固体溶质在超临界体系中相平衡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界体系相平衡研究对促进新型绿色高效超临界流体科学与技术的应用和发展至关重要。本文基于实验研究,通过对实验现象的观察和实验结果的分析,以分子运动理论为指导,利用量子化学计算及统计力学方法,对固体溶质在超临界流体中相平衡问题进行了系统深入的研究。本文主要研究工作如下:
     改进、完善了一套利用动态法测定超临界流体相平衡数据的实验装置,并对装置的可靠性进行了验证;应用称重法、紫外分光光度法和气相色谱法对实验数据进行了分析。测定了苯磺酰胺、苯甲酸铵、双酚A、双酚S、对苯二甲酸二甲酯5种固体溶质在超临界C02二元体系中的溶解度;测定了苯磺酰胺、苯甲酸铵两种固体溶质在含夹带剂超临界C02三元体系,以及苯甲酰胺和苯甲酸铵等摩尔混合溶质在超临界C02三元体系中的溶解度。实验测定的压力范围为11.0-21.0MPa;温度范围为308-328K;夹带剂包括乙醇、丙酮、乙二醇、乙酸乙酯;夹带剂的摩尔浓度为0.01-0.04。本文实验获得的相平衡数据尚无报道,故丰富了超临界体系相平衡基础数据库,为超临界流体科学与技术的广泛应用提供理论依据和数据支持。
     利用分子运动理论,深入阐明压力、温度对溶解度的影响机理;结合分子间相互作用及分子的结构性质,系统分析了实验中不同溶质在超临界C02中溶解度的变化机制,夹带剂的种类和浓度对溶解度的影响,以及在混合溶质体系中溶质间的相互作用对溶解度的影响机理。
     本文利用Chrastll、A-L、K-J、Tang、S-S、Bartle、M-T、Yu和Gordillo共9种密度型或压力型经验模型对溶质在超临界C02二元体系中溶解度进行了关联,获得了模型的参数,比较了各个模型的平均绝对相对偏差(Average absolute relative deviation, AARD);利用M-T模型评价实验数据的自洽一致性。结果表明,实验数据的自洽一致性良好。利用Chrastll、K-J及Bartle模型计算了溶质在超临界CO2中的溶解热效应。应用Gonzalez、T-G、Sovova及改进Sovova模型关联计算了溶质在含夹带剂超临界CO2三元体系及混合溶质在超临界CO2三元体系中的溶解度,获得各模型参数和计算偏差。
     结合密度泛函的计算方法,采用Gaussian03程序计算了溶质与超临界CO2分子间,溶质与夹带剂分子间,混合溶质分子间的结合能,并利用分子间结合能进一步阐明了溶质结构、夹带剂对溶解度的影响。根据溶质在超临界流体中的溶解机理,应用理论计算的分子间结合能及溶质和溶剂的特征性质,建立了具有预测功能的溶解度模型。根据本文实验物系的确立方法,选择18种芳香族衍生物固体溶质建立了溶质样本,通过对18种溶质的溶解度数据进行计算,获得了新建溶解度模型的参数;根据溶质样本的建立方法,选择另外10种芳香族衍生物固体溶质,利用新建的溶解度模型预测了上述10种溶质在超临界CO2中的溶解度。通过研究发现,新建模型对10种固体溶质在较高压力(P>13.0MPa)时溶解度的预测值与实验值的平均AARD为17.70%。结果表明,新建溶解度模型具有较强的预测功能、较广的适用范围和较好的计算精度。
     为了实现不依靠实验数据对溶质在超临界流体中溶解度进行理论预测,本文依据超临界体系相平衡的特点,研究探索了基于统计缔合流体理论(SAFT)计算固体溶质在超临界流体中溶解度的方法,根据文献获得了溶质在固相及超临界相中的能量表达式。利用SAFT模型对文献中10种固体溶质的溶解度数据在一定压力和温度范围内进行了预测计算,并与文献数据进行了对比,计算结果表明利用SAFT模型对10种固体溶质的溶解度预测结果很好(平均AARD为1.42%)。该方法为超临界体系溶解度的理论预测提供了新的思路和方法。
     本文研究得到国家自然科学基金(21176012)和江苏省自然科学基金(BK2012595)的资助。
Phase equilibrium of supercritical fluid system is a key factor in development of supercritical fluid technology. This work makes systematic and theoretical experimental study on the phase equilibrium of solid and supercritical fluid system based on molecular kinetic theory, quantum-chemical calculation and statistical mechanics. The main content of the thesis are as follows:
     An experimental instrument based on the dynamic method is set up and modified to determine the experimental solubility data of solid in supuercritical system. The reliability of the instrument is verified. Electronic balance weighing, ultraviolet spectrometer and gas chromatography are used to measure the concentration of solid solute. Solubilities of solid solute including benzene sulfonamide, ammonium benzoate, bisphenol A, bisphenol S, dimethyl terephthalate in pure supercritical CO2(SCCO2) are investigated in this work; ternary system including benzene sulfonamide with cosolvent, ammonium benzoate with cosolvent, mixture solute of ammonium benzoate and benzamide in SCCO2are also studied. The experimental temperature is ranging from308to328K over a pressure range of11.0to21.0MPa. Ethanol, acetone ethylene glycol and ethyl acetate are chosen as cosolvent with mole fraction from0.01to0.04. The solubility data obtained in this work are first determined and have not been reported in literature. The determinations make a great contribution to the supercritical phase equilibrium data bases, which provide supporting for the application of supercritical fluid technology.
