不同经营模式杨树人工林土壤碳库特征初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机碳(SOC)的含量及其动态平衡是反映土壤质量或土壤健康的一个重要指标,直接影响土壤肥力和作物产量的高低。本文比较研究了苏北地区杨-农复合经营系统不同经营模式的土壤总有机碳库特征,土壤微生物量碳库特征,土壤可溶性有机碳库特征,土壤可矿化有机碳库特征,期望得到农林复合生态系统土壤的碳储量、碳释放量、空间变异和年动态变化,为碳汇分析提供有效数据。主要研究结果如下:
     1.三种经营模式(K、P、W)土壤有机碳含量都有随土壤剖面深度增加而降低的趋势,且表层土(0-20cm)的有机碳含量都相对较高,表层土以下有机碳含量迅速降低。方差分析表明,三种模式不同层次土壤有机碳含量差异极显著(P<0.01)。
     2.三种模式土壤微生物生物量碳在垂直分布上总体都有随土壤深度的增加而降低的趋势,分布规律相似。方差分析表明,K模式和W模式土壤微生物生物量碳含量都是0~20cm与其余层次差异极显著(P<0.01),而其余层次间差异不显著(P>0.05)。三种模式土壤微生物生物量碳存在明显的季节变化,变化趋势基本一致,即出现冬春两季值偏低,夏秋两季值偏高的山峰形状曲线。方差分析表明,季节对三个模式土壤微生物生物量碳都有极显著影响(P<0.01)。不同模式土壤微生物生物量碳含量与有机碳含量之间存在显著相关(P<0.01)。
     3.三种模式土壤可溶性有机碳含量在垂直分布上总体都有随土壤深度的增加而降低的趋势,分布规律相似。土壤水溶性有机碳为三种模式不同土壤层次间差异显著(P<0.05)。三种模式土壤可溶性碳含量存在明显的季节变化,方差分析表明,季节变化对三种模式的土壤剖面DOC均值有极显著影响(P<0.01),说明该模式土壤DOC含量与季节变化(水、肥、气、热)的影响较大。
     4.三种模式土壤可矿化碳含量在垂直分布上总体都随土壤层次的增加,土壤可矿化碳都存在明显的季节变化,且规律相似,表现为暖季高而冷季低的峰状曲线。方差分析表明,季节对三个模式土壤可矿化碳含量都有极显著影响(P<0.01)。
Soil organic carbon (SOC) content and its dynamic balance, an important indicator of a direct impact on the level of soil fertility and crop yield, reflect soil quality or soil health. In this paper, soil organic carbon, microbial biomass carbon, dissolved organic carbon, soil mineralizable organic carbon were investigated in three poplar-crop agroforestry systems in order to provide an effective carbon sink data of soil carbon storage, carbon emission, spatial variability and the annual changes. The major findings are as follows:
     1. Soil organic carbon content decreased with increasing of soil depth in all three management patterns (K, P, W). The organic carbon concentrations in surface soil (0-20cm) had relatively high, then organic carbon content decreased rapidly as the soil depth increasing. Variance analysis showed that soil organic carbon content was significantly different among the three patterns (P <0.01).
     2. Microbial biomass C also decreased with soil depth increaseing, similar distribution to soil organic carbon. Analysis of variance showed that microbial biomass C content in K pattern and W pattern was significantly different between the depth of 0 ~ 20cm and the other layers(P <0.01), while no significant difference was observed between the other layers (P> 0.05).
     3. A significant seasonal variation in microbial biomass C was found in the three patterns, and value appeared low in winter and spring, whereas values in summer and autumn reached high. Analysis of variance showed that growth season had significant effects on microbial biomass C in the three patterns (P <0.01). Microbial biomass carbon was significantly related to organic carbon content (P <0.01).
     4. Similar pattern in the vertical distribution of soil dissolved organic carbon was also observed. Soil dissolved organic carbon in different soil layers was significantly different for the three management patterns (P <0.05).Analysis of variance showed that seasonal changes in DOC for soil profiles of three patterns were very significant (P <0.01), suggesting that the variation of soil DOC content was greatly influenced by management pattern and seasonal management practices (water, fertilizer, gas, heat).
