乙醇汽油机动车排放特性与尾气净化催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙醇作为新型清洁燃料,符合能源替代战略与可持续发展要求,有利于改善大气环境。本文考察乙醇汽油摩托车的排放特性,研究乙醇汽油车用催化剂的失活规律,开发适合乙醇汽油机动车尾气净化的三效催化剂,为进一步推广车用乙醇汽油提供基础数据。
     采用色-质联用精细方法与定容取样常规方法,考察E10(乙醇汽油)摩托车动态与稳态工况排放性能。结果表明:乙醇添加,可以改善CO和HC的排放,而NOx排放没有改善;乙醇添加对芳香族化合物排放没有影响,但毒性较大的乙醛排放量有所增加。
     采用SEM、EPMA和TG/DTA等表征方法,研究乙醇汽油对机动车尾气净化催化剂的影响:乙醇汽油车用催化剂贵金属活性中心的积炭量明显高于普通汽油,以(CH)xO形式存在,积炭是乙醇汽油车催化转化器活性下降的主要原因。通过超声振荡、热冲击、BET、XRD、SEM与EDX等方法与技术,研究金属载体的二载涂覆工艺,得到实验条件下的最优工艺条件:载体在950℃空气气氛下焙烧10h,浆料粒度小于10μm,pH值在3.0~4.0,固含量35%左右,铈锆固溶体/γ-Al2O3比例控制在10%~30%范围内。
     用溶胶-凝胶法合成二元M0.1Ce0.9Ox与三元M0.1Ce0.6Zr0.3Ox (M=Mn、Fe、Co、Ni、Cu)复合金属氧化物,借助XRD、Raman、TPR、XPS与EPR手段分析其结构。结果表明部分过渡金属进入氧化铈或铈锆固溶体晶格,Ce促进了过渡金属的还原,三元样品热稳定性优于相应二元样品。系统考察催化剂催化乙醇完全氧化活性与动态储放氧性能,表明M0.1Ce0.9Ox的乙醇起燃活性优于相应的M0.1Ce0.6Zr0.3Ox;掺杂Cu、Mn与Ni的铈基氧化物储放氧性能比较好,500℃时三元样品储放氧性能优于相应二元样品。
     采用等体积浸渍法制备Pd/M0.1Ce0.9Ox与Pd/M0.1Ce0.6Zr0.3Ox两个系列三效催化剂,测试其三效催化活性,结果表明Pd/Mn0.1Ce0.6Zr0.3Ox的三效活性最好,其次是Pd/Co0.1Ce0.9Ox、Pd/Co0.1Ce0.6Zr0.3Ox与Pd/Ni0.1Ce0.6Zr0.3Ox。制备了三效性能良好的Pd/Mn0.1Ce0.6Zr0.3Ox/金属蜂窝催化剂。
The ethanol as a renewable fuel adapts to the stratagem of nationwide energy replacement and sustainable energy development, and furthermore, this fuel is favourable for the improvement of atmospheric environment. The effects of 10% (v/v) ethanol-gasoline blended fuel (E10) on exhaust emission characteristics and catalyst performances were investigated,and three-way catalyst supported over metallic honeycomb was prepared for ethanol-gasoline fueled engines. It is necessary data for ethanol-gasoline blended fuel to be applied further.
     Exhaust emission characteristics from two 4-stroke motorcycles were researched using CVS and GC-MS when using E10 fuel. Analysis results show that CO and HC emissions are reduced when the addition of ethanol into gasoline, whereas NOx emissions increase. No significant reduction of aromatics is observed and acetaldehyde emission increases when ethanol-gasoline blended fuel is used Used exhaust catalytic converter was studied by SEM, EPMA, XPS, TG-DTA and FTIR after a 10000 km test program when ethanol-gasoline employed. The majorities of carbonaceous species are deposited on the precious metal (PM) sites in the case of E10. Carbon deposit, which is in the form of (CH)xO, mainly results in activity decrease of catalyst when using E10.
     Preparation and characterization of dip-coatedγ-alumina based ceramic materials on FeCrAl foils were investigated by means of ultrasonic vibration, heat impact, BET, EPMA and TG/DTA and so on. It was found that oxidation layer on metal foil surface produced during pre-oxidation at 950℃for 10 h exhibits an excellent compatibility withγ-alumina based washcoat. Wastcoat of desired properties were obtained with slurries having pH in the range 2.5 ~ 4.5, particle size distribution with ninety percentage of particles (d90) less than 10.00μm, a solid content about 35 wt. % and Ce-Zr solid solution weight ratio toγ- Al2O3 with ranging from 10%~30%.