     An assumption is proposed based on the theory of molecular motion to investigate the effect of temperature and pressure on the solubility of solutes in supercritical CO2. The difference in solubility between different solute and different cosolvent, the effect of cosolvent molar fraction and mixture solute on solubility are investigated by analysis of molecular structure, and interactions between solute and solvent moleculars.
     Correlation of9empirical models based on density or pressure, including Chrastll, A-L, K-J, Tang, S-S, Bartle, M-T, Yu and Gordillo are made to experimental data and the parameters of each empirical models are obtained. The average absolute relative deviation (AARD) is used to evaluate9semi-empirical models. The self-consistency of the experimental data is satisfactorily determined by M-T model. The dissolving thermodynamic property of solid solute was calculated by Chrastll, K-J and Bartle models. Experimental solublities in ternary system are correlated by Gonzalez, T-G, Sovova and modified Sovova models. The parameters for each model are obtained and the value of AARD are calculated.
     The molecular interaction between solute molecule and solvent molecule is calculated by density function theory (DFT) method. GaussianO3procedure is adopted to process the calculation of the interactions between solute and CO2, solute and cosolvent, and solute mixture. The effects of solute structure and cosolvent on solubility are further analyzed by calculation result. According to the mechanism of solid dissolving in SCCO2, a solubility model is proposed through molecular interaction and physicochemical properties of solute and solvent. Data samples including18aromatic compounds are set up as the selection method of solid solute in this work. The parameters in the model are obtained by correlation and regression of available solubility data of18different compounds in SCCO2. Accroding to the same selection criteria of data samples, another10soild solutes are chosen for the prediction calculation by the new model. The calculation solubilities show good aggrement with those in literature under high pressure (P>13.0MPa). The average AARD for10solutes is17.70%, which indicates the new model is of good performance in solubility prediction, broader applicability and high-accuracy.
     For the purpose of solubility prediction without experimental data, this work makes exploration to build a model based on statistical association fluid theory (SAFT) to predict solubility of solid solute in SCCO2. The energy expressions for the solute in solid phase and supercritical phase are established according to references respectively. The solubility predictions for10solid solutes in SCCO2are investigated by SAFT model. The solubility predictions show fairly good accuracy, the average AARD%for10solutes is1.42%. SAFT model could provide innovative research idea and method for theoretical prediction of solublity of solute in SCCO2.
     This research is financially supported by the National Natural Science Foundation of China (No.21176012), the Natural Science Foundation of Jiangsu Province (No. BK2012595).
