[J]. J. Supercrit. Fluids,2010,52(1):6–10
    [52] Jing Y, Hou Y C, Wu W Z, Liu W N, Zhang B G. Solubility of5-hydroxymethylfurfural insupercritical carbon dioxide with and without ethanol as cosolvent at (314.1to343.2) K[J]. J.Chem. Eng. Data,2011,56(2):298–302
    [53] Cruz-Olivares J, Ortiz-Estrada C H, Pérez-Alonso C, Chaparro-Mercado M C, Barrera-Díaz C.Solubility of mesquite gum in supercritical carbon dioxide[J]. J. Chem. Eng. Data,2011,56(5):2449–2452
    [54] Fan J L, Hou Y C, Wu W Z, Zhang J W, Ren S H, Chen X T. Levulinic acid solubility insupercritical carbon dioxide with and without ethanol as cosolvent at different temperatures[J]. J.Chem. Eng. Data,2010,55(6):2316–2321
    [55] Liu T J, Li S F, Zhou R, Jia D D, Tian S J. Solubility of triphenylmethyl chloride and triphenyltinchloride in supercritical carbon dioxide[J]. J. Chem. Eng. Data,2009,54(6):1913–1915
    [56] Yamini Y, Moradi M. Measurement and correlation of antifungal drugs solubility in puresupercritical CO2using semiempirical models[J]. J. Chem. Thermodyn.,2011,43(7):1091–1096
    [57] Garlapati C, Madras G. Solubilities of palmitic and stearic fatty acids in supercritical carbondioxide[J]. J. Chem. Thermodyn.,2010,42(2):193–197
    [58] Park C I, Shin M S, Kim H. Solubility of climbazole and triclocarban in supercritical carbondioxide: Measurement and correlation[J]. J. Chem. Thermodyn.,2009,41(1):30–34
    [59] Ren J P, Zhan S P, Zhou J X, Zhang M M. New Equilibrium autoclave for determining solubilityand melting point of solid solute in supercritical fluids.1. determination of solubility oflevonorgestrel in supercritical carbon dioxide[J]. Ind. Eng. Chem. Res.,2012,51(5):24512455
    [60] Coelho J P, Mendon a A F, Palavra A F, Stateva R P. On the solubility of three disperseanthraquinone dyes in supercritical carbon dioxide: New experimental data and correlation[J]. Ind.Eng. Chem. Res.,2011,50(8):46184624
    [61] Marceneiro S, Coimbra P, Braga M E M, Dias A M A, de Sousa H C. Measurement and correlationof the solubility of juglone in supercritical carbon dioxide[J]. Fluid Phase Equilib.,2011,311:18
    [62] Dong P, Xu M X, LuX Y, Lin C M. Measurement and correlation of solubilities of C.I. DisperseRed73, C.I. Disperse Yellow119and their mixture in supercritical carbon dioxide[J]. Fluid PhaseEquilib.,2010,297(1):4651
    [63] Haruki M, Kobayashi F, Kishimoto K, Kihara S I, Takishima S. Measurement of the solubility ofmetal complexes in supercritical carbon dioxide using a UV–vis spectrometer[J]. Fluid PhaseEquilib.,2009,280(12):4955
    [64] Jin J S, Dou Z M, Su G X, Zhang Z T, Liu H T. Solubility of o-tolidine in pure and modifiedsupercritical carbon dioxide[J]. Fluid Phase Equilib.,2012,315:9–15
    [65] Jin J S, Wang Y B, Zhang Z T, Liu H T. Solubilities of benzene sulfonamide in supercritical CO2inthe absence and presence of cosolvent[J]. Thermochim. Acta,2012,527:165–171
    [66] Li J L, Jin J S, Zhang Z T, Pei X M. Equilibrium solubilities of a p-toluenesulfonamide andsulfanilamide mixture in supercritical carbon dioxide with and without ethanol[J]. J. Supercrit.Fluids,2010,52(1):11–17
    [67] Li W M, Jin J S, Tian G H, Zhang Z T. Single-component and mixture solubilities of ethylp-hydroxybenzoate and ethyl p-aminobenzoate in supercritical CO2[J]. Fluid Phase Equilib.,2008,264(1–2):93–98
    [68] Zhang Z T, Li W M, Jin J S, Tian G H. Solubility of p-methylbenzene sulfonic acid in pure andmodified supercritical carbon dioxide[J]. J. Chem. Eng. Data,2008,53(2):600–602
    [69] Li J L, Jin J S, Zhang Z T, Pei X M. Solubility of p-toluenesulfonamide in pure and modifiedsupercritical carbon dioxide[J]. J. Chem. Eng. Data,2009,54(3):1142–1146
    [70] Jin J S, Pei X M, Li J L, Zhang Z T. Solubility of p-aminobenzenesulfonamide in supercriticalcarbon dioxide with acetone cosolvent[J]. J. Chem. Eng. Data,2009,54(1):157–159