     The complex compounds of M0.1Ce0.9Ox and M0.1Ce0.6Zr0.3Ox (M=Mn, Fe, Co, Ni and Cu) prepared by sol-gel method were characterized by XRD, Raman, TPR, EPR and XPS. It was found that the portions of transition metals are inserted into the lattice of CeO2 and Ce-Zr solid solution. The reduction of transition metal oxides is improved by the interaction between Ce and transition metal. The heat stability of M0.1Ce0.6Zr0.3Ox is better than that of M0.1Ce0.9Ox. Activity test results show that the ethanol complete oxidation is easier over Mn0.1Ce0.9Ox than Mn0.1Ce0.6Zr0.3Ox. Dynamic oxygen storage/release results show that Ce-based oxides containing Cu, Mn, or Ni are characterized with better DOSC and DOSR. It is noted that M0.1Ce0.6Zr0.3Ox samples exhibit better DOSC and DOSR at 500℃, compard to M0.1Ce0.9Ox.
     The 0.5 wt. % Pd/M0.1Ce0.9Ox and Pd/M0.1Ce0.6Zr0.3Ox (M=Mn, Fe, Co, Ni and Cu) were prepared by dry impregnating M0.1Ce0.9Ox and M0.1Ce0.6Zr0.3Ox support with an aqueous solution of Pd(NO3)2·H2O. The catalytic activities of NO, C3H8 and CO conversion over Pd/M0.1Ce0.9Ox and Pd/M0.1Ce0.6Zr0.3Ox were carried out in a microreactor system using simulation of exhaust emissions. The experimental results show that the activity over Pd/Mn0.1Ce0.6Zr0.3Ox is highest, and Pd/Co0.1Ce0.9Ox,Pd/Co0.1Ce0.6Zr0.3Ox and Pd/Ni0.1Ce0.6Zr0.3Ox behave better activities of NO, C3H8 and CO conversion. The Pd/Mn0.1Ce0.6Zr0.3Ox supported metal monolith catalyst prepared is characterized with better performace in reducing HC, CO and NOx emissions.
引文
[1] Martini A, Buzzini P, Vaughan-Martini A, A microbiological perspective on renewable energy sources-Part 1-An overview on fermentation processes for the production of bioethanol from sweet sorghum, Chimicaloggi-chemistry Today, 2006, 24 (1): 48~50
    [2] 杨立民,高油价给巴西乙醇汽油带来巨大商机,中国石化,2006,5:24~24
    [3] Parkinson G, Ethanol: on easy street, for now, Chemical Engineering, 2002, 109 (8): 31~33
    [4] 江芳,论乙醇汽油的发展及其推广,能源与环境,2006,3:70~71
    [5] 刘东旭,吴晓东,翁端,清洁汽车技术的应用与展望,新材料产业,2005,6:40~44
    [6] 时宗波,邵龙义,Jones T.P 等,城市大气可吸入颗粒物对质粒 DNA 的氧化性损伤,科学通报,2004,49(7):673~678
    [7] Gandhi H.S, Graham G.W, McCabe R.W, Automotive exhaust catalysis, Journal of Catalysis, 2003, 216(1-2): 433~442
    [8] 樊俊,翁端,稀土-锆复合氧化物在汽车尾气净化中的应用进展,稀有金属工程与材料,2006,35(4):516~520
    [9] Gordon J.J. Bartley, Alternative catalytic approach for reduction of cold-start hydrocarbon emissions, Topics in Catalysis, 2004, 30/31(4): 283~288
    [10] Jeong S.J, Kim W.S, A study on the optimal monolith combination for improving flow uniformity and warm-up performance of an auto-catalyst, Chemical Engineering and Processing, 2003, 42(11): 879~895
    [11] Seo H.K, Oh J.W, Lee S.C, et al, Adsorption Characteristics of HCA(hydrocarbon adsorber) catalysts for hydrocarbon and NOx removals under cold-start engine conditions, Korean Journal Chemical Engineerings, 2001, 18(5): 698~703
    [12] Ramanathan K, West D.H , Balakotaiah V, Optimal design of catalytic converters for minimizing cold-start emissions, Catalysis Today, 2004: 98 (3): 357~373
    [13] Konagai N, Takeshita K, Azuma N, et al, Preparation of Fe Cr wires with dispersed Co 3 O4 as an electrically heated catalyst for cold-start emissions, Kinetics Catalysis and Reaction Engineering, 2006, 45, 2967~2972
    [14] Burke N.R, Trimm D.L, Howe R.F, The effect of silica:aluminaratio andhydrothermalageing ontheadsorptioncharacteristics of BEA zeolitesfor cold start emission control, Applied Catalysis B: Environmental, 2003, 46: 97~104