     5. Mineralizable soil carbon content in the vertical distribution was different from the trend mentioned above, increasing as the soil layers deepening. Soil carbon mineralization showed an obvious seasonal variation, and trend was high in warm season and low in cold season. Analysis of variance showed that growing season had a significant effect on mineralizable carbon content of soil (P <0.01).
引文
[1] Bolin B. Change of land biota and their importance for the carbon cycle [J]. Science, 1997, 196(4290):613-615.
    [2] Bohn H L. Estimate of organic carbon in world soil [J]. Soil Sci. Soc.Am.J., 1976, 40:468-470.
    [3] Bohn H L. Estimate of organic carbon in world soil [J]. Soil Sci. Soc.Am.J., 1982, 46:1118-1119.
    [4] Collins H P, Rasmussen P E. Crop rotation and residue management effects on soil carbon and micobiaal dynamics [J]. Soil. Sci. Soc. Am. J., 1992,56:783-788.
    [5] Dixon R K, Houjhton R A ,et al.Carbon pools and flux of global forest ecosystems [J]. Science, 1994, 263:185-190.
    [6] Doran J W, Jones A J, Arshad M A, et al. Determinants of soil quality and health [A].Soil Quality and Soil Erosion[C].CRC Press, 1999, pp17-36.
    [7] Eswaran H, Vander B E, Reich P. Organic carbon in soil of the world [J]. Soil Sci. Soc. Am. J., 1993, 57:192-194.
    [8] Greeland D J, Ford G W. Separatiom of partially humified organic materials by ultrasonic dispersion [J]. Eighth International Congress of Soil Science. Transaction 1964, 3:137-148.
    [9] Gregorich E G, Ellert B H. Light franction and macroorganic mater in mineral soils.In:soil sampling and methods of analysis(ed by M.R. Carter). Canadian Society of Soil Science, 1993, 115:137-157.
    [10] Johnson C E, Drisoll C T, Fahey T J, et al. Carbon dynamics following clear-cutting of a northern hardwood forest In: Mc Fee W W, Kelly J M eds. Carbon Forms and Functions in Forest Soils.Soil Science Society of America, Madison,WI.1995, pp463-488.
    [11] Jenkinson D S & Ladd J N . Microbial biomass insoil measurement and turnover. 1981,pp. 368-386. In: J. T. Wilson (ed.) Advances in Nitrogen Cycling in AgriculturalSystems. CAB International, Wallingford, UK.
    [12] Huang W Z , Schoenau J J . Fluxes of water-soluble nitrogen and phosphorous in the forest floor and surface minzeral soil of aboreal aspen stand [J ] . Geoderma , 1998,81 :251-264.
    [13] Kalbitz K. Properties of organic matter in soil solution in a german fen area as dependent on land use and depth [J]. Geoderma, 2001,140:203-214.
    [14] Kalbitz K ,Geyer S. Different effects of peat degradation on dissolved organic carbon and nitrogen [J] .Organic Geochemistry, 2002, 33:319-326.
    [15] Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soil: a review. Soil Science, 2000, 165(4):277- 304.
    [16] Lacelle B. Canada’s soil organic carbon database [A], Lal R,et al.soil Processes and the Carbon Cycle [C]. Boca Ration:CRC Press, 1997, 93-102.
    [17] Lal R, Logan T J, Fausey N R. Long term tillage effects on Mollic Ochraqualf in northwestern Ohio soil nutrient profile [J]. Soil Tillage Research, 1990, 15:371-382.
    [18] Linn D M, Doran J W. Aerobic and anaerobic microbial populations in no-til land plowed soils [J]. Soil Soc.Am. J., 1984, 48:1267-1272.
    [19] Michalzik B, Kalbitz K, Park J H, et al Fluxes and concentrations of dissolved organic carbon and nitrogen asynthdsis for temperate forests [J]. Biogeochemistry, 2001, 52(2):173-205.
    [20] Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ccosystem. Eur.J.Soil Sci, 1999, 50:579-590 .
    [21] Mohan K W, Fatih E, Tristram O, et al. Assess-ing terrestrial ecosystem sustainability:Usefulness of regional carbon andnitrogen models [J]. Nature& Resources, 1999, 35(4):21-33.
    [22] Moneral M A. Denitrfication and its relation to soluble carbon [M]. Sc. