超临界流体中L-脯氨酸催化Aldol反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,脯氨酸及其衍生物等手性有机小分子催化剂在不对称合成中发挥着越来越重要的作用,受到人们越来越多的关注。其催化的不对称直接羟醛缩合反应(Aldol)都是在有机溶剂中进行的,反应中使用高沸点的溶剂(如DMF和DMSO)有利于提高产物的对映选择性,但产品的分离和纯化过程处理复杂,且有机溶剂的使用不利于环境保护。从绿色化学的角度出发,使用无毒,不易燃,可回收的物质作为反应溶剂,是绿色化学发展的一项重要目标。超临界流体如超临界二氧化碳(scCO_2)作为一类绿色溶剂越来越受到化学工作者的青睐。超临界流体与一般的有机液体溶剂相比,在传质、传热方面具有明显优势。scCO_2能使反应更高效、更清洁、易调控、绿色化进行,有利于减小或消除环境污染。
     基于超临界流体的溶剂效应可通过温度和压力有效调控的特性,以及scCO_2体系在手性不对称催化反应中的研究实践,并结合脯氨酸在催化手性不对称反应中,溶剂在其中发挥极其重要作用的研究结果,本论文考察了L-脯氨酸在超临界流体中的溶解行为,并以超临界流体为反应介质考察了L-脯氨酸催化丙酮与芳香醛的不对称直接Aldol反应的催化性能,具体开展了以下三方面的工作:
     1.本论文首先测定了scCO_2和1,1,1,2-四氟乙烷(HFC-134a)流体在不同温度和不同压力下的密度,并与P-R方程计算结果进行比较。结果表明,流体的密度与温度和压力的关系为非线性关系,scCO_2和HFC-134a流体的密度在压力一定时随着温度的升高而降低,温度一定时随着压力的升高而增加,表明流体的温度和压力是决定流体密度的重要因素,因此流体密度可通过温度和压力的改变来调节。
     固体溶质在超临界流体中的相平衡一直是超临界流体科学与技术研究的热点和难点。本论文对固体溶质L-脯氨酸在超临界流体中的相平衡进行了比较系统的研究。本论文采用静态法与重量分析法相结合测定了L-脯氨酸在HFC-134a和scCO_2流体中的溶解度,此法操作简便、除压力容器外不需要其他特殊装置。考察了压力、温度对溶解度的影响。测定了303~328 K,10~30 MPa下L-脯氨酸在scCO_2及HFC-134a流体中的溶解度。大大丰富了超临界流体相平衡基础数据。本论文用Chrastil方程关联计算了L-脯氨酸在scCO_2中的溶解度数据,实验值与计算值吻合良好。超临界流体中L-脯氨酸溶解度的测定为其在超临界流体中的催化反应奠定了基础。
     2.首次实现了超临界流体中L-脯氨酸催化的丙酮与芳香醛的不对称直接Aldol反应,ee值达到84%,本方法具有反应分离一体化的特点,简化了反应的后处理过程,实现了β-羟基酮的绿色合成,为类似有机合成反应的绿色化提供了很好的借鉴。以scCO_2流体为反应介质,考察了反应温度、压力、催化剂用量、反应时间、添加剂等因素对超临界流体中L-脯氨酸催化的丙酮与芳香醛的不对称直接Aldol反应的影响。结果表明,在scCO_2中的最佳反应条件为40℃,25 MPa,催化剂用量15 mol%,反应时间24 h,醛酮摩尔比1:15。以HFC-134a为反应介质时,考察了温度和压力对L-脯氨酸催化的Aldol反应的影响,并与在scCO_2中的结果进行了比较,结果表明,以HFC-134a为反应介质时,对映选择性较低。
     3.以叔丁氧羰基(Boc)保护的脯氨酸和取代的三氮唑为原料,合成了催化剂(S)-5-脯氨酰胺基三氮唑,以丙酮与对硝基苯甲醛的不对称直接Aldol反应为模板反应,考察了其催化Aldol反应的催化性能。考察了溶剂[聚乙二醇400(PEG-400)、曲拉通X-100(TX-100)、乙腈,N,N-二甲基甲酰胺(DMF)、四氢呋喃(THF)、二甲基亚砜(DMSO)、二氯甲烷(CH_2Cl_2)、氯仿(CHCl_3)]、催化剂用量(5-25 mol%)、反应温度(室温,0℃,-20℃)以及不同底物对催化剂催化Aldol反应的影响。实验结果表明,此催化剂在室温无溶剂、催化剂的用量为15 mol%条件下催化效果较好,Aldol产物的ee值最高达80%。为了进一步提高反应的对映选择性,本论文还考察了添加剂(如甲酸,L-苹果酸,L-酒石酸)对反应对映选择性的影响。催化剂是在室温无溶剂条件下完成催化反应的,避免了有机溶剂的使用,这使得反应在绿色条件下进行,在绿色化学迅速发展的今天,相信此催化剂将会得到更广泛的应用。
In recent year,proline and its derivatives have been successfully used as chiral organocatalysts in asymmetric synthesis and have received extraordinary attentions.Most of the L-proline-catalyzed aldol reactions have been carried out in organic media such as DMF or DMSO. Purification process of products is very complex.Large amounts of organic solvents are used in chemical reactions,most of which are volatile,toxic,and flammable.From the viewpoint of greener processes,the use of non-hazardous and renewable materials is one of the most important goals of green chemistry.Supercritical carbon dioxide(scCO_2) is the most popular solvent among SCFs.The advantages of supercritical fluids(SCF) compared with conventional liquid solvents include low surface tension,high diffusivity,low viscosity and high compressibility.The reactions can carry out by a more efficient,clean,green method in scCO_2,which can reduce or eliminate environmental pollution.