    [15] Coppage G.N, Bell S.R, Use of an electrically heated catalyst to reduce cold-start emissions in a bi-fuel spark ignited engine, Journal of Engineering for Gas Turbines and Power, 2001, 123(1): 125~131
    [16] 翁端,徐鲁华,沈美庆等,金复合LaCeMn稀土催化剂在富氧条件下NOx催化还原性能的研究,中国稀土学报,2001,19(5):402~405
    [17] 沈美庆,宋崇林,秦永宁,NeNOx催化剂研究进展,燃烧科学与技术,1997,3(4):333~339
    [18] Sakamoto Y, Okumura K, Kizaki Y, Matsunaga S, et al., Adsorption and desorption analysis of NOx and SOx on a Pt/Ba thin film model catalyst, Journal of Catalysis, 2006, 238(2): 361~368
    [19] Twigg M.V, Roles of catalytic oxidation in control of vehicle exhaust emissions, Catalysis Today, 2006, 117(4): 407~418
    [20] Liu Z.M, Oh K.S, Woo S.I, Overview on the selective lean NOx reduction by hydrocarbons over Pt-based catalysts, Catalysis Surveys from Asia, 2006, 10 (1): 8~15
    [21] Haneda M, Fujitani T, Hamada H, Selective catalytic reduction of nitrogen monoxide with H2 or CO as reductant in presence of SO2, Journal of the Japan Petroleum Institute, 2006, 49 (5): 219~230
    [22] Choi B.C, Foster D.E, Overview of the effect of catalyst formulation and exhaust gas compositions on soot oxidation in DPF, Journal of Mechanical Science and Technology, 2006, 20(1): 1~12
    [23] Choi B.C, Yoon Y.B, Kang HY, Oxidation characteristics of particulate matter on diesel warm-up catalytic converter, International Journal of Automotive Technology, 2006, 7 (5): 527~534
    [24] Tanaka Y, Hihara T, Nagata M, Azuma N, Ueno A, Modeling of diesel oxidation catalyst, Industrial & Engineering Chemistry Research, 2005, 44 (22): 8205~8212
    [25] 吴晓东,翁端,陈华鹏,徐鲁华,柴油车微粒捕集器过滤材料研究进展, 材料导报,2002,16(6):28~31
    [26] 陈华鹏,吴晓东,万李,翁端,柴油车排气微粒捕集用复合金属丝网的制备与性能研究,环境污染治理技术与设备,2004,5(10):80~83
    [27] Pyzik A.J, Li C.G, New design of a ceramic filter for diesel emission control applications, International Journal of Applied Ceramic Technology, 2005, 2 (6): 440~451
    [28] Ntziachristos L, Samaras Z, Zervas E, et al, Effects of a catalysed and an additized particle filter on the emissions of a diesel passenger car operating on low sulphur fuels, Atmospheric Environment, 2005, 39 (27): 4925~4936
    [29] Zervas E, Dorlhene P, Forti L, et al , Interlaboratory test of exhaust PM using ELPI, Aerosol Science and Technology, 2005, 39 (4): 333~346
    [30] Mohr M, Forss AM, Lehmann U, Particle emissions from diesel passenger cars equipped with a particle trap in comparison to other technologies, Environmental Science & Technology, 2006, 40 (7): 2375~2383
    [31] Yamamoto K, Satake S, Yamashita H, et al, Lattice Boltzmann simulation on porous structure and soot accumulation, Mathmatics and Computers in Simulation, 2006, 72 (2-6): 257~263
    [32] Law MC, Clarke A, Garner CP, The effects of soot properties on the regeneration behaviour of wall-flow diesel particulate filters, Proceedings of the Institution of Mechanical Engineerings Paart D-Journal of Automobile Engineering, 2004, 218 (12): 1513~1524
    [33] Yamamoto K, Takada N, LB simulation on soot combustion in porous media, Physical A-Statistical Mechanics and its Applications, 2006, 362 (1): 111~117
    [34] 龚金科,赖天贵,刘孟祥等,柴油机微粒捕集器过滤材料与再生方法分析与研究,2004,3:1~3
    [35] 王宪成,高希彦,许晓光等,柴油机微粒过滤器红外再生技术研究,大连理工大学学报,2005,45(4):537~541
    [36] Kabin KS, Khanna P, Muncrief RL, et al, Monolith and TAP reactor studies of NOx storage on Pt/BaO/Al 2 O3: Elucidating the mechanistic pathways and roles of Pt, Catalysis Today, 2006, 114 (1): 72~85
    [37] Toops TJ, Smith DB, Partridge WP, NOx adsorption on Pt/K/Al2 O3, Catalysis Today, 2006, 114 (1): 112~124