引文
[1]Greer S C. Liquid-liquid critical phenomena [J]. Ace. Chem. Res.,1978,11 (11):427-432
    [2]Johnson J W, Norton D. Critical phenomena in hydrothermal system:state, thermodynamic, electrostatic, and transport properties of H2O in the critical region [J]. Am. J. Sci.,1991, 291:541-648
    [3]娄彝忠,方荣青,顾春明.相变与临界乳光现象[J].物理实验,2011,31(4):15-17
    [4]韩布兴.超临界流体科学与技术[M].北京:中国石化出版社,2005
    [5]Black H. Supercritical carbon dioxide:The "Greener" Solvent [J]. Environ. Sci. Technol., 1996,30(3):124-127
    [6]Zhao C R, Jiang P X. Experimental study of in-tube cooling heat transfer and pressure drop characteristics of R134a at supercritical pressures [J]. Exp. Therm Fluid Sci.,2011, 35:1293-1303
    [7]Calvosa F C, Lagalante A F. Supercritical fluid extraction of polybrominated diphenyl ethers (PBDEs) from house dust with supercritical 1,1,1,2-tetrafluoroethane (R134a) [J]. Talanta,2010,80:1116-1120
    [8]Mustapa A N, Manan Z A, Mohd A C Y, Setianto W B, Mohd O A K. Extraction of b-carotenes from palm oil mesocarp using sub-critical R134a [J]. Food Chem.,2011, 125:262-267
    [9]Chiu K L, Cheng Y C, Chen J H, Chang C J, Yang P W. Supercritical fluids extraction of Ginkgo ginkgolides and flavonoids [J]. J. Supercrit. Fluids,2002,24:77-87
    [10]Herrero M, Cifuentes A, Ibanez E. Sub-and supercritical fluid extraction of functional ingredients from different natural sources:plants, food-by-products, algae and microalgae A review [J]. Food Chem.,2006,98:13-6-148
    [11]Aymonier C, Loppinet-Serani A, Reveron H, Garrabos Y, Cansell F. Review of supercritical fluids in inorganic materials science [J]. J. Supercrit. Fluids,2006,38:242-251
    [12]Perrut M. Sterilization and virus inactivation by supercritical fluids (a review) [J]. J. Supercrit. Fluids,2012,66:359-371
    [13]Lehotay S J. Supercritical fluid extraction of pesticides in foods [J]. J. Chromatogr. A, 1997,785:289-312
    [14]Cansell F, Aymonier C, Loppinet-Serani A. Review on materials science and supercritical fluids [J]. Curr. Opin. Solid State Mater. Sci.,2003,7:331-340
    [15]Brunner G. Supercritical fluids:technology and application to food processing [J]. J. Food Eng.,2005,67:21-33
    [16]陈维忸.超临界流体萃取的原理和应用[M].北京:化学工业出版社,1998
    [17]张镜澄.超临界流体萃取[M].北京:化学工业出版社,2000
    [18]Korner J P. Design and construction of full-scale supercritical gas extraction plants [J]. Chem. Eng. Prog. Ress.,1985,81(4):63-68
    [19]Reverchon E, De Marco I. Supercritical fluid extraction and fractionation of natural matter [J]. J. Supercrit. Fluids,2006,38:146-166
    [20]Smith R M. Supercritical fluids in separation science - the dreams, the reality and the future [J]. J. Chromatogr. A,1999,856:83-115
    [21]Reverchon E. Supercritical fluid extraction and fractionation of essential oils and related products [J]. J. Supercrit. Fluids,1997,10:1-37
    [22]Lang Q, Wai C M. Supercritical fluid extraction in herbal and natural product studies-a practical review [J]. Talanta,2001,53:771-782
    [23]Meireles M A A. Supercritical extraction from solid:process design data (2001-2003), Current Opin [J]. Solid State Mater. Sci.,2003,7:321-330
    [24]Akinlua A, Torto N, Ajayi T R. Supercritical fluid extraction of aliphatic hydrocarbonsfrom Niger Delta sedimentary rock [J]. J. Supercrit. Fluids,2008,45:57-63
    [25]Davarnejad R, Kassim K M, Zainal A, Sata S A. Extraction of fish oil by fractionation through supercritical carbon dioxide [J]. J. Chem. Eng. Data,2008,53(9):2128-2132
    [26]Fiori L. Supercritical extraction of sunflower seed oil:experimental data and model validation [J]. J. Supercrit. Fluids,2009,50:218-224
    [27]He H P, Corke H, Cai J G. Supercritical carbon dioxide extraction of oil and squalene from amaranthus grain [J]. J. Agric. Food Chem.,2003,51(27):7921-7925
    [28]Papamichail I, Louli V, Magoulas K. Supercritical fluid extraction of celery seed oil [J]. J. Supercrit. Fluids,2000,18:213-226