     A number of physical parameters of supercritical fluid such as temperature and pressure can be effective regulated and controlled.Most research findings proved that solvent plays an important role in L-proline-catalyzed asymmetric aldol reactions,and some chiral asymmetric catalysis reactions were carried out in scCO_2 system.Based on these reasons,a static method coupled with gravimetric analysis was developed for measuring the solubility of L-proline in scCO_2 or HFC-134a,and L-proline-catalyzed asymmetric aldol reactions between ketones and aromatic aldehydes were carried out in scCO_2 or HFC-134a.This dissertation has undertaken the following work:
     1.The P-R equation is derived.Density of scCO_2 or HFC-134a at different temperatures and pressure was determined,and the results between derived by P-R equation and measured by experiment were compared.The results show that relationship between the fluid density and temperature or pressure is non-linear.The density of scCO_2 or HFC-134a decreased with the increasing of temperature and increased with the increasing of pressure.The temperature and pressure of fluids are important factors for density.The density of fluid can be adjusted by changing temperature and pressure of fluids.
     The equilibrium of solid in supercritical fluid is always indispensable to the development of supercritical fluid science and technology.Therefore,some works have been carried out.A static method coupled with gravimetric analysis was developed for measuring the solubility of L-proline in scCO_2 or HFC-134a.The appealing feature of this technique is its simplicity,and it requires no specialized equipment other than a suitable pressure cell.The effects of temperature and pressure on the solubility of L-proline were studied.The solubilities of L-proline in scCO_2 or HFC-134a were measured at condition of 303~328 K,10~30 MPa.In this paper,Chrastil equation was used to calculate the solubilities of L-proline in supercritical CO_2,experimental values are in good agreement with the calculated values.
     2.In this dissertation,the direct asymmetric aldol reaction between 4-nitrobenzaldehyde and acetone catalyzed by L-proline was successfully carried out in supercritical CO_2.The enantioselectivity of 84%ee to the targeted product was achieved.This offers a method for reaction-separation integration,and also the method simplifies the treatment process after the reaction.This provides a good foundation for the green organic synthesis.The effects of reaction temperature,pressure,the loading of catalyst,reaction time,additives and other factors on the L-proline-catalyzed asymmetric direct aldol reaction between acetone and aromatic aldehydes in scCO_2 or HFC-134a were investigated.The best reaction conditions in scCO_2 were at 40℃, 25 MPa,15 mol%amount of catalyst,the appropriate reaction time for 24 h,1:15 for molar ratio of aldehydes and ketones.However,HFC-134a as a reaction medium,the lower enantioselectivity was obtained due to the hydrogen bonds between F atoms and carboxyl in proline.
     3.Based on Boc-protected proline and substituted triazole as raw materials,a new catalyst (S)-5-prolylamide-triazole was synthesized and applied as catalysts for the direct asymmetric intermolecular aldol reaction.The effects of solvents,pressure,the loading of catalyst,additives, and reaction temperature on the asymmetric direct aldol reaction between acetone and aromatic aldehydes were studied.The experimental results show that the aldol reactions catalyzed by (S)-5-prolylamide-triazole carried out without solvent.The enantioselectivity of 80%ee to the targeted product was achieved at the 15 mol%catalyst loading.The addition of additives reduce catalytic performance of(S)-5-prolylamide-triazole.The reactions were finished without solvent at room temperature,which make reactions carried out in a green manner.We believe that this catalyst will be used widely.
引文
[1]张旭光.超临界CO_2生产超微细白炭黑的初步研究[J].四川化工与腐蚀控制,2003,6(2):6-9.
    [2]谭飞,杨基础,沈忠耀等.超临界流体中物质溶解度的研究(Ⅰ)[J].化工学报,1989,40(4):402-409.
    [3]蒋春跃,潘勤敏,潘祖仁.若干有机物质在超临界流体中的溶解度[J].化工学报,1996,47(4):394-400.
    [4]胡惠康,甘礼华,李光明等.超临界干燥技术[J].实验室研究与探索,2000,2:33-35.
    [5]毛煜,杨峰.超临界流体技术应用进展[J].化学研究与应用,2001,13(2):111-116.
    [6]钟宏,梁璀.超临界流体技术的应用[J].精细化工中间体,2006,36(1):11-13.
    [7]王传远,杜建国,刘巍等.超临界流体的地质意义[J].西北地质,2005,38(2):49-53.
    [8]彭英利,马承愚.超临界流体技术应用手册[M].北京:化学工业出版社,2005.
    [9]王松汉.石油化工设计手册[M].北京:化学工业出版社,2002.
    [10]K.Jackson,J.L.Fulton.Microemulsion in Supercritical Hydrochlo-Fulorocarbons [J].Langrnuir,1996,12(22):5289-5295.