    [38] Epling WS, Campbell LE, Yezerets A, et al, Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts, Catalysis Reviews–Science and Engineering, 2004, 46 (2): 163~245
    [39] Er I.D, Overview of NOx emission controls in marine diesel engines, Energy Sources, 2002, 24 (4): 319-327
    [40] Hodjati S, Vaezzadeh K, Petit C, et al, NOx sorption-desorption study: application to diesel and lean-burn exhaust gas (selective NOx recirculation technique), Catalysis Today, 2000, 59 (3-4): 323~334
    [41] Richter M, Trunschke A, Bentrup U, et al,Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts, Journal of Catalysis, 2002, 206 (1): 98~113
    [42] Koebel M, Elsener M, Kleemann M, Urea-SCR: a promising technique to reduce NOx emissions from automotive diesel engines, Catalysis Today, 2000, 59 (3-4): 335~345
    [43] Ma A.Z, Grunert W, Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts, Chemical Communications,1999, 1: 71~72
    [44] Madia G, Koebel M, Elsener M, et al, The effect of an oxidation precatalyst on the NOx reduction by ammonia SCR, Industrial & Engineering Chemistry Research, 2002, 41(15): 3512~3517
    [45] Baik JH, Yim SD, Nam IS, et al. Control of NOx emissions from diesel engine by selective catalytic reduction (SCR) with urea, Topics in Catalysis, 2004, 30-1 (1-4): 37~41
    [46] Gabrielsson PLT, Urea-SCR in automotive applications, Topics in Catalysis, 2004, 28(1-4): 177~184
    [47] Koebel M, Elsener M, Krocher O, et al, NOx reduction in the exhaust of mobile heavy-duty diesel engines by urea-SCR, Topics in Catalysis, 2004, 30-1 (1-4): 43~48
    [48] Macleod N, Lambert R.M, Selective NOx reduction during the H2+NO+O2 reaction under oxygen-rich conditions over Pd/V2 O5 /Al2O3: evidence for in situ ammonia generation, Catalysis Letters, 2003, 90 (3-4): 111~115
    [49] 吴强,高洪伟,贺泓,原位漫反射红外光谱法研究SO2 对Ag/Al 2 O3选择性催化丙烯还原NOx 反应的影响,催化学报,2006,27(5):403~408
    [50] 张志慧,牛金海,刘世华,Co-ZSM-5 催化剂上烃类选择性催化还原NOx机理研究进展,工业催化,2006,14(7):52~56
    [51] Bion N, Saussey J, Haneda M, et al. Study by in situ FTIR spectroscopy of the SCR of NO, by ethanol on Ag/Al 2 O3 -Evidence of the role of isocyanate species, Journal of Catalysis, 2003, 217 (1): 47~58
    [52] 帅石金,孙建军,王建昕等,使用乙醇还原剂的NOx-SCR催化剂的性能评价,汽车工程,2005,27(5):541~545
    [53] He H, Yu YB, Selective catalytic reduction of NOx over Ag/Al 2 O3 catalyst: from reaction mechanism to diesel engine test, Catalysis Today, 2005, 100 (1-2): 37~47
    [54] Wu Q, He H, Yu YB, In situ DRIFTS study of the selective reduction of NOx with alcohols over Ag/Al2 O3 catalyst: Role of surface enolic species, Applied Catalysis B-Environmental, 2005, 61(1-2): 107~113
    [55] Xie S.X, Yu Y.B, Wang J, et al, Effect of SO2 on the performance of Ag-Pd/Al 2 O3 for the selective catalytic reduction of NOx with C2 H5OH, Journal of Environmental Science-China, 2006, 18 (5): 973~978
    [56] Miessner H, Francke KP, Rudolph R ,Plasma-enhanced HC-SCR of NOx in the presence of excess oxygen, Applied Catalysis B-Environmental, 2002, 36 (1): 53~62
    [57] 柯锐,李俊华,郝吉明等,低温等离子体协同Ag/Al 2 O3选择性催化丙烯还原氮氧化物反应的原位红外光谱研究,催化学报,2005,6(11):951~955
    [58] Miessner H, Francke KP, Rudolph R, et al. NOx removal in excess oxygen by plasma-enhanced selective catalytic reduction, Catalysis Today, 2002, 75 (1-4):325~330
    [59] 秦建武,摩托车尾气催化净化技术原理与应用,2004,11:91~97
    [60] 敖志平,董劲,肖彦等,摩托车金属蜂窝催化剂的研制,2004,11:48~51
    [61] 薛群山,王大祥,潘春晖等,CG125 摩托车排放控制技术的研究,摩托车技术,2004,11:17~21
    [62] Sanchez F, Vasudevan PT, Enzyme catalyzed production of biodiesel from olive oil, Applied Biochemistry and Biotechnology, 2006, 135 (1): 1~14