    [29]Reverchon E, Daghero J, Marrone C, Mattea M, Poletto M. Supercritical fractional extraction of fennel seed oil and essential oil:experiments and mathematical modeling [J]. Ind. Eng. Chem. Res.,1999,38(8):3069-3075
    [30]Gomes P B, Mata V G, Rodrigues A. Production of rose geranium oil using supercritical fluid extraction [J]. J. Supercrit. Fluids,2007,41:50-60
    [31]Lopez M, Arce L, Garrido J, Rios A, Valcarcel M. Selective extraction of astaxanthin from crustaceans by use of supercritical carbon dioxide [J]. Talanta,2004,64:726-731
    [32]Jaime L, Mendiola J A, Ibanez E, Martin-Alvarez P J, Cifuentes A, Reglero G, Senorans F J. β-Carotene isomer composition of Sub-and supercritical carbon dioxide extracts. antioxidant activity measurement [J]. J. Agric. Food Chem.,2007,55(26):10585-10590
    [33]朱美文,于恩平,方之蓉.超临界CO2萃取菜籽油的研究[J].化学工程,1986,5:15-20
    [34]朱美文,于恩平,方之蓉.超临界C02萃取天然植物的探索[J].化工进展,1987,1:27-31
    [35]文韵豪,诸林,杨贵权,蒋李陵.超临界反应技术的应用与发展[J].化学工程与装备2010-4:118-121
    [36]Scholsky K M. Polymerization reactions at high pressure and supercritical conditions [J]. J. Supercrit. Fluids,1993,6(2):103-127
    [37]Abbaslou R M M, Mohammadzadeh J S S, Dalai A K. Review on Fischer-Tropsch synthesis in supercritical media [J]. Fuel Processing Technology,2009,90:849-856
    [38]Ikushima Y, Sato O, Sato M, Hatakeda K, Arai M. Innovations in chemical reaction processes using supercritical water:an environmental application to the production of ε-caprolactam [J]. Chem. Eng. Sci.,2003,58(3-6):935-941
    [39]Brunner G. Near and supercritical water. Part Ⅱ:Oxidative processes [J]. J. Supercrit. Fluids,2009,47(3):382-390
    [40]孙英杰,徐迪民,刘辉.超临界水氧化技术研究与应用进展[J].中国给水排水,2002,18:35-37
    [41]Xiu F R, Zhang F S. Materials recovery from waste printed circuit boards by supercritical methanol [J]. J. Hazard. Mater.,2010,178:628-634
    [42]Goto M. Chemical recycling of plastics using sub-and supercritical fluids [J]. J. Supercrit. Fluids,2009,47(3):500-507
    [43]Tan K T, Gui M M, Lee K T, Mohamed A R. An optimized study of methanol and ethanol in supercritical alcohol technology for biodiesel production [J]. J. Supercrit. Fluids,2010, 53(1-3):82-87
    [44]Pinnarat T, Savage P E. Assessment of Noncatalytic Biodiesel Synthesis Using Supercritical Reaction Conditions [J]. Ind. Eng. Chem. Res.,2008,47(18):6801-6808
    [45]邵瑞华,司全印,房平.超临界水氧化法处理固体废物的研究进展[J].化工环保,2008,28(2):122-126
    [46]Sawai O, Nunoura T, Yamamoto K. Application of subcritical water liquefaction as pretreatment for supercritical water gasification system in domestic wastewater treatment plant [J]. J. Supercrit. Fluids,2013,77:25-32
    [47]Hou A Q, Chen B, Dai J J, Zhang K. Using supercritical carbon dioxide as solvent to replace water in polyethylene terephthalate (PET) fabric dyeing procedures [J]. J. Clean. Prod.,2010,18:1009-1014
    [48]李志义,胡大鹏,张晓冬,刘学武,夏远景.关于超临界流体染色的工艺基础研究[J].现代化工,2003,23(5):5-8
    [49]Liu Z T, Zhang L L, Liu Z W, Gao Z W, Dong W S, Xiong H P, Peng Y D, Tang S W. Supercritical CO2 dyeing of ramie fiber with disperse dye [J]. Ind. Eng. Chem. Res.,2006, 45(26):8932-8938
    [50]Montero G A, Smith C B, Hendrix W A, Butcher D L. Supercritical fluid technology in textile processing:an overview [J]. Ind. Eng. Chem. Res.,2000,39(12):4806-4812
    [51]Cooney C M. Supercritical CO2-based cleaning system among Green Chemistry award winners [J]. Environ. Sci. Technol.,1997,31(7):314-315
    [52]张传杰,银建中,胡大鹏,李惠荣.MEMS、半导体和精密机超临界清洗技术[J].清洗世界,2003,23(5):34-41
    [53]Weibel G L, Ober C K. An overview of supercritical CO2 applications in microelectronics processing [J]. Microelectron. Eng.,2003,65:145-152
    [54]Porta G D, Volpe M C, Reverchon E. Supercritical cleaning of rollers for printing and packaging industry [J]. J. Supercrit. Fluids,2006,37(3):409-416