    [71] Li J L, Jin J S, Zhang Z T, Wang Y B. Measurement and correlation of solubility of benzamide insupercritical carbon dioxide with and without cosolvent[J]. Fluid Phase Equilib.,2011,307(1):11–15
    [72] Tian G H, Jin J S, Li Q S, Zhang Z T. Solubility of p-nitrobenzoic acid in supercritical carbondioxide with and without cosolvents[J]. J. Chem. Eng. Data,2006,51(2):430–433
    [73] Tian G H, Jin J S, Guo J J, Zhang Z T. Mixed solubilities of5-sulfosalicylic acid andp-aminobenzoic acid in supercritical carbon dioxide[J]. J. Chem. Eng. Data,2007,52(5):1800–1802
    [74] Jin J S, Zhong C L, Zhang Z T, Li Y. Solubilities of benzoic acid in supercritical CO2with mixedcosolvent[J]. Fluid Phase Equilib.,2004,226:9–13
    [75] Tian G H, Jin J S, Zhang Z T, Guo J J. Solubility of mixed solids in supercritical carbon dioxide[J].Fluid Phase Equilib.,2007,251(1):47–51
    [76] Jin J S, Zhang Z T, Li Q S, Li Y, Yu E P. Solubility of propyl p-hydroxybenzoate in supercriticalcarbon dioxide with and without a cosolvent[J]. J. Chem. Eng. Data,2005,50(1):801–803
    [77] Li Q S, Zhang Z T, Zhong C L, Liu Y C, Zhou Q R. Solubility of solid solutes in supercriticalcarbon dioxide with and without cosolvents[J]. Fluid Phase Equilib.,2003,207(1–2):183–192
    [78]刘延成,李群生,张泽廷,姚晓敏,于恩平. α-萘乙酸与β-萘酚在含夹带剂超临界CO2中溶解度的研究[J].化工进展,2003,22(9):980–984
    [79]李群生,张泽廷,刘延成,李颖,于恩平.2-萘酚与苯甲酸在含夹带剂的超临界流体中溶解度的研究[J].化工进展,2003,22(4):387–390
    [80]郭建建,金君素,田国华,张泽廷.4-氨基苯甲酸与5-磺基水杨酸在超临界CO2中的溶解度[J].北京化工大学学报,2007,34(5):458–461
    [81]李颖,石冰洁,张泽廷,金君素,于恩平.苯甲酸在含不同夹带剂的超临界CO2中的溶解度[J].过程工程学报,2005,5(3):265–268
    [82]金君素,张泽廷,李颖,于恩平.苯甲酸在含夹带剂超临界CO2中溶解度研究[J].北京工业大学学报,2006,32(3):235–239
    [83]刘延成,李群生,张泽廷,于恩平.苯甲酸在含夹带剂的超临界CO2中溶解度的研究[J].现代化工,2003,23(2):26–29
    [84]金君素,徐静年,张泽廷,李颖.对羟基苯甲酸丙酯在含夹带剂超临界CO2中溶解度的研究[J].北京化工大学学报,2005,32(4):24–28
    [85]田国华,石冰洁,张泽廷,金君素,李颖,于恩平.对羟基苯甲酸甲酯在含夹带剂超临界CO2中溶解度的研究[J].化工进展,2005,24(6):635–638
    [86]姚晓敏,张泽廷,李群生,周庆荣.邻羟基苯甲酸和邻甲氧基苯甲酸在超临界CO2中的溶解度研究[J].化工进展,2004,23(4):407–411
    [87]姚晓敏,李群生,张泽廷,于恩平.水杨酸在含夹带剂的超临界CO2中的溶解度[J].北京化工大学学报,2004,31(2):9–13
    [88] Fonseca J M S, Dohrn R, Peper S. High-pressure fluid-phase equilibria: Experimental methods andsystems investigated (2005–2008)[J]. Fluid Phase Equilib.,2011,300(1–2):1–69
    [89] kerget M, Knez, Knez-Hrn i M. Solubility of solids in sub-and supercritical fluids: areview[J]. J. Chem. Eng. Data,2011,56(4):694–719
    [90] Schmitt W J, Reid R C. The use of entrainers in modifying the solubility of phenanthrene andbenzoic acid in supercritical carbon dioxide and ethane[J]. Fluid Phase Equilib.,1986,32(1):77–99
    [91] Yamamoto M, Iwai Y, Nakajima T, Arai Y. Fourier transform infrared study on hydrogen bondingspecies of carboxylic acids in supercritical carbon dioxide with ethanol[J]. J. Phys. Chem. A,1999,103(18):3525–3529
    [92] Chialvo A A, Cummings P T, Kalyuzhnyi Y V. Solvation effect on kinetic rate constant of reactionsin supercritical solvents[J]. AIChE J.,1998,44(3):667–680
    [93] Petsche I B, Debenedetti P G. Solute–solvent interactions in infinitely dilute supercritical mixtures:A molecular dynamics investigation[J]. J. Chem. Phys.,1989,91(11):7075–7084
    [94] Walsh J M, konomou G D, Donohue M D. Supercritical Phase behavior: the entrainer effect[J].Fluid Phase Equilib.,1987,33(3):295–314
    [95] Johnston K P, Ziger D H, Eekert C A. Solubilities of hydrocarbon solids in supercritical fluids. Theaugment van der Waals treatment[J]. Ind. Eng. Chem. Fundamen.,1982,21(3):191–197
    [96]金君素.极性和非极性溶质在含夹带剂超临界流体中相平衡的研究[D].北京:北京化工大学,2005
    [97]田国华.固体溶质及其混合物在含夹带剂超临界流体中相平衡的研究[D].北京:北京化工大学,2008
    [98] Brennecke J F, Eckert C E. Phase equilibria for supercritical fluid process design[J]. AIChE J.,1989,35(9):1409–1427