    [63] Leung DYC, Guo Y, Transesterification of neat and used frying oil: Optimization for biodiesel production, Fuel Procession Technology, 2006, 87 (10): 883-890
    [64] 陈志锋,吴虹,宗敏华,固定化脂肪酶催化高酸废油脂酯交换生产生物柴油,催化学报,2006,27(2):246~250
    [65] Okamoto R.A, Kado N.Y, Kuzmicky P.A, et al, Unregulated emissions from compressed natural gas (CNG) transit buses configured with and without oxidation catalyst, Environmental Science & Tchnology, 2006, 40 (1): 332~341
    [66] 冯文,燃料电池汽车氢能系统评价及北京案例分析,硕士学位论文,北京,清华大学,2003
    [67] 梁鹏,林嵬,乙醇产业将进入黄金发展期,中国石油与化工,2005,11:47~48
    [68] Fikret Y, Bedri Y, The use of ethanol–gasoline blend as a fuel in an SI engine, Renewable Energy, 2004, 29:1185~1188
    [69] 何邦全,闫小光,王建昕等,电喷汽油机燃用乙醇-汽油燃料的排放性能研究,内燃机学报,2002,20(5):399~401
    [70] Al-Baghdadi M.A.S, Hydrogen–ethanol blending as an alternative fuel of spark ignition engines, Renewable Energy, 2003, 28:1477~1486
    [71] Poulopoulos S.G, Samaras D.P, Philippopoulos C.J, Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels, Atmospheric Environment, 2001, 4399(35): 4401~4405
    [72] 杜志良,申江华,朱自航,车用乙醇汽油实验研究,现代化工,2003,(1):6~8
    [73] 刘全根,乙醇汽油的应用,炼油设计,2002,32(2):40~42
    [74] 杜风光,陈伟红,刘钺等,车用乙醇汽油推广应用探讨,河南化工,2001,(8):39-40
    [75] Leong Shing Tet, Muttamara S, Laortanakul P, Applicability of gasoline containing ethanol as Thailand′s alternative fuel to curb toxic VOC pollutants from automobile emission, Atmospheric Environment, 2002, 4400(36):3495~3497
    [76] Kiran L.Kadam, Environmental benefits on a life cycle basis of using bagasse-derived ethanol as a gasoline oxygenate in India, Energy Policy: Environmental, 2002, 30:377~380
    [77] Al-Hasan M, Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission, Energy Conversion and Management, 2003, 44:1551~1560
    [78] 何邦全,王建昕,郝吉明等,乙醇-汽油燃料电喷汽油机的排放及催化性能,内燃机学报,2002,20(6):529~532
    [79] Hsieh W.D, Chen R.H, Wu T.L, et al, Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels, Atmospheric Environment, 2002, 37:406~407
    [80] He B.Q, Wang J.X, Hao J.M, et al, A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels, Atmospheric Environment, 2003, 37:953~956
    [81] 秦卫国,徐闯,赵广彬,玉米油精炼的工艺实践,粮食与食品工业,2006,13(3): 3~5
    [82] 倪维斗,李郑,靳晖,对用生物质原料生产燃料用乙醇之我见,中国工程科学,2001,3(5):45~49
    [83] Jia L.W, Zhou W.L, Shen M.Q, et al, The investigation of emission characteristics and carbon deposition over motorcycle monolith catalytic converter using different fuels, Atmospheric Environment, 2006, 40(11):2002~2010
    [84] Jia L.W, Shen M.Q, Wang J, Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine, Journal of Hazardous Materials, 2005, 123(1-3): 29~34
    [85] 郝吉明,傅立新,贺克斌等,城市机动车排放污染控制,北京:中国环境科学出版社,2001
    [86] Shelef M, Otto K, Otto N.C, Automotive exhaust catalysts, Advances in Catalysis, 1978, 27: 311~365
    [87] Mitsunobu I, Tomohiko T, Shigeo G., Suppression of carbonaceous depositions on nickel catalyst for the carbon dioxide reforming of methane, Applied Catalysis. A:General, 1999, 177: 15~23
    [88] Bond G.C, Autothermal reforming of methane over Ni catalysts supported over CaO–CeO2 –ZrO2 solid solution, Applied Catalysis A: General, 1997, 149(1): 3~25
    [89] Richardson J.T, Principles of Catalyst Development, New York: Plenum Press, 1989
    [90] 休斯 R.,催化剂失活,丁富新,袁乃驹 译,北京:科学出版社,1990
    [91] Isarangura na ayuthaya S, Mongkolsiri N, Praserthdam P, et al, The influence of CO2 , C3 H6 , NO, H2 , H2 O or SO2 on the low-temperature oxidation of CO on a cobalt-aluminate spinel catalyst (Co1.66Al1.34O4), Applied Catalysis B: Environmental, 2003, 43(1):1~12