    [55]李志义,刘学武,张晓冬,夏远景,胡大鹏,超临界流体精密清洗[J].机械制造,2004,475(42):53-54
    [56]Turk M, Bolten D. Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS):results for naproxen [J]. J. Supercrit. Fluids,2010, 55(2):778-785
    [57]孙晓宇,王亭杰,金涌.RESS过程及其用于微细颗粒制备研究综述[J].化工进展,2002,21(1):29-33
    [58]Sun Y P, Guduru R, Lin F, Whiteside T. Preparation of nanoscale semiconductors through the rapid expansion of supercritical solution (RESS) into liquid solution [J]. Ind. Eng. Chem. Res.,2000,39(12):4663-4669
    [59]Satvati H R, Lotfollahi M N. Effects of extraction temperature, extraction pressure and nozzle diameter on micronization of cholesterol by RESS process [J]. Powder Technol., 2011,210:109-114
    [60]Yildiz N, Tuna S, Doker O, Calimli A. Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS) [J]. J. Supercrit. Fluids,2007,41:440-451
    [61]张忠义,李红磊,雷正杰.RESS技术在制备药物微粒中的应用[J].中国中药杂志,2003,31(23):1933-1936
    [62]Lesoin L, Crampon C, Boutin O, Badens E. Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method [J]. J. Supercrit. Fluids,2011,57:162-174
    [63]胡爱军,丘泰球.超临界流体结晶技术及其应用研究[J].化工进展,2002,21(2):127-130
    [64]Martin A, Scholle K, Mattea F, Meterc D, Cocero M J. Production of polymorphs of ibuprofen sodium by supercritical antisolvent (SAS) precipitation [J]. Cryst. Growth Des., 2009,9(5):2504-2511
    [65]张杨,潘见,袁传勋,孙益民等,超临界流体结晶技术研究进展[J].化工科技,2002,10(5):41-43
    [66]Cardoso M A T, Geraldes V, Cabral J M S, Palavra A M F. Characterization of minocycline powder micronized by a supercritical antisolvent (SAS) process [J]. J. Supercrit. Fluids, 2008,46:71-76
    [67]乐龙,黄德春,刘巍等.超临界流体抗溶剂结晶技术在药物制粒领域中的应用[J].药学进展,2007,31(12):560-563
    [68]Rose E F, Paolo A, Ireneo K. High-pressure fluid-phase equilibria:experimental methods and systems investigated (1978-1987) [J]. Fluid Phase Equilib.,1990,57:1-33
    [69]Dohrn R, Brunner G. High-pressure fluid-phase equilibria:experimental methods and systems investigated (1988-1993) [J]. Fluid Phase Equilib.,1995,106:213-282
    [70]Christov M, Dohrn R. High-pressure fluid phase equilibria:experimental methods and systems investigated (1994-1999) [J]. Fluid Phase Equilib.,2002,202(1):153-218
    [71]Dohrn R, Peper S, Fonseca J M S. High-pressure fluid-phase equilibria:experimental methods and systems investigated (2000-2004) [J]. Fluid Phase Equilib.,2010,288(1-2):1-54
    [72]Fonseca J M S, Dohrn R, Peper S. High-pressure fluid-phase equilibria:Experimental methods and systems investigated (2005-2008) [J]. Fluid Phase Equilib.,2011,300(1-2):1-69
    [73]Chrastll J. Solubility of solids and liquids in supercritical gases [J]. J. Phys. Chem.,1982, 86:3016-3021
    [74]Adachi Y, Lu B C Y. Supercritical fluid extraction with carbon dioxide and ethylene [J]. Fluid Phase Equilib.,1983,14:147-156
    [75]Kumar S J, Johnston K P. Modelling the solubility of solids in supercritical fluids with density as independent variable [J]. J. Supercrit. Fluids,1988,1:15-22
    [76]Tang Z, Jin J S, Yu X Y, Zhang Z T, Liu H T. Equilibrium solubility of pure and mixed 3,5-dinitrobenzoic acid and 3-nitrobenzoic acid in supercritical carbon dioxide [J]. Thermochim. Acta,2011,517:105-114
    [77]Sung H D, Shim J J. Solubility of C. I. disperse red 60 and C. I. disperse blue 60 in supercritical carbon dioxide [J]. J. Chem. Eng. Data,1999,44:985-989
    [78]Bartle K D, Clifford A A, Jafar S A, Shilstone G F. Solubilities of solids and liquids of low volatility in supercritical carbon dioxide [J]. J. Phys. Chem. Ref. Data,1991,20:713-756
    [79]Mendez-Santiago J, Teja A S. The solubility of solids in supercritical fluids [J]. Fluid Phase Equilib.,1999,158:501-510
    [80]Yu Z, Singh B, Rizvi S S H, Zollewg J A. Solubilities of fatty acids, fatty acid esters, and fats and oils in supercritical CO2 [J]. J. Supercrit Fluids,1994,7:51-59