    [99] Valderrama J O, Alvarez V H. Temperature independent mixing rules to correlate the solubility ofsolids in supercritical carbon dioxide[J]. J. Supercrit. Fluids,2004,32(1–3):37–46
    [100] Garlapati C, Madras G. Temperature independent mixing rules to correlate the solubilities ofantibiotics and anti-inflammatory drugs in SCCO2[J]. Thermochim. Acta,2009,496(1–2):54–58
    [101] Peng D Y, Robinson D B. A new two-constant equation of state[J]. Ind. Eng. Chem. Fundamen.,1976,15(1):59–64
    [102] Redlich O, Kwong J N S. On the thermodynamics of solutions. V. An equation of state.Fugacities of gaseous solutions[J]. Chem. ReV.,1949,44(1):233–244
    [103] Soave G.Equilibrium constants for modified Redlich-Kwong equation of state[J]. Chem. Eng.Sci.,1972,27(6):1197–1203
    [104] Türk M, Crone M, Kraska T. A comparison between models based on equations of state anddensity-based models for describing the solubility of solutes in CO2[J]. J. Supercrit. Fluids,2010,55(2):462–471
    [105] Joback K G, Reid R C. Estimation of pure component properties from group contributions[J].Chem. Eng. Commun.,1987,57(1–6):233–243
    [106] Chapman W G, Gubbins K E, Jackson G, Radosz M. SAFT: Equation-of-state solution model forassociating fluids[J]. Fluid Phase Equilib.,1989,52:31–38
    [107] Chapman W G, Gubbins K E, Jackson G, Radosz M. New reference equation of state forassociating liquids[J]. Ind. Eng. Chem. Res.,1990,29(8):1709–1721
    [108] Muller E A, Gubbins K E. Molecular-based equations of state for associating fluids: A review ofSAFT and related approaches[J]. Ind. Eng. Chem. Res.,2001,40(10):2193–2211
    [109] Banaeia M, Florusseb L J, Raeissia S, Petersc C J. High-pressure vapor–liquid equilibria ofmethanol+propylene: Experimental and modeling with SAFT[J]. J. Supercrit. Fluids,2012,63:25–30
    [110] Grenner A, Kontogeorgis G M, von Solms N, Michelsen M L. Modeling phase equilibria ofalkanols with the simplified PC-SAFT equation of state and generalized pure compoundparameters[J]. Fluid Phase Equilib.,2007,258(1):83–94
    [111] Zhang Z Y, Yang J C, Li Y G. Prediction of phase equilibria for CO2–C2H5OH–H2O system usingthe SAFT equation of state[J]. Fluid Phase Equilib.,2000,169(1):1–18
    [112] Kraska T, Gubbins K E. Phase equilibria calculations with a modified SAFT equation of state.1.Pure alkanes, alkanols, and water[J]. Ind. Eng. Chem. Res.,1996,35(12):4727–4737
    [113] Kraska T, Gubbins K E. Phase equilibria calculations with a modified SAFT equation of state.2.Binary mixtures of n-alkanes,1-alkanols, and water[J]. Ind. Eng. Chem. Res.,1996,35(12):4738–4746
    [114] Blas F J, Vega L F. Critical behavior and partial miscibility phenomena in binary mixtures ofhydrocarbons by the statistical associating fluid theory[J]. J. Chem. Phys.,1998,109:7405–7414
    [115] Blas F J, Vega L F. Prediction of binary and ternary diagrams using the statistical associatingfluid theory (SAFT) equation of state[J]. Ind. Eng. Chem. Res.,1998,37(2):660–674
    [116] Gross J, Sadowski G. Application of perturbation theory to a hard-chain reference fluid: anequation of state for square-well chains[J]. Fluid Phase Equilib.,2002,168(2):183–199
    [117] Gross J, Sadowski G. Perturbed-chain SAFT: An equation of state based on a perturbation theoryfor chain molecules[J]. Ind. Eng. Chem. Res.,2001,40(4):1244–1260
    [118] Tumakaka F, Sadowski G. Application of the perturbed-chain SAFT equation of state to polarsystems[J]. Fluid Phase Equilib.,2004,217(2):233–239
    [119] Gil-Villegas A, Galindo A, Whitehead P J, Mills S J, Jackson G, Burgess A N. Statisticalassociating fluid theory for chain molecules with attractive potentials of variable range[J]. J.Chem. Phys.,1997,106:4168–4186
    [120] Galindo A, Davies L A, Gil-Villegas A, Jackson G. The thermodynamics of mixtures and thecorresponding mixing rules in the SAFT-VR approach for potentials of variable range[J]. Mol.Phys.,1998,93(2):241–252