    [92] 姜瑞霞,谢在库,张成芳,陈庆龄,Pd-La/镁铝尖晶石催化剂上气相胺化法合成 2,6-二异丙基苯胺,催化学报,2003,7(24):489~493
    [93] 陈勇军,左孝军,史庆南等,金属蜂窝的开发、发展及应用,材料导报,2003,17(12):32~35
    [94] 张益群,邬敏忠,周伟等,用于摩托车尾气净化催化剂的金属蜂窝载体,工业催化,2001,9(5):50~54
    [95] 陈颖,聂祚仁,周美玲等,汽车尾气净化器用金属载体研究进展,材料导报,1993,13(2):22~24
    [96] Badini C, Laurella F, Oxidation of FeCrAl alloy: influence of temperature and atmosphere on scale growth rate and mechanism, Surface and coatings technology, 2001, 135: 291~298
    [97] Wu X D, Weng D, Chen Z, et al, Effects of plasma-sprayed NiCrAl/ZrO2 intermediate on the combination ability of coatings, Surface and Coatings Technology, 2001, 140: 231~237
    [98] Wu X.D, Xu L.H, Weng D, The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ-Al 2 O3 automotive catalysts, Applied Surface Science, 2004, 221: 375~383
    [99] Tombácz E.and Szekeres M, Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes, Applied clay science, 2004, 27: 75~94
    [100] Ishikawa Y, Katoh Y, Ohshima H, Colloidal stability of aqueous polymeric dispersions: effect of pH and salt concentration, Colloids and surfaces B: Biointerfaces, 2005, 42: 53~58
    [101] Agrafiotis C, Tsetsekou A, The effect of powder characteristics on washcoat quality. Part Ⅰ : Alumina washcoats, Journal of the European ceramic society, 2000, 20: 815~824
    [102] 王伟,涂学炎,张世鸿,乙醇燃料车尾气净化催化剂研究,内燃机学报, 2004,26(2):160~162
    [103] 王伟,张鸿斌,林国栋等,Ag/La0.6Sr0.4MnO3 基催化剂上CH3OH和CO的完全氧化,燃料化学学报,2000,28(1):8~13
    [104] 朱兵,醇类燃料汽车尾气净化催化剂的研究进展,天然气化工,1993,18(6):37~42
    [105] Wahlberg A, Pettersson L.J, Bruce K, et al, Preparation, evaluation and characterization of copper catalysts for ethanol fuelled diesel engines, Applied Catalysis B:Environmental, 1999, 23:272~278
    [106] YuYao Yung-Fang, Catalytic Oxidation of Ethanol at Low Concentrations, Industrial Engineering Chemisty Process Design Development, 1984, 23(1):60~67
    [107] Trawczyński J, Bielak B, Mi?ta W, Oxidation of ethanol over supported manganese catalysts-effect of the carrier, Applied Catalysis B: Environmental, 2005, 55 (4): 277~285
    [108] Robert W. McCabe, Patricia J.Mitchell, Oxidation of ethanol and acetaldehyde over alumina supported catalysts, Industrial Engineering Chemisty Production Research, 1983, 22(2): 212~217
    [109] Robert W. Mccabe, Patricia J. Mitchell, Reactions of ethanol and acetaldehyde over noble metal and metal oxide catalysts, Industrial Engineering Chemisty Production Research, 1984, 23(2): 196~202
    [110] Rajesh H, Ozkan U.S, Complete oxidation of ethanol, acetaldehyde and ethanol/methanol mixtures over copper oxide and copper-chromium oxide catalysts, Industrial Engineering Chemistry Research, 1993, 32(8): 1622~1630
    [111] Carla E. Hori, Haryani Permana, K. Y. Simon Ng, et al, Thermal stability of oxygen storage properties in a mixed CeO2 -ZrO2 system, Applied Catalysis B: Environmental, 1998, 16(2), 105~117
    [112] Fornasiero P, Di M.R, R R.G, et al, Rh-loaded CeO2 -ZrO2 solid-solutions as highly efficient oxygen exchangers: Dependence of the reduction behavior and the oxygen storage capacity on the structural-properties, Journal of Catalysis, 1995, 151(1):168~177
    [113] Bozo C, Guilhaume N, Garbowski E, et al, Combustion of methane on CeO2 -ZrO2 based catalysts, Catalysis Today, 2000, 59 (1) : 33~45
    [114] Yao H.C, Yu Yao Y.F, Ceria in automotive exhaust catalysts: I. Oxygen storage Journal of Catalysis, 1984, 86(2): 254~265
    [115] Descorme C, Taha R, Mouaddib-Moral N, et al, Oxygen storage capacity measurements of three-way catalysts under transient conditions,Applied Catalyis A: General, 2002, 223(1-2): 287~299