    [11]杨基础,沈忠耀,陈开勋等.超临界流体萃取技术的发展现状及值得注意的几个问题.中国化工学会化学工程专业委员会超临界流体技术专业学组.第四届超临界流体技术学术及应用研讨会论文集[C].贵阳:化学工业出版社,2002:1-6.
    [12]胡英.近代化工热力学[M].上海:上海科技文献出版社,1994:133.
    [13]J.B.Harmay,J.Hogarth.On the Solubility of Solids in Gases[J].Proceedings of the Royal Society,1879,29:324-326.
    [14]Z.Guan,J.M.Desimone.Synthesis of Fluoropolymers in Supercritical Carbon Dioxide[J].Science,1992,257:945-947.
    [15]B.Helfgen,P.Hils,C.Holzknecht,et al.Simulation of Particle Formation During the Rapid Expansion of Supercritical Solutions[J].Journal of Aerosol Science,2001,32:295-319.
    [16]刘勇弟.活性炭的超临界二氧化碳再生[D].上海:华东理工大学,1999.
    [17]赵玲琳.超临界流体萃取新型分离技术的优势与应用[J].皖西学院学报,2002,18(2):111-112.
    [18]成晓玲,陈小兵.超临界流体技术制备超微粉体的研究进展[J].精细石油化工进展,2003,4(12):37-42.
    [19]贺文智.超临界流体技术在制备药物输送系统中的应用[J].化学通报,2003,66(1):27-32.
    [20]J.M.Blackburn,D.P.Long,J.J.Watkins.Reactive Deposition of Conformal Palladium Films from Supercritical Carbon Dioxide Solution[J].Chemistry of Materials,2000,12:2625-2631.
    [21]N.E.Fernandes,S.M.Fisher,J.C.Poshusta,et al.Reactive Deposition of Metal Thin Films Within Porous Supports from Supercritical Fluids[J].Chemistry of Materials,2001,13:2023-2031.
    [22]D.P.Long,J.M.Blackburn,J.J.Watkins.Chemical Fluid Deposition:A Hybrid Technique for Low-temperature Metallization[J].Advanced Materials,2000,12(12):913-915.
    [23]P.G.Jessop,W.Leitner.Chemical Synthesis Using Supercritical Fluids[M].Wiley-VCH:Weinheim,1999.
    [24]郑永春,罗晓星.超临界流体中化学反应的特性和应用[J].青海师范大学学报(自然科学版),2003,(1):64-66.
    [25]马承愚,姜安玺.超临界水氧化法处理除草剂生产废水及热能的研究[J].环境污染与防治,2004,26(5):372-374.
    [26]向波涛,王涛.乙醇废水的超临界水氧化反应路径及动力学研究[J].环境科学学报,2002,22(1):21-23.
    [27]李志伟,曹丽琴,胡仁权等.超临界二氧化碳中的不对称合成研究进展[J].广州化工,2006,34(4):5-12.
    [28]J.W.Rathke,R.J.Klingler,T.R.Krause.Propylene Hydroformylation in Supercritical Carbon Dioxide[J].Organometallics,1991,10(5):1350-1355.
    [29]K.Nozaki,N.Sakai,S.Mano,et al.Highly Enantioselective Hydroformylation of Olefins Catalyzed by Rhodium(Ⅰ) Complexes of New Chiral Phosphine-phosphite Ligands[J].J.Am.Chem.Soc.,1997,119:4413-4423.
    [30]S.Kainz,D.Koch,W.Leitner,et al.Perfluoroalkyl-substituted Arylphosphanes as Ligands for Homogenous Catalysis in Supercritical Carbon Dioxide[J].Angew.Chem.Int.Ed.Engl.,1997,36:1628-1630.
    [31]G.Francio,W.Leitner.Highly Regio- and Enantio-selective Rhodium-catalysed Asymmetric Hydroformylation without Organic Solvents[J].Chem.Commun,1999,17:1663-1664.
    [32]G.Francio,K.Wittmann,W.Leitner.Highly Efficient Enantioselective Catalysis in Supercritical Carbon Dioxide Using the Perfluoroalkyl-substituted ligand(R,S)-3-H~2F~6-BINAPHOS[J].J.Organometal.Chem.,2001,621:130-142.
    [33]F.Hutschka,A.Dedieu.On the Assistance of the Heterolytic Cleavage of H_2 by an External Base:a Theoretical Assessment[J].J.Chem.Soc.,Dalton Trans.,1997,(11):1899-1902.
    [34]A.Banet,W.Chen,J.L.Xu.Proceedings of the Canadia Symposiumon Catalysis[C].2000:108.
    [35]A.M.Kleman,M.A.Abraham.Asymmetric Hydroformylation of Styrene in Supercritical Carbon Dioxide[J].Ind.Eng.Chem.Res.,2006,45:1324-1330.
    [36]S.E.Lyubimov,V.A.Davankov,E.E.Said-galiev,et al.Chiral Phosphoramidites as Inexpensive and Efficient Ligands for Rh-catalyzed Asymmetric Olefin-hydrogenation in Supercritical Carbon Dioxide[J].Catalysis Communications,2008,9(9):1851-1852.