    [121] Cotterman R L, Schwarz B J, Prausnitz J M. Molecular thermodynamics for fluids at low andhigh densities. Part I: Pure fluids containing small or large molecules[J]. AIChE J.,1986,32(11):1787–1798
    [122] Aghamiri S F, Nickmand Z. Prediction of solubility of cholesterol in supercritical solvents[J]. Sep.Sci. Technol.,2010,45(14):2119–2129
    [123] Zhong C L, Yang H Y. Representation of the solubility of solids in supercritical fluids using theSAFT equation of state[J]. Ind. Eng. Chem. Res.,2002,41(19):4899–4905
    [124] Esmaeilzadeh F, Goodarznia I, Daneshi R. Solubility calculation of oil-contaminated drillcuttings in supercritical carbon dioxide using Sstatistical associating fluid theory (PC-SAFT)[J].Chem. Eng. Technol.,2008,31(1):66–70
    [125] Yang H Y, Zhong C L. Modeling of the solubility of aromatic compounds in supercritical carbondioxide–cosolvent systems using SAFT equation of state[J]. J. Supercrit. Fluids,2005,33(2):99–106
    [126] Xu P, Xu S, Yin H. Application of self-organizing competitive neural network in fault diagnosisof suck rod pumping system[J]. J. Petrol. Sci. Eng.,2007,58(1–2):43–48
    [127] Eslamloueyan R, Khademi M H. Estimation of thermal conductivity of pure gases by usingartificial neural networks[J]. Int. J. Therm. Sci.,2009,48(6):1094–1101
    [128] Lashkarbolooki M, Vaferi B, Rahimpour M R. Comparison the capability of artificial neuralnetwork (ANN) and EOS for prediction of solid solubilities in supercritical carbon dioxide[J].Fluid Phase Equilib.,2011,308(1–2):35–43
    [129] Mehdizadeh B, Movagharnejad K. A comparison between neural network method and semiempirical equations to predict the solubility of different compounds in supercritical carbondioxide[J]. Fluid Phase Equilib.,2011,303(1):40–44
    [130] Gharagheizi F, Eslamimanesh A, Mohammadi A H, Richon D. Artificial neural network modelingof solubilities of21commonly used industrial solid compounds in supercritical carbon dioxide[J].Ind. Eng. Chem. Res.,2011,50(1):221–226
    [131] Marky M E, Paulaitis M E. Solid solubilities of heavy hydrocarbons in supercritical solvent[J].Ind. Eng. Chem. Fundamen.,1979,18(2):149–153
    [132] Giddings J C, Bowman Jr L M, Myers M N. Exclusion chromatography in dense gases: anapproach to viscosity optimization[J]. Anal. Chem.,1977,49(2):243–249
    [133] Pang T H, McLaughlin E. Supercritical extraction of aromatic hydrocarbon solids and tar sandbitumens[J]. Ind. Eng. Chem. Proc. Des. Dev.,1985,24(4):1027–1032
    [134] Ziger D H, Eckert C A. Correlation and prediction of solid-supercritical fluid phaseequilibriums[J]. Ind. Eng. Chem. Proc. Des. Dev.,1983,22(4):582–588
    [135] Chrastil J.Solubility of solids and liquids in supercritical gases[J]. J. Phys. Chem.,1982,86(15):3016–3021
    [136] Adachi Y, Lu B C Y. Supercritical fluid extraction with carbon dioxide and ethylene[J]. FluidPhase Equilib.,1983,14:147–156
    [137] Kumar S K, Johnston K P. Modelling the solubility of solids in supercritical fluids with density asthe independent variable[J]. J. Supercrit. Fluids,1988,1(1):15–22
    [138] Bartle K D, Clifford A A, Jafar S A, Shilstone G F. Solubilities of solids and liquids of lowvolatility in supercritical carbon dioxide[J]. J. Phys. Chem. Ref. Data,1991,20(4):713–756
    [139] Méndez-Santiago J, Teja A S. The Solubility of solids in supercritical fluids[J]. Fluid PhaseEquilib.,1999,158-160:501–510
    [140] Sparks D L, Hernandez R, Estévez L A. Evaluation of density-based models for the solubility ofsolids in supercritical carbon dioxide and formulation a new model[J]. Chem. Eng. Sci.,2008,63(17):4292–4301
    [141] Tabernero A, del Valle E M M, Galán M á. A Comparison between semiempirical equations topredict the solubility of pharmaceutical compounds in supercritical carbon dioxide[J]. J. Supercrit.Fluids,2010,52(2):161–174