    [116] Ka?par J, Monte R.D, Fornasiero P, et al, dependency of the oxygen storage capacity in zirconia-ceria solid solutions upon textural property, Topics in Catalysis, 2001, 16(1-4): 83~87
    [117] Lambrou P.S, Costa C.N, Christou S.Y, et al, Dynamics of oxygen storage and release on commercial aged Pd-Rh three-way catalysts and their characterization by transient experiments , Applied Catalysis B: Environmental, 2004, 54: 237~250
    [118] Watanabe Y, Banno A, Sugiura M, Calcined sepiolite-supported Pt/Fe catalyst, Applied Clay Science, 2000, 16 (1-2): 59~71
    [119] 陈敬中,现代晶体化学:理论与方法, 北京: 高等教育出版社,2001
    [120] Ka?par J, Fornasiero Graziani M, Use of CeO2 - based oxides in the three- way catalysts, Catalysis Today, 1999, 50 (2) : 285~298
    [121] Trovarelli A, Design better cerium- based oxidation catalysts, Chemical Technology, 1997, 27 (6):322~371
    [122] Monte D.R, Fornasiero P, Desinan S, et al, Thermal stabilization of Ce Zr O oxygen storage promoters by addition of Al O : effect of thermal aging on textural, x 1-x 22 3structural, and morphological properties, Chemistry of Materials, 2004, 16: 4273~4285
    [123] Monte R.D, Fornasiero P, Ka?par J, et al, Pd/Ce0.6Zr0.4O2 /Al2O3 as advanced materials fo three-way catalysts: part1. catalyst characterization, thermal stability and catalytic activity in the reduction of NO by CO, Applied Catalysis B: Environmental, 2000, 24 (3-4) : 157~167
    [124] Knozinger H, Mest G, Laser Raman spectroscopy- a powerful tool for in situ studies of catalytic materials, Topics in Catalysis, 1999, 8(1-2): 45~55
    [125] Lin X.M, Li L.P, Li G.S, et al, Transport property and Raman spectra of nanocrystalline solid solutions Ce0.8Nd0.2O2 ?δ with different particle size, Materials Chemistry and Physics, 2001, 69(1-3): 236~240
    [126] Kapteijin F, Langeveld A.D.V, Moulijin J.A, et al, Alumina-supported manganese oxide catalysts: I.characterization: effect of precursor and loading, Journal of catalysis, 1994, 150:94~104
    [127] McBride J.R, Hass K.C, Poindexter B.D,et al, Raman and X-ray studies of Ce1-xREx O2-y where RE=La, Pr, Nd, Eu, Gd, and Tb, Journal of Applied Physics, 1994, 76: 2435~2441
    [128] 缪建英,蔡俊修,Ce0.5Zr0.5O2固溶体的原位拉曼光谱,催化学报,1999,20(1):25~28
    [129] Rao G R, Sahu H R, Mishra B G, Decomposition of H 2 O2 over Cu-Ce-O and Fe-Ce-O composite catalysts prepard by fast combustion method, Indida Journal of Chemistry, 2003, 42: 968~973
    [130] Murugan B, Ramaswamy A.V, Nature of managanese species in Ce1-xMnxO2-δ solid solution synthesized by the solution cpmbustion route, Chemistry of Materials, 2005, 17: 3983~3993
    [131] Oliva C, Forni L, D’Ambrosio A, et al, Characterisation by EPR and other techniques of La 1?x Ce x CoO3 perovskite-like catalysts for methane flameless combustion, Applied Catalysis A: General, 2001, 205(1~2): 245~252
    [132] Forni L, Oliva C, Barzetti T, et al , FT-IR and EPR spectroscopic analysis of La1-xCexCoO3 perovskite-like catalysts for NO reduction by CO, Applied catalysis B: Environmental, 1997, 13(1): 35~43
    [133] Srinivas D, Satyanarayana C.V.V, Potdar H.S, et al, Structural studies on NiO-CeO2 -ZrO2 catalysts for steam reforming of ethanol, Applied Catalysis A: General 2003, 246(2): 323~334
    [134] Martinez-Arias A, Fernandez-Garcia M, Salamanca L.N, et al, Structural and redox properties of ceria in alumina-supported ceria catalyst supports, Journal of Physics Chemistry B, 2000, 104 (17): 4038~4046.