    [37]S.Kainz,A.Brinkrnann,W.Leitner,et al.Iridium-Catalyzed Enantioselective Hydrogenation of Imines in Supercritical Carbon Dioxide[J].J.Am.Chem.Soc.1999,121:6421-6429.
    [38]M.J.Burk,S.G.Feng,M.F.Gross.Asymmetric Atalytic Hydrogenation Reactions in Supercritical Carbodioxide[J].J.Am.Chem.Soc.,1995,117:8277-8278.
    [39]S.Kainz,A.Brinkmann,W.Leitner,et al.Iridium-catalyzed Enantioselective Hydrogenation of Imines in Supercritical Carbon Dioxide[J].J.Am.Chem.Soc.,1999,121:6421-8278.
    [40]M.E.Paulaitis,G.C.Alexander.Reactions in Supercritical Fluids.A Case Study of the Thermodynamic Solvent Effects on a Diels-Alder Reaction in Supercritical Carbon Dioxide[J].Pure Appl.Chem.,1987,59:61-68.
    [41]R.D.Weinstein,A.R.Renslo,R.L.Danheiser,et al.Kinetic Correlation of Diels-Alder Reactions in Supercritical Carbon Dioxide[J].J.Phys.Chem.,1996,100:12337-12341.
    [42]Y.Ikushima,N.Saito,M.Arai.Supercritical Carbon Dioxide as Reaction Medium:Examination of Its Solvent Effects in the Near-critical Region[J].J.Phys.Chem.,1992,96:2293-2297.
    [43]贾春满,王华明.超临界二氧化碳中不对称催化反应研究进展[J].山东化工,2007,36(9):10-13.
    [44]T.Matsuda,K.Watanabe,T.Kamitanaka,et al.Biocatalytic Reduction of Ketones by a Semi-continuous Flow Process Using Supercritical Carbon Dioxide[J].Chem.Commun.,2003,1198-1199.
    [45]T.Matsuda,T.Harada,K.Nakamura.Alcohol Dehydrogenase is Active in Supercritical Carbon Dioxide[J].Chem.Commun.,2000,1367-1368.
    [46]T.Matsuda,T.Harada,K.Nakamura.Organic Synthesis Using Enzymes in Supercfitical Carbon Dioxide[J].Green Chem,2004,6(9):440-444.
    [47]Y.Ikushima,et al.Supercfitical Fluids:an Interesting Medium for Chemical and Biochemical Processes[J].Advances in Colloid and Interface Science,1997,71-72:259-280.
    [48]T.Matsuda,T.Harada,K.Nakamura,et al.Asymmetric Synthesis Using Hydrolytic Enzymes in Supercritical Carbon Dioxide[J].Tetrahedron:Asymmetry,2005,16(5):909-915.
    [49]K.Mikami,S.Matsukawa,Y.Kayaki,et al.Asymmetric Mukaiyama Aldol Reaction of a Ketene Silyl Acetal of Thioester Catalyzed by a Binaphthol-titanium Complex in Supercritical Fluoroform[J].Tetrahedron Letters,2000,41(12):1931-1934.
    [50]K.Matsui,H.Kawanami,Y.Ikushima,et al.Control of Self-Aldol Condensation by Pressure Manipulation under Compressed CO_2[J].Chem.Commun.,2003,2502-2503.
    [51]H.Hagiwara,J.Hamaya,T.Hoshi,et al.Self-Aldol Condensation of Unmodified Aldehyde in Supercritical Carbon Dioxide Catalyzed by Amine Grafted on Silica[J].Tetrahedron Letters,2005,46:393-395.
    [52]P.G.Jessop,R.A.Brown,M.Yamakawa,et al.Pressure-dependent Enantioselectivity in the Organozinc Addition to Aldehydes in Supercritical Fluids[J].Journal of Supercritical Fluids,2002,24:161-172.
    [53]W.Leitner.Carbon Dioxide as an Environmentally Benign Reaction Medium for Chemical Synthesis[J].Applied Organometallic Chemistry,2000,14:809-814.
    [54]P.W.Jolly,G.Wilke.Applied Homogenous Catalysis with Organic Compounds 2[M].Wiley-VCH,1996:1024.
    [55]K.Funabiki,H.Yamamoto,H.Nagaya,et al.Proline-catalyzed Direct Asymmetric Aldol Reaction of Trifluoroacetaldehyde Ethyl Hemiacetal with Ketones.Tetrahedron Letter,2006,47;5507-5510.
    [56]P.I.Dalko,L.Moisan.Enantioseleetive Organocatalysis[J].Angewandte Chemic International Edition,2001,40:3726-3748.
    [57]E.R.Jarvo,S.J.Miller.Amino Acids and Peptides as Asymmetric Organocatalysts[J].Tetrahedron,2002,58:2481-2495.
    [58]H.Gr(o|¨)ger,J.Wilken.The Application of L-proline as an Enzyme Mimic and Further New Asymmetric Syntheses Using Small Organicrnolecules as Chiral Catalysts[J].Angewandte Chemic International Edition,2001,40:529-532.
    [59]傅玉琴.脯氨酸衍生的新型有机小分子的合成及其催化不对称碳-碳键形成反应研究[D].郑州:郑州大学,2006.