    [142] del Valle J M, Aguilera J M. An improved equation for predicting the solubility of vegetable oilsin supercritical CO2[J]. Ind. Eng. Chem. Res.,1988,27(8):1551–1553
    [143] Garlapati C, Madras G. New empirical expressions to correlate solubilities of solids insupercritical carbon dioxide[J]. Thermochim. Acta,2010,500(1–2):123–127
    [144] Yu Z, Singh B, Rizvi S S H, Zollewg J A. Solubilities of fatty acids, fatty acid esters, and fats andoils in supercritical CO2[J]. J. Supercrit. Fluids,1994,7(1):51–59
    [145] Gordillo M D, Blanco M A, Molero A, Martinez de la Ossa E. Solubility of the antibioticpenicillin G in supercritical carbon dioxide[J]. J. Supercrit. Fluids,1999,15(3):183–190
    [146] Jouyban A, Chan H K, Foster N R. Mathematical representation of solute solubility insupercritical carbon dioxide using empirical expressions[J]. J. Supercrit. Fluids,2002,24(1):19–35
    [147] Tang Z, Jin J S, Yu X Y, Zhang Z T, Liu H T. Equilibrium solubility of pure and mixed3,5-dinitrobenzoic acid and3-nitrobenzoic acid in supercritical carbon dioxide[J]. Thermochim.Acta,2011,517(1–2):105–114
    [148] Tang Z, Jin J S, Zhang Z T, Yu X Y, Xu J N. Solubility of3,5-dinitrobenzoic acid in supercriticalcarbon dioxide with cosolvent at temperatures from (308to328) K and pressures from(10.0to21.0) MPa[J]. J. Chem. Eng. Data,2010,55(9):3834–3841
    [149] Foster N R, Singh H, Yun S L J, Tomasko D L, Macnaughton S J. Polar and nonpolar cosolventeffects on the solubility of cholesterol in supercritical fluids[J]. Ind. Eng. Chem. Res.,1993,32(11):2849–2853
    [150] Ting S S T, Macnaughton S J, Tomasko D L, Foster N R. Solubility of naproxen in supercriticalcarbon dioxide with and without cosolvents[J]. Ind. Eng. Chem. Res.,1993,32(7):1471–1481
    [151] Sahle-Demessie E, Pillai U R, Junsophonsri S, Levien K L. Solubility of organic biocides insupercritical CO2and CO2+cosolvent mixtures[J]. J. Chem. Eng. Data,2003,48(3):541–547
    [152] Kopcak U, Mohamed R S. Caffeine solubility in supercritical carbon dioxide/co-solventmixtures[J]. J. Supercrit. Fluids,2005,34(2):209–214
    [153] Huang Z, Lu W D, Kawi S, Chiew Y C. Solubility of aspirin in supercritical carbon dioxide withand without acetone[J]. J. Chem. Eng. Data,2004,49(5):1323–1327
    [154] Ekart M P, Bennett K L, Ekart S M, Gurdial G S, Liotta C L, Eckert C A. Cosolvent interactionsin supercritical fluid solutions[J]. AIChE J.,1993,39(2):235–248
    [155] Johannsen M, Brunner G. Solubilities of the fat-soluble vitamins A, D, E, and K in supercriticalcarbon dioxide[J]. J. Chem. Eng. Data,1997,42(1):106–111
    [156] Yamini Y, Bahramifar N. Solubility of polycyclic aromatic hydrocarbons in supercritical carbondioxide[J]. J. Chem. Eng. Data,2000,45(1):53–56
    [157] Yamini Y, Arab J, Khiavi M A. Solubilities of phenazopyridine, propranolol, and methimazole insupercritical carbon dioxide[J]. J. Pharm. Biomed. Anal.,2003,32(1):181–187
    [158] Hosseini M H, Alizadeh N, Khanchi A R. Solubility analysis of clozapine and lamotrigine insupercritical carbon dioxide using static system[J]. J. Supercrit. Fluids,2010,52(1):30–35
    [159] McHugh M, Paulaitis M E. Solid solubilities of naphthalene and biphenyl in supercritical carbondioxide[J]. J. Chem. Eng. Data,1980,25(4):326–329
    [160] Dobbs J M, Wong J M, Lahiere R J, Johnston K P. Modification of supercritical fluid phasebehavior using polar cosolvents[J]. Ind. Eng. Chem. Res.,1987,26(1):56–65
    [161] Thakur R, Gupta R B. Rapid expansion of supercritical solution with solid cosolvent (RESS-SC)process: Formation of2-aminobenzoic acid nanoparticle[J]. J. Supercrit. Fluids,2006,308(1–2):190–199
    [162] Tsai K L, Tsai F N. Solubilities of methylbenzoic acid isomers in supercritical carbon dioxide[J].J. Chem. Eng. Data,1995,40(1):264–266