    [81]Gordillo M D, Blanco M A, Molero A, de la Ossa E M. Solubility of the antibiotic penicillin G in supercritical carbon dioxide [J]. J. Supercrit. Fluids,1999,15:183-190
    [82]Huang Z, Chiew Y C, Feng M, Miao H, Li J H, Xu L. Modeling aspirin and naproxen ternary solubility in supercritical CO2/alcohol with a new Peng-Robinson EOS plus association model [J]. J. Supercrit. Fluids,2007,43:259-266
    [83]Hong S A, Kim J D, Kim J, Kang J W, Kang I J. Phase equilibria of palm oil, palm kernel oil, and oleic acid+supercritical carbon dioxide and modeling using Peng-Robinson EOS [J]. J. Ind. Eng. Chem.,2010,16:859-865
    [84]Yazdizadeh M, Eslamimaneshl A, Esmaeilzadeh F. Thermodynamic modeling of solubilities of various solid compounds in supercritical carbon dioxide:effects of equations of state and mixing rules [J]. J. Supercrit. Fluids,2011,55:861-875
    [85]Turka M, Cronea M, Kraskab T. A comparison between models based on equations of state and density-based models for describing the solubility of solutes in CO2 [J]. J. Supercrit. Fluids,2010,55:462-471
    [86]李小森,吴慧杰,冯自平等.利用统计缔合流体理论状态方程预测混合气体水合物的平衡形成条件[J].化学学报,2007,65(1):59-66
    [87]Tang X H, Gross J. Modeling the phase equilibria of hydrogen sulfide and carbon dioxide in mixture with hydrocarbons and water using the PCP-SAFT equation of state [J]. Fluid Phase Equilib.,2010,293:11-21
    [88]Morgado P, McCabe C, Filip E J M. Modelling the phase behaviour and excess properties of alkane+perfluoroalkane binary mixtures with the SAFT-VR approach [J]. Fluid Phase Equilib.,2005,228-229:389-393
    [89]张庆印,密建国,于燕梅,陈健,含临界区流体混合物的统计缔合理论研究[J].计算机与应用化学,2003,20(4):391-394
    [90]Dominik A, Tripathi S, Chapman W G. Bulk and interfacial properties of polymers from interfacial SAFT density functional theory[J]. Ind. Eng. Chem. Res.,2006,45:6785-6792
    [91]Islam A W, Carlson E S. Application of SAFT equation for CO2+H2O phase equilibrium calculations over a wide temperature and pressure range [J]. Fluid Phase Equilib.,2012, 321:17-24
    [92]王伟彬,银建中.C02膨胀液体的分子动力学模拟[J].高压物理学报,2010,24(4):272-278
    [93]金君素,李群生,张泽廷等.含夹带剂的超临界流体中固体溶解度的研究[J].石油化工,2004,33(5):441-446
    [94]Tian G H, Jin J S, Zhang Z T, Prediction of solubility of the aromatic compounds in supercritical CO2 using molecular topology [J]. Ind. Eng. Chem. Res.,2007,46:6326-6331
    [95]Dobbs J M, Wong J M, Lahiere R J, Johnston K P. Modified of supercritical fluid phase behavior using polar cosolvent [J]. Ind. Eng. Ghem. Res.,1987,26:56-65
    [96]齐江,戴猷元.醇类稀溶液的溶剂萃取研究[J].现代化工,1999,10:9-12
    [97]于潜,张丽华.溶剂萃取法回收废弃含能材料的研究现状[J].化工时刊,2009,23(10):56-59
    [98]Casas L, Mantell C, Rodriguez M, Torres A, Marias F A, de la Ossa M E. Effect of the addition of cosolvent on the supercritical fluid extraction of bioactive compounds from helianthus annuus L [J]. J. Supercrit. Fluids,2007,41(1):43-49
    [99]Perez E, Cabanas A, Renuncio J A R, Sanchez-Vicente Y, Pando C. Cosolvent effect of methanol and acetic acid on dibenzofuran solubility in supercritical carbon dioxide [J]. J. Chem. Eng. Data,2008,53,11:2649-2653
    [100]Byun H S, Lee D H. Cosolvent effect and solubility measurement for butyl (meth) aery late polymers in benign environmental supercritical solvents [J]. Ind. Eng. Chem. Res.,2006, 45(10):3354-3365
    [101]郗砚彬,夏晓晖,靳冉等.夹带剂对超临界CO2萃取中草药成分的作用分析[J].中国中药杂志,2009,34(11):1460-1463
    [102]袁萍,蔡建国,彭国荣等.红外光谱测量法研究超临界CO2中夹带剂与溶质的相互作用[J].化工学报,2007,58(12):3092-3096
    [103]Li J L, Jin J S, Zhang Z T, Wang Y B. Measurement and correlation of solubility of benzamide in supercritical carbon dioxide with and without cosolvent [J]. Fluid Phase Equilibria,2011,307:11-15
    [104]Levelt Sengers J M H. Dilute mixtures and solutions near critical points [J]. Fluid Phase Equilib.,1986,30:31-39
    [105]Levelt Sengers J M H. Solubility near the solvent's critical point [J]. J. Supercrit. Fluids, 1991,4:215-222
    [106]Harvey A H. Semiempirical correlation for Henry's constant over large temperature ranges [J].AIChE J.,1996,42(5):1491-1494
    [107]Harvey A H. Applications of near-critical dilute solution thermodynamics [J]. Ind. Eng. Chem. Res.,1998,37(8):3080-3088
    [108]Gonzalez J C, Vieytes M R, Botana A M, Vieites J M, Botana L M. Modified mass action law-based model to correlate the solubility of solids and liquids in entrained supercritical carbon dioxide [J]. J. Chromatogr. A,2001,910:119-125
    [109]Thakur R, Gupta R B. Rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process:formation of griseofulvin nanoparticles. Ind. Eng. Chem. Res.,2005, 44:7380-7387
    [110]Sovova H. Solubility of ferulic acid in supercritical carbon dioxide with ethanol as cosolvent [J]. J. Chem. Eng. Data,2001,46:1255-1257
    [111]Tang Z, Jin J S, Yu X Y, Zhang Z T, Xu J N. Solubility of 3,5-dinitrobenzoicacid in supercritical carbon dioxide with cosolvent at temperatures from (308 to 328) K and pressures from (10.0 to 21.0) MPa [J]. J. Chem. Eng. Data,2010,55:3834-3841
    [112]Tang Z G, Gui X, Fei W Y. Utilization of molecular simulation software gaussian 03 to design absorbent for CO2 capture [J]. Procedia Engineering,2011,12:87-92
    [113]肖鹤鸣,居学海.高能体系中的分子间相互作用[M].北京:科学出版社,2003
    [114]朱维良,蒋华良,陈凯先等.分子间相互作用的量子化学研究方法[J].化学进展,1999,11(3):248-253
    [115]宋华杰,肖鹤鸣,董海山.渐近修正的SAPT(DFT)新方法—高能材料中分子间作用与协同效应的本质[D].南京:南京理工大学,2006
    [116]Turki N, Milet A, Ouamerali O, Moszynski R, Kochanski E. The OH-(H2O)2 system: efficiency of ab initio and DFT calculations for two-and three-body interactions [J]. THEOCHEM,2002,577(2-3):239-253
    [117]李金山.高能材料中分子间相互作用的量子化学研究[D].南京:南京理工大学,2000
    [118]Jin J S, Wang Y B, Zhang Z T, Liu H T. Solubilities of benzene sulfonamide in supercritical CO2 in the absence and presence of cosolvent [J]. Thermochim. Acta,2012,527:165-171
    [119]Jin J S, Wang Y B, Wu H, Li J L, Zhang Z T. Equilibrium solubilities of ammonium benzoate, benzamide and their mixture in supercritical carbon dioxide [J]. Fluid Phase Equilib.,2012,334:152-156
    [120]Jin J S, Wang Y B, Zhang Z T, Liu H T. Determination and calculation ofsolubility of bisphenol A in supercritical carbon dioxide [J]. Chem. Eng. Res. Des.,2013,91:158-164
    [121]Tian G H, Jin J S, Li Q S, Zhang Z T. Solubility of p-nitrobenzoic acid in supercritical carbon dioxide with and without cosolvents [J]. J. Chem. Eng.Data,2006,51 (2):430-433
    [122]Huang Z, Lu W D, Kawi S, Chiew Y C. Solubility of Aspirin in supercritical Carbon with and without Acetone [J]. J. Chem. Eng. Data,2004,49(5):1323-1327
    [123]Ke J, Mao C, Zhong M H, Han B X, Yan H K. Solubilities of salicylic acid in supercritical carbon dioxide with ethanol cosolvent [J]. J. Supercrit. Fluids,1996,9(2):82-87
    [124]Li J L, Jin J S, Zhang Z T, Pei X M. Solubility of p-toluenesulfonamide in pure and modified supercritical carbon dioxide [J]. J. Chem. Eng. Data,2009,54(3):1142-1146
    [125]Su C S, Chen Y P. Measurement and correlation for the solid solubility of non-steroidalanti-inflammatory drugs (NSAIDs) in supercritical carbon dioxide [J]. J. Supercrit. Fluids, 2008,43:438-446
    [126]Weinstein R D, Muske K R, Moriarty J, Schmidt E K. The solubility of benzocaine, lidocaine, and procaine in liquid and supercritical carbon dioxide [J]. J. Chem. Eng. Data, 2004,49(3):547-552
    [127]Reddy S N, Madras G. Measurement and correlation of quaternary solubilities of dihydroxybenzene isomers in supercritical carbon dioxide [J]. J. Supercrit. Fluids,2013, 73:63-69
    [128]Thakur R, Gupta R B. Rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process:formation of 2-aminobenzoic acid nanoparticle [J]. J. Supercrit. Fluids,2006,37:307-315
    [129]Li Y, Tang Z, Jin J S, Zhang Z T. Binary and ternary solubility of amino-and nitro-benzoic acids in supercritical carbon dioxide [J]. Fluid Phase Equilib.,2013,344:71-78.