    [60]P.Remuzon.Trans-4-hydroxy-L-proline,a Useful and Versatile Chiral Starting Block[J].Trtrahedron.1996,52:13803-13835.
    [61]T.Mukaiyarna.The Unexpected and the Unpredictable in Organic Synthesis[J].Tetrahedron.1999,55:8609-8670.
    [62]U.Eder,G.Sauer,R.Weichent.New Type of Asymmetric Cyclization to Optically Active Steroid CD Partial Structures[J].Angewandte Chemic International Edition.1971,10:496-497.
    [63]Z.G.Hajos,D.R.Parrish.Asymmetric Synthesis of Bicyclic Intermediates of Natural Product Chemistry[J].J.Org.Chem.1974,39:1615-1621.
    [64]U.Eder,G.Sauer,R.Wiechert.German Patent.DE,2102623,1971.
    [65]U.Eder,G.Sauer,R.Wiechert.German Patent.DE,2014757,1971.
    [66]S.J.Danishefsky,J.J.Masters,W.B.Young,et al.Total Synthesis of Baccatin Ⅲ and Taxol[J].J.Am.Chem.Soc.,1996,118:2843-2859.
    [67]C.Agami,N.Platzer,H.Sevedtre.Enantioselective cyclizations of acyclic 1,5-diketones[J].Bulletin de la Societe Chimiquede France 1987,2:358-360.
    [68]D.Rajagopal,M.S.Moni,S.Subramanian,et al.Proline Mediated Asymmetric Ketol Cyclization:A Template Reaction[J].Tetrahedron:Asymmetry,1999,10:1631-1634.
    [69]S.Bahrnanyar,K.N.Houk.The Origin of Stereoselectivity in Proline-Catalyzed Intramolecular Aldol Reactions[J].J.Am.Chem.Soc.,2001,123:12911-12912.
    [70]S.Bahmanyar,K.N.Houk.Transition States of Amine-Catalyzed Aldol Reactions Involving Enamine Intermediates:Theoretical Studies of Mechanism,Reactivity,and Stereoselectivity[J].J.Am.Chem.Soc.,2001,123:11273-11283.
    [71]F.R.Clemente,K.N.Houk.Computational Evidence for the Enamine Mechanism of Intramolecular Aldol Reactions Catalyzed by Proline[J].Angewandte Chemie International Edition,2004,43:5766-5768.
    [72]C.Pidathala,L.Hoang,N.Vignola,et al.Direct Catalytic Asymmetric Enolexo Aldolizations[J].Angewandte Chemie International Edition,2003,42:2785-2788.
    [73]B.List,R.A.Lerner,C.F.Barbas Ⅲ.Proline-catalyzed Direct Asymmetric Aldol Reactions[J].J.Am.Chem.Sot.,2000,122:2395-2396.
    [74]郑欣,王永梅.脯氨酸催化的不对称有机反应,化学进展,2008,20(11):1675-1686.
    [75]B.List,P.Pojarliev,C.Castello.Proline-Catalyzed Asymmetric Aldol Reactions between Ketones and α-Unsubstituted Aldehydes[J].Organic Letters,2001,3:573-575.
    [76]List B.Proline-catalyzed Asymmetric Reactions[J].Tetrahedron,2002,58:5573-5590.
    [77]A.Bφgevig,N.Kumaragurubaran,K.A.Jφrgensen.Direct Catalytic Asymmetric Aldol Reactions of Aldehydes[J].Chem.Commun.,2002,620-621.
    [78]A.Bφgevig,K.V.Gothelf,K.A.Jφrgensen.Nucleophilie Addition of Nitrones to Ketones:Development of a New Catalytic Asymmetric Nitrone-Aldol Reaction[J].Chemistry-A European Journal,2002,8:5652-5661.
    [79]O.Tokuda,T.Kano,K.J.Maruoka,et al.A Practical Synthesis of (S)-2-Cyclohexyl-2-phenylglycolic Acid via Organocatalytic Asymmetric Construction of a Tetrasubstituted Carbon Center[J].Organic Letters,2005,7:5103-5105.
    [80]A.Cordova,W.Notz,C.F.Barbas.Direct Organocatalytic Aldol Reactions in Buffered Aqueous Media[J].Chem.Commun.,2002:3024-3025.
    [81]Y.Y.Peng,Q.P.Ding,J.P.Cheng,et al.Proline Catalyzed Aldol Reactions in Aqueous Micelles:an Environmentally Friendly Reaction System[J].Tetrahedron Letters,2003,44:3871-3875.
    [82]S.Chandrasekhar,C.Narsib_mulu,N.R.Reddy,et al.Asymmetric Aldol Reactions in Poly(ethylene glycol) Catalyzed by L-proline[J].Tetrahedron Letters,2004,45:4581-4582.
    [83]S.Chandrasekhar,N.R.Reddy,S.S.Sultana,et al.L-Proline Catalysed Asymmetric Aldol Reactions in PEG-400 as Recyclable Medium and Transfer Aldol reactions[J].Tetrahedron,2006,62(2-3):338-345.
    [84]A.I.Nyberg,A.Usano,P.M.Pihko.Proline-Catalyzed Ketone-Aldehyde Aldol Reactions are Accelerated by Water[J].Synlett,2004,1891-1896.