    [163] Chen J W, Tsai F N. Solubilities of methoxybenzoic acid isomers in supercritical carbondioxide[J]. Fluid Phase Equilib.,1995,107(2):189–200
    [164] Ravipaty S, Koebke K J, Chesney D J. Polar mixed-solid solute systems in supercritical carbondioxide: entrainer effect and its influence on solubility and selectivity[J]. J. Chem. Eng. Data,2008,53(2):415–421
    [165] Lucien F P, Foster N R. Solubilities of mixed hydroxybenzoic acid isomers in supercriticalcarbon dioxide[J]. J. Chem. Eng. Data,1998,43(5):726–731
    [166] Lucien F P, Foster N R. Influence of matrix composition on the solubility of hydroxybenzoic acidisomers in supercritical carbon dioxide[J]. Ind. Eng. Chem. Res.,1996,35(12):4686–4699
    [167] Bachman G B, Dever J L. The BF3·N2O5complex. Its use as a nitrating agent[J]. J. Am. Chem.Soc.,1958,80(21):5871–5873
    [168] Kurnik R T, Reid R C. Solubility of solid mixtures in supercritical fluids[J]. Fluid Phase Equilib.,1982,8(1):93–105
    [169] Dobbs J M, Johnston K P. Selectivities in pure and mixed supercritical fluid solvents[J]. Ind. Eng.Chem. Res.,1987,26(7):1476–1482
    [170] Hosseini M H, Alizadeh N, Khanchi A R. Effect of menthol as solid cosolvent on the solubilityenhancement of clozapine and lamorigine in supercritical CO2[J]. J. Supercrit. Fluids,2010,55(1):14–22
    [171] Smith G, Wermuth U D, White J M. Interactions of aromatic carboxylic acids with quinolin-8-ol(oxine): synthesis and the crystal structures of the proton-transfer compounds with thenitro-substituted benzoic acids[J]. Aust. J. Chem.,2001,54(3):171–175
    [172] Hundal G, Hundal M S, Obrai S, Poonia N S, Kumar S. Metal complexes of tetrapodal ligands:synthesis, spectroscopic and thermal studies, and x-ray crystal structure studies of Na(I), Ca(II),Sr(II), and Ba(II) Ccomplexes of tetrapodal ligands N,N,N',N'-tetrakis (2-hydroxypropyl)ethylenediamine and N,N,N',N'-tetrakis (2-hydroxyethyl) ethylenediamine[J]. Inorg. Chem.,2002,41(8):2077–2086
    [173]张睿,刘秀杰,胡涛,尹群.3-氨基苯甲酸的合成[J].天津理工大学学报,2010,26(3):38–39
    [174] Huang Z, Feng M, Guo Y H, Su J F, Teng L J, Liu T Y, Chiew Y C. Ternary solubility of mixedcholesteryl esters in supercritical carbon dioxide[J]. Fluid Phase Equilib.,2008,272(1–2):8–17
    [175] Macnaughton S J, Foster N R. Solubility of DDT and2,4-D in supercritical carbon dioxide andsupercritical carbon dioxide saturated with water[J]. Ind. Eng. Chem. Res.,1994,33(11):2757–2763
    [176] Cross W M, Akgerman A. Single-component and mixture solubilities of hexachlorobenzene andpentachlorophenol in supercritical carbon dioxide[J]. Ind. Eng. Chem. Res.,1998,37(4):1510–1518
    [177] Huang Z, Feng M, Guo Y H, Su J F, Shi Y, Chiew Y C. Influence of matrix composition on theternary solubility of cholesteryl esters in supercritical carbon dioxide[J]. Fluid Phase Equilib.,2009,285(1–2):54–61
    [178] Nejad S J, Abolghasemi H, Moosavian M A, Maragheh M G. Prediction of solute solubility insupercritical carbon dioxide: A novel semi-empirical model[J]. Chem. Eng. Res. Des.,2010,88(7):893–898
    [179] Sung H D, Shim J J. Solubility of C. I. Disperse Red60and C. I. Disperse Blue60insupercritical carbon dioxide[J]. J. Chem. Eng. Data,1999,44(5):985–989
    [180] Bian X Q, Du Z M, Tang Y. An improved density-based model for the solubility of somecompounds in supercritical carbon dioxide[J]. Thermochim. Acta,2011,519(1–2):16–21
    [181] Sovova H. Solubility of ferulic acid in supercritical carbon dioxide with ethanol as cosolvent[J]. J.Chem. Eng. Data,2001,46(5):1255–1257
    [182] González J C, Vieytes M R, Botana A M, Vieites J M, Botana L M. Modified mass actionlaw-based model To correlate the solubility of solids and liquids in entrained supercritical carbondioxide[J]. J. Chromatogr. A,2001,910(1):119–125
    [183] Sauceau M, Letourneau J J, Richon D, Fages J. Enhanced density-based models for solidcompound solubilities in supercritical carbon dioxide with cosolvents[J]. Fluid Phase Equilib.,2003,208(1–2):99–113
    [184] Tsai C C, Lin H M, Lee M J. Solubility of disperse yellow54in supercritical carbon dioxide withor without cosolvent[J]. Fluid Phase Equilib.,2007,260(1–2):287–294
    [185] Sovova H, Stateva R P, Galushko A A. Solubility of β-carotene in supercritical CO2and the effectof entrainers[J]. J. Supercrit. Fluids,2001,21(3):195–203
    [186] Tsai C C, Lin H M, Lee M J. Solubility of C.I. Disperse Violet1in supercritical carbon dioxidewith or without cosolvent[J]. J. Chem. Eng. Data,2008,53(9):2163–2169
    [187] Tsai C C, Lin H M, Lee M J. Solubility of1,5-diaminobromo-4,8-di-hydroxyanthraquinone insupercritical carbon dioxide with or without cosolvent[J]. J. Chem. Eng. Data,2009,54(5):1442–1446
    [188] Tsai K L, Tsai F N. Solubilities of methylbenzoic acid isomers in supercritical carbon dioxide[J].J. Chem. Eng. Data,1995,40(1):264–266
    [189] Chen J W, Tsai F N. Solubilities of methoxybenzoic acid isomers in supercritical carbondioxide[J]. Fluid Phase Equilib.,1995,107(2):189–200
    [190] Chen Y P, Chen Y M, Tang M. Solubilities of cinnamic acid, phenoxyacetic acid and4-methoxyphenylacetic acid in supercritical carbon dioxide[J]. Fluid Phase Equilib.,2009,275(1):33–38
    [191] Cheng K W, Tang M, Chen Y P. Solubilities of benzoin, propyl4-hydroxybenzoate and mandelicacid in supercritical carbon dioxide[J]. Fluid Phase Equilib.,2002,201(1):79–96
    [192] Su C S, Chen Y P. Measurement and correlation for the solid solubility of non-steroidalanti-inflammatory drugs (NSAIDs) in supercritical carbon dioxide[J]. J. Supercrit. Fluids,2008,43(3):438–446
    [193] Huang S Y, Tang M, Ho S L, Chen Y P. Solubilities of N-phenylacetamide,2-methyl-N-phenylacetamide and4-methyl-N-phenylacetamide in supercritical carbon dioxide[J].J. Supercrit. Fluids,2007,42(2):165–171
    [194] Ch R, Garlapati C, Madras G. Solubility of N-(4-ethoxyphenyl) ethanamide in supercriticalcarbon dioxide[J]. J. Chem. Eng. Data,2010,55(3):1437–1440
    [195] Coelho J P, Bernotaityte K, Miraldes M A, Mendon a A F, Stateva R P. Solubility of ethanamideand2-propenamide in supercritical carbon dioxide. Measurements and correlation[J]. J. Chem.Eng. Data,2009,54(9):2546–2549
    [196] Huang Z, Kawi S, Chiew Y C. Solubility of cholesterol and its esters in supercritical carbondioxide with and without cosolvents[J]. J. Supercrit. Fluids,2004,30(1):25–39
    [197] Shi J, Khatri M, Xue S J, Mittal G S, Ma Y, Li D. Solubility of lycopene in supercritical CO2fluid as affected by temperature and pressure[J]. Sep. Purif. Technol.,2009,66(2):322–328
    [198] Hojjati M, Vatanara A, Yamini Y, Moradi M, Najafabadi A R. Supercritical CO2and highlyselective aromatase inhibitors: experimental solubility and empirical data correlation[J]. J.Supercrit. Fluids,2009,50(3):203–209
    [199] Hojjati M, Yamini Y, Khajeh M, Vatanara A. Solubility of some statin drugs in supercriticalcarbon dioxide and representing the solute solubility data with several density-basedcorrelations[J]. J. Supercrit. Fluids,2007,41(2):187–194
    [200] Yamini Y, Kalantarian P, Hojjati M, Esrafily A, Moradi M, Vatanara A, Harrian I. Solubilities offlutamide, dutasteride, and finasteride as antiandrogenic agents, in Supercritical carbon dioxide:measurement and correlation[J]. J. Chem. Eng. Data,2010,55(2):1056–1059
    [201] Chin G J, Chee Z H, Chen W, Rajendran A. Solubility of flurbiprofen in CO2and CO2+methanol[J]. J. Chem. Eng. Data,2010,55(4):1542–1546
    [202] Ferri A, Banchero M, Manna L, Sicardi S. A new correlation of solubilities of azoic compoundsand anthraquinone derivatives in supercritical carbon dioxide[J]. J. Supercrit. Fluids,2004,32(1–3):27–35