    [130]Chen Y P, Chen Y M, Tang M. Solubilities of cinnamie acid, phenoxyacetic acid and 4-methoxyphenylacetic acid in supercritical carbon dioxide [J]. Fluid Phase Equilib.,2009, 275:33-38
    [131]Weinstein R D, Gribbin J J, Muske K R. Solubility and salting behavior of several P-adrenergic blocking agents in liquid and supercritical carbon dioxide [J]. J. Chem. Eng. Data,2005,50(1):226-229
    [132]Reddy S N, Madras G. Mixture solubilities of nitrobenzoic acid isomers in supercritical carbon dioxide [J]. J. Supercrit. Fluids,2012,70:66-74
    [133]Zhou K L, Liu Y B, Pan C Y, Yi J M. Solubility and micronization of DL-2-phenoxypropionic acid in supercritical CO2 [J]. J. Chem. Eng. Data,2012,57:856-861
    [134]Tian G H, Jin J S, Zhang Z T, Guo J J. Solubility of mixed solids in supercritical carbon dioxide [J]. Fluid Phase Equilib.,2007,251:47-51
    [135]Huang S Y, Tang M, Ho S L, Chen Y P. Solubilities of N-phenylacetamide,2-methyl-N-phenylacetamide and 4-methyl-N-phenylacetamide in supercritical carbon dioxide [J]. J. Supercrit. Fluids,2007,42:165-171
    [136]Khimeche K, Alessi P, Kikic I, Dahmani A. Solubility of diamines in supercritical carbon dioxide:Experimental determination and correlation [J]. J. Supercrit. Fluids,2007, 41(1):10-19
    [137]Muller E A, Gubbins K E. Molecular-based equations of state for associating fluids:A review of SAFT and related approaches [J]. Ind. Eng. Chem. Res.,2001,40:2193-2211
    [138]Fortea E, Llovell F, Truslera J P M, Galindoa A. Application of the statistical associating fluid theory for potentials of variable range (SAFT-VR) coupled with renormalisation-group (RG) theory to model the phase equilibria and second-derivative properties of pure fluids [J]. Fluid Phase Equilib.,2013,337:274-287
    [139]Zhong C L, Yang H Y. Representation of the solubility of solids in supercritical fluids using the SAFT equation of state [J]. Ind. Eng. Chem. Res.,2002,41:4899-4905
    [140]Dickman R, Hall C K. Equation of state for chain molecules:continuous-space analog of flory theory [J]. J. Chem. Phys.,1986,85:4108-4116
    [141]Wertheim M S. Thermodynamic perturbation theory of polymerization [J]. J. Chem. Phys., 1987,87:7323-7332
    [142]Chiew Y C. Percus-Yevick integral-equation theory for athermal hard-sphere chains [J]. Mol. Phys.,1990,70(1):129-143
    [143]Chapman W G, Gubbins K E, Jackson G, Radosz M. SAFT:equation-of-state solution model for associating fluids [J]. Fluid Phase Equilib.,1989,52:31-38
    [144]Chapman W G, Gubbins K E, Jackson G, Radosz M. New reference equation of state for associating liquids [J]. Ind. Eng. Chem. Res.,1990,29:1709-1721
    [145]Huang S H, Radosz M. Equation of state for small, large, polydisperse, and associating molecules:extension to fluid mixtures [J]. Ind. Eng. Chem. Res.,1991,30(8):1994-2005
    [146]Van der Hoef M A. Free energy of the Lennard-Jones solid [J]. J. Chem. physics,2000, 113(18):8142-8148
    [147]Tang Y. A SAFT model for associating Lennard-Jones chain mixtures [J]. Mol. Phys.,2002, 100(7):1033-1047
    [148]Schwarz C E, Knoetze J H. Phase equilibrium measurements of long chain acids in supercritical carbon dioxide [J]. J. Supercrit. Fluids,2012,66:36-48
    [149]Hojjati M, Vatanara A, Yamini Y, Moradi M, Najafabadi A R. Supercritical CO2 and highly selective aromatase inhibitors:experimental solubility and empirical data correlation [J]. J. Supercrit. Fluids,2009,50:203-209
    [150]Yamirii Y, Kalantarian P, Hojjati M, Esrafily A, Moradi M, Vatanara A, Harrain Ⅰ. Solubilities of flutamide, dutasteride, and finasteride as antiandrogenic agents in supercritical carbon dioxide:measurement and correlation [J]. J. Chem. Eng. Data,2010, 55:1056