    [85]F.Giacalone,M.Gruttadauria,A.M.Marculescu,et al.Polystyrene-supported Proline and Prolinamide.Versatile Heterogeneous Organocatalysts both for Asymmetric Aldol Reaction in Water and α-selenenylation of Aldehydes[J].Tetrahedron Letters,2007,48(2):255-259.
    [86]L.Zhong,J.L.Xiao,C.Li.An Unexpected Inversion of Enantioselectivity in Direct Asymmetric Aldol Reactions on a Unique L-proline/γ-Al_2O_3 catalyst[J].J.Catal.,2006,243:442-445.
    [87]Y.Sekiguchi,A.Sasaoka,H.Kotsuki,et al.High-Pressure-Promoted Asymmetric Aldol Reactions of Ketones with Aldehydes Catalyzed by L-Proline[J].Synlett,2003,1655-1658.
    [88]Y.Hayashi,W.Tsuboi,M.Shoji,et al.Application of High Pressure,Induced by Water freezing,to the Direct Asymmetric Aldol Reaction[J].Tetrahedron Letters,2004,45(22):4353-4356.
    [89]Y.Zhou,Z.X.Shan.Chiral Diols:A New Class of Additives for Direct Aldol Reaction Catalyzed by L-Proline[J].J.Org.Chem.,2006,7:9510-9512.
    [90]Q.B.Pan,B.L.Zou,D.W Ma,et al.Diastereoselective Aldol Reaction of N,N-Dibenzyl-α-amino Aldehydes with Ketones Catalyzed by Proline[J].Organic Letters,2004,6:1009-1012.
    [91]A.Bφgevig,K.V.Gothelf,K.A.Jφrgensen.Nucleophilic Addition of Nitrones to Ketones:Development of a New Catalytic Asymmetric Nitrone-Aldol Reaction[J].Chemistry-A European Journal,2002,8:5652-5661.
    [92]A.M.Bernard,A.Frongia,P.P.Paris,et al.L-Proline-Catalyzed Direct Intermolecular Asymmetric AldoI Reactions of 1-Phenylthiocycloalkyl Carboxaldehydes with Ketones.Easy Access to Spiro- and Fused-Cyclobutyl Tetrahydrofurans and Cyclopentanones[J].Organic Letters,2007,9:541-544.
    [93]A.Cordova,W.Notz,C.F.Barbas.Proline-Catalyzed One-Step Asymmetric Synthesis of 5-Hydroxy-(2E)-hexenal from Acetaldehyde[J].J.Org.Chem.,2002,67:301-303.
    [94]N.S.Chowdari,D.B.Ramachary,A.Cordova,et al.Proline-catalyzed Asymmetric Assembly Reactions:Enzyme-like Assembly of Carbohydrates and Polyketides from Three Aldehyde Substrates[J].Tetrahedron Letters,2002,43:9591-9595.
    [95]A.B.Northrup,D.W.C.MacMillan.Two-Step Synthesis of Carbohydrates by Selective Aldol Reactions[J].Science,2004,305:1752-1755.
    [96]A.B.Northrup,D.W.C.MacMillan.The First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes[J].J.Am.Chem.Soc.,2002,124:6798-6799.
    [97]L.K.Mangion,D.W.C MacMillan.Total Synthesis of Brasoside and Littoralisone[J].J.Am.Chem.Soc.,2005,127:3696-3697.
    [98]A.Cordova.Direct Catalytic Asymmetric Cross-Aldol Reactions in Ionic Liquid Media[J].Tetrahedron Letters,2004,45(20):3949-3952.
    [99]A.B.Northrup,I.K.Mangion,D.W.C.MacMillan,et al.Enantioselective Organocatalytic Direct Aldol Reactions of α-Oxyaldehydes:Step One in a Two-Step Synthesis of Carbohydrates[J].Angewandte Chemie International Edition,2004,43:2152-2154.
    [100]N.S.Chowdari,D.B.Ramachary,C.F.Barbas.Organocatalytic Asymmetric Assembly Reactions:One-Pot Synthesis of Functionalized β-Amino Alcohols from Aldehydes,Ketones,and Azodicarboxylates[J].Organic Letters,2003,5:1685-1688.
    [101]S.Bahrnanyar,K.N.Houk,H.J.Martin,et al.Quantum Mechanical Predictions of the Stereoselectivities of Proline-catalyzed Asymmetric Intermolecular Aldol reaction[J].J.Am.Chem.Soc.2003,125:2475-2479.
    [102]K.N.Rankin,J.W.Gauld,R.J.Boyd.Density Functional Study of the Proline-catalyzed Direct Aldol Reaction[J].J.Phys.Chem.A.2002,106,5155-5159.
    [103]S.Bahrnanyar,K.N.Houk.Transition States of Amine-Catalyzed Aldol Reactions Involving Enamine Intermediates:Theoretical Studies of Mechanism,Reactivity,and Stereoselectivity[J].J.Am.Chem.Soc.2001,123:11273-11283.
    [104]C.Allemann,R.Gordillo,F.R.Clemente,et al Theory of Asymmetric Organocatalysis of Aldol and Related Reactions:Rationalizations and Predictions[J].Ace.Chem.Res.2004,37,558-569.
    [105]樊建芬,吴丽芬.S-脯氨酸催化丙酮与2,2-二甲基丙醛不对称直接羟醛缩合反应过渡态的理论研究[J].化学学报,2005,63(8):677-680.
    [106]樊建芬,孙云鹏,肖鹤鸣.脯氨酸催化不对称羟醛缩合反应机理研究进展[J].有机化学,2006,26(11):1463-1467.
    [107]D.Font,S.Sayalero,A.Bastero,et al.Pericas.Toward an Artifical Aldolase[J].Organic Letters,2008,10(2):337-340.
    [108]F.Calderon,E.G.Doyag(u|¨)ez,P.H.Y.Cheong,et al.Origins of the Double Asymmetric Induction on Proline-Catalyzed Aldol Reactions[J].J.Org.Chem.2008,73(20):7916-7920.
    [109]F.Chen,S.Huang,H.Zhang,et al.Proline-based Dipeptides with Two Amide Units as Organocatalyst for the Asymmetric Aldol Reaction of Cyclohexanone with Aldehydes[J].Tetrahedron,2008,64:9585-9591.
    [110]A.Fu,H.Li,S.Yuan,et al.Origins of Opposite Syn-Anti Diastereoselectivities in Primary and Secondary Amino Acid-Catalyzed Intermolecular Aldol Reactions Involving Unmodified r-Hydroxyketones[J].J.Org.Chem.,2008,73:5264-5271.
    [111]A.M.Bernard,A.Frongia,R.Guillot,et al.L-proline-catalyzed Direct Intermolecular Asymmetric Aldol Reactions of L-phenylthiocycloalkyl Carboxaldehydes with Ketones.Easy access to Spiroand Fused-cyclobutyl Tetrahydrofurans and Cyclopentanones[J].organic letters,2007,9(3):541-544.
    [112]P.Hammar,A.Cordova,F.Himo.Density Functional Theory Study of the Stereoselectivity in Small Peptide-catalyzed Intermolecular Aldol Reactions[J].Tetrahedron:Asymmetry,2008,19:1617-1621.
    [113]L.Zu,H.Xie,H.Li,et al.Highly Enantioselective Aldol Reactions Catalyzed by a Recyclable Fluorous(S)-Pyrrolidine Sulfonamide on Water,Organic Letters,2008,10(6):1211-1214.
    [114]J.S.Cheng,H.F.Jiang.Palladium-catalyzed Regioselective Cyclotrimerization of Acetylenes in Supercritical Carbon Dioxide[J].Eur.J.Org.Chem.,2004,(3):643-646.
    [115]Q.Xu,B.X.Han,H.Yan.Equilibrium Constant and Enthalpy for Hydrogen Bonding of Acetic Acid with Tetrahydrofuran in Supercritical CO_2[J].J.Phys.Chem.A.1999,103:5240-5245.
    [116]韩布兴.超临界流体科学与技术[M].北京:中国石化出版社,2005:16-17.
    [117]A.Galia,A.Argentino,O.Scialdone.A New Simple Static Method for the Deternination of Solubilities of Condensed Compounds in Supercritical Fluids[J].Journal of Supercritical Fluids,2002,24(1):7-17.
    [118]Y.Yamini,J.Arab,M.Asghari-khiavi.Solubilities of Phenazopyridine,Propranolol and Methimazole in Supercritical Carbon Dioxide[J].Journal of Pharmaceutical and Biomedical Analysis,2003,32(2):181-187.
    [119]S.Ismadji,S.K.Bhatia.Solubility of Selected Esters in Supercritical Carbon Dioxide[J].Journal of Supercritical Fluids,2003,27(1):1-11.
    [120]J.Gonzalez,M.Vieytes,A.Botana.Modified Mass ActionLaw-Based Model to Correlate the Solubility of Solids and Liquids in Entrained Supercritical Carbon Dioxide[J].J.Chromatogr A,2001,9(10):119-125.
    [121]E Ruckenstein.Entrainer Effect in Supercritical Mixtures[J].Fluid Phase Equilibria,2001,180(1-2):345-359.
    [122]E.Ruckenstein,I.Shulgin.The Solubility of Solids in Mixtures Composedof a Supercritical Fluid and an Entrainer[J].Fluid Phase Equilibria,2002,200:53-67.
    [123]A.Veter.A Predictive Method for Calcauting the Solubility of Solids in Supercritical Gases[J].Applications Apolar Mixtures,Chem.Eng.Sci,1979,34:1393-1399.
    [124]Y.Lkushima,T.Goto,M.Arai.Model Solubility Parameter as an Index to Correlate the Solubility in Supercritieal Gases[J].Bull Chem.Soc.Jpn.,1987,60:4145-4162.
    [125]S.G.Gurdev,S.J.Maenaughton,D.L.Tomasko,et al.Influence of Chemical Modifiers on the Solubility of o-and m-hydroxybenzoic Acid in Supercritical Carbon Dioxide[J].Industrial & Engineering Chemistry Research,1993,32(7):1488-1497.
    [126]金君素,李群生,张泽廷等.含夹带剂的超临界流体中固体溶解度的影响[J].石油化工,2004,33(5):441-446.