    [203] Ferri A, Banchero M, Manna L, Sicardi S. An experimental technique for measuring highsolubilities of dyes in supercritical carbon dioxide[J]. J. Supercrit. Fluids,2004,30(1):41–49
    [204] Tamura K, Shinoda T. Binary and ternary solubilities of disperse dyes and their blend insupercritical carbon dioxide[J]. Fluid Phase Equilib.,2004,219(1):25–32
    [205] Yamini Y, Moradi M, Hojjati M, Nourmohammadian F, Saleh A. Solubilities of some disperseyellow dyes in supercritical CO2[J]. J. Chem. Eng. Data,2010,55(9):3896–3900
    [206] Yang H J, Tian J, Kim H. New highly CO2-philic diglycolic acid esters: synthesis and solubilityin supercritical carbon dioxide[J]. J. Chem. Eng. Data,2010,55(10):4130–4139
    [207] Wang W, Yang H J, Hu J C, Guo C Y. Solubilities of diglycolic acid esters at temperaturesranging from (343to363) K in supercritical carbon dioxide[J]. J. Chem. Eng. Data,2010,55(2):694–697
    [208] Chang F, Kim H, Kwon Y. Solubility of novel CO2-soluble pyridine derivatives in supercriticalcarbon dioxide[J]. J. Chem. Eng. Data,2009,54(4):1262–1265
    [209] Liu J F, Yang H J, Wang W, Li Z X. Solubilities of amide compounds in supercritical carbondioxide[J]. J. Chem. Eng. Data,2008,53(9):2189–2192
    [210] Shamsipur M, Karami A R, Yamini Y, Sharghi H. Solubilities of some aminoanthraquinonederivatives in supercritical carbon dioxide[J]. J. Chem. Eng. Data,2003,48(1):71–74
    [211] Fat’hi M R, Yamini Y, Sharghi H, Shamsipur M. Solubilities of some1,4-dihydroxy-9,10-anthraquinone derivatives in supercritical carbon dioxide[J]. J. Chem. Eng.Data,1998,43(3):400–402
    [212] Huang Z, Guo Y H, Sun G B, Chiew Y C, Kawi S. Representing dyestuff solubility insupercritical carbon dioxide with several density-based correlations[J]. Fluid Phase Equilib.,2005,236(1–2):136–145
    [213] Khiavi M A, Yamini Y, Farajzadeh M A. Solubilities of two steroid drugs and their mixtures insupercritical carbon dioxide[J]. J. Supercrit. Fluids,2004,30(2):111–117
    [214] Dong P, Xu M X, Lu X Y, Lin C M. Measurement and correlation of solubilities of C.I. DisperseRed73, C. I. Disperse Yellow119and their mixture in supercritical carbon dioxide[J]. FluidPhase Equilib.,2010,297(1):46–51
    [215] Paniri G, Ghaziaskar H S, Rezayat M. Ternary solubility of mono-and di-tert-butyl ethers ofglycerol in supercritical carbon dioxide[J]. J. Supercrit. Fluids,2010,55(1):43–48
    [216] Pennisi K J, Chimowitz E H. Solubilities of solid1,10-decanediol and a solid mixture of1,10-decanediol and benzoic acid in supercritical carbon dioxide[J]. J. Chem. Eng. Data,1986,31(3):285–288
    [217] Kosal E, Holder G D. Solubility of anthracene and phenanthrene mixtures in supercritical carbondioxide[J]. J. Chem. Eng. Data,1987,32(2):148–150
    [218] Anitescu G, Tavlarides L L. Solubilities of solids in supercritical fluids II. Polycyclic aromatichydrocarbons (PAHs)+CO2/cosolvent[J]. J. Supercrit. Fluids,1997,11(1–2):37–51
    [219] Huang Z, Chiew Y C, Lu W D, Kawi S. Solubility of aspirin in supercritical carbondioxide/alcohol mixtures[J]. Fluid Phase Equilib.,2005,237(1–2):9–15
    [220] Guan B, Liu Z M, Han B X, Yan H K. Solubility of behenic acid in supercritical carbon dioxidewith ethanol[J]. J. Supercrit. Fluids,1999,14(3):213–218
    [221] Guan B, Liu Z M, Han B X, Yan H K. Solubility of behenic acid in supercritical CO2withn-pentane or n-octane cosolvents[J]. J. Chem. Eng. Data,1999,44(6):1204–1206
    [222] Garlapati C, Madras G. Solubilities of hexadecanoic and octadecanoic acids in supercritical CO2with and without cosolvents[J]. J. Chem. Eng. Data,2008,53(12):2913–2917
    [223] Banchero M, Ferri A, Manna L, Sicardi S. Solubility of disperse dyes in supercritical carbondioxide and ethanol[J]. Fluid Phase Equilib.,2006,243(1–2):107–114