    [135] Martinez-Arias A, Fernandez-Garcia M, Belver C, et al, EPR study on oxygenhandling properties of ceria, zirconia and Zr-Ce (1:1) mixed oxide, Catalysis Letters, 2000, 65 (4): 197~204
    [136] Martinez-Arias A, Fernandez-Garcia M, Ballesteros V, Characterization of high surface area Zr-Ce (1:1) mixed oxide prepared by a microemulsion method, Langmuir, 1999, 15(14): 4796~4802
    [137] Martinez-Arias A, Cataluna R, Conesa J.C, et al, Effect of copper-ceria interactions on copper reduction in a Cu/CeO2 /Al 2 O3 catalyst subjected to thermal treatments in CO, Journal of Physics Chemistry B, 1998,102 (5) 809-817
    [138] Abouka?s A, Bennani A, A?ssi C.F, et al, Structure of an L-Ta2O5-type phase in the L-Ta2 O5 –TiO2 system, Journal of the Chemical Society Faraday Transactions, 1992,88 (4):615~620
    [139] Martinez-Arias A, Fernandez-Gracia M, Galvez O, et al, Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO 4 catalysts, Journal of Catalysis, 2000, 195 (1): 207~216
    [140] Ka?s A.A, Bennani A, A?ssi C.F, et al, Reduction effect on cerium oxide catalysts doped with copper(II) ions. An electron paramagnetic resonance study, Journal of the Chemical Society Faraday Transactions, 1992, 88 (9):1321~1326
    [141] Lamonier C, Bennani A, D’Huysser A, et al, Evidence for different copper species in precursors of copper–cerium oxide catalysts for hydrogenation reactions. An X-ray diffraction, EPR and X-ray photoelectron spectroscopy study, Journal of the Chemical Society Faraday Transactions, 1996, 92(1): 131~136
    [142] Harrison P G, Ball I K, Azelee W, et al, Nature and surface redox properties of copper(II)-promoted cerium(IV) oxide CO-Oxidation catalysts, Chemistry of Materials, 2000, 12 (12):3715~3725
    [143] Tang X.L, Zhang B.C, Li Y, et al, CuO/CeO2 catalysts: Redox features and catalytic behaviors, Applied Catalysis A: General, 2005, 288(1~2):116~125.
    [144] Blanco G, Cauqui M.A, Delgado J.J, et al, Preparation and characterization of Ce-Mn-O composites with applications in catalytic wet oxidation processes, Surface Interface Analysis, 2004, 36(8): 752~755
    [145] Machida M, Uto M, Kurogi D, et al, MnOx -CeO2 binary oxides for catalytic NOx sorption at low temperatures sorptive removal of NOx, Chemistry of Materials, 2000, 12 (10):3158~3164.
    [146] 刘琰,孙德智,Ce 改性 Fe 2 O3 /γ-Al2 O3催化剂的表征及催化活性研究,功能材料,2006,37:915~918.
    [147] Tan B.J, Klabunde K.J, Sherwood P.M.A, X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina, Chemistry of Materials, 1990, 2(2): 186~191
    [148] Liao C.L, Lee Y.H, Chang S.T,et al, Structural characterization andelectrochemical properties of RF-sputtered nanocrystalline Co 3 O4 thin-filmanode, Journal of Power Sources, 2006, 158:1379~1385
    [149] Shan W.J, Fleys M, Lapicque F, et al, Syngas production from partial oxidation of methane over Ce1-xNi x Oy catalysts prepared by complexation-combustion method, Applied Catalysis A-General, 2006, 311:24~33
    [150] Avgouropoulos G, Ioannides T, Matralis H, Influence of the preparation method on the performance of CuO–CeO2 catalysts for the selective oxidation of CO, Applied Catalysis B: Environmental, 2005, 56(1~2):87
    [151] Bera P, Priolkar K.R, Sarode P.R, et al, Stuctural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques: formation of a Ce1-xCux O2 -δ solid solution, Chemistry of Materials, 2002, 14(8): 3591~3601
    [152] Tang X.L, Zhang B.C, Li Y, et al, CuO/CeO2 catalysts: redox features and catalytic behaviors. Applied Catalysis A: General, 2005, 288:116~125
    [153] Avgouropoulos G, Ioannides T, Effect of synthesis parameters on catalytic properties of CuO-CeO2 , Applied Catalysis B: Environmental, 2006, 67(1~2):1
    [154] 叶青,王瑞璞,徐柏庆,柠檬酸溶胶-凝胶法制备的Ce1-xZrxO2结构及其氧移动性,物理化学学报,2006,22(1):33~37
    [155] Hungría A.B, Iglesias-Juez A, Martínez-Arias A, et al, Effects of copper on the catalytic properties of bimetallic Pd–Cu/(Ce,Zr)Ox /Al2O3 and Pd–Cu/(Ce,Zr)Ox catalysts for CO and NO elimination, Journal of Catalysis, 2002, 206(2):281~294.