    [127]J.Gonzalez,M.Vieytes,A.Botana.Modified Mass Action Law-based Model to Correlate The Solubility of Solids and Liquids in Entrained Supercritical Carbon Dioxide[J].J.Chromatogr.A,2001,9(10):19-25.
    [128]R.Alzaga,E.Pascual,E.Pilaf.Development of a Novel Supercritical Fluid Extraction Procedure for Lanolin Extraction from Raw Wool[J].Analytica Chimica Acta,1999,381(1):39-48.
    [129]G.Sherman,S.Shenoy,R.A.Weiss,et al.A Static Method Coupled with Gravimetrie Analysis for the Determination of Solubilities of Solids in Supercritical Carbon Dioxide[J].Industrial & Engineering Chemistry Research,2000,39(3):846-848.
    [130]Z.T.Liu,J.Wu,L.Liu,et al.Solubilities of AOT Analogues Surfactants in Supercritical CO_2 and HFC-134a Fluids,Journal of Chemical & Engineering Data[J].2006,51,1761-1768.
    [131]D.Peng,D.B.Robinson,A New Two-constant Equation of State[J].Ind.Eng.Chem.Fundam.,1976,15,59-64.
    [132]J.O.Valderrama,V.H.Alvarez,Phase Equilibrium in Supercritical CO_2Mixtures Using a Modified Kwak-Mansoori Mixing Rule[J].AIChE Journal.2004,50,480-488.
    [133]A.P.Abbott,S.Corr,N.E.Durling,E.G.Hope.Solubility of Substituted Aromatic Hydrocarbons in Supercritical Difluoromethane[J].Journal of Chemical & Engineering Data,2002,47(4):900-905.
    [134](a) S.Bahmanyar,K.N.Houk,Transition States of Amine-Catalyzed Aldol Reactionslnvolving Enamine Intermediates:Theoretical Studiesof Mechanism,Reactivity,and Stereoselectivity[J].J.Am.Chem.Soc.,2001,123,11273-11283.(b) S.Bahrnanyar,K.N.Houk,The Origin of Stereoselectivity in Proline-Catalyzed Intramolecular Aldol Reactions[J].J.Am.Chem.Soc.,2001,123(51),12911-12912.(c) L.Hoang,S.Bahmanyar,K.N.Houk,et al.Kinetic and Stereochemical Evidence for the Involvement of Only One Proline Molecule in the Transition States of Proline-Catalyzed Intra- and Intermolecular Aldol Reactions[J].J.Am.Chem.Sot.,2003,125(2),16-17.(d) S.Bahmanyar,K.N.Houk,Origins of Opposite Absolute Stereoselectivities in Proline-Catalyzed Direct Mannich and Aldol Reactions[J].Org.Lett.,2003,5(8),1249-1251.(e) S.Bahmanyar,K.N.Houk,H.J.Martin,et al.Quantum Mechanical Predictions of the Stereoselectivities of Proline-Catalyzed Asymmetric Intermolecular Aldol Reactions[J].J.Am.Chem.Sot.,2003,125(9),2475-2479.
    [135]S.Yusuke,S.Aika,S.Ai,et al.High-Pressure-Promoted Asymmetric Aldol Reactions of Ketones with Aldehydes Catalyzed by L-Proline[J].Synlett.,2003,11,1655-1658.
    [136]I.E.Marko,P.R.Giles,N.J.Hindley,Catalytic Enantioselective Baylis-Hillman Reactions.Correlation between Pressure and Enantiomeric Excess[J].Tetrahedron,1997,53(3),1015-1024.
    [137]Y.Zhou,Z.Shan,Chiral Diols:A New Class of Additives for Direct Aldol Reaction Catalyzed by L-Proline[J].J.Org.Chem.2006,71,9510-9512.
    [138]J.M.Dobbs,J.M.Wong,R.J.Lahiere,et al.Modification of Supercritical Fluid Phase Behavior Using Polar Cosolvents[J].Industrial Engineering Chemistry Research,1987,26(1):56-65.
    [139]J.M.Dobbs,K.P.Johnston.Selectivities in Pure and Mixed Supercritical Fluid Solvents[J].Industrial & Engineering Chemistry Research,1987,26(7):1476-1482.
    [140]A.P.Abbott,S.Corr,N.E.Durling,et al.Hydrogen Bond Interactions in Liquid and Supercritical Hydrofluorocarbons[J].J.Phys.Chem.B,2003,107,10628-10633.
    [141]Z.Tang,Z.H.Yang,X.H.Chen,et al.A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones with Aldedydes[J].J.Am.Chem.Soc.2005,127,9285-9289.
    [142]W.Zhuang,S.Saaby,K.A.Jφrgenson,Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines:An Approach to Optically Active Quaternary α-Amino Acid Derivatives[J].Angew.Chem.Int.Ed 2004,43,4476-4478.
    [143]J.A.A.Cobb,D.M.Shaw,S.V.Ley,5-Pyrrolidin-2-yltetrazole:A New,Catalytic,More Soluble Alternative to Proline in an Organocatalytic Asymmetric Mannich-type Reaction[J].Synlett,2004(3),558-560.
    [144]郑吉富.新颖有机催化剂的设计、合成及其在C-C形成反应中的应用[D].吉林:吉林大学,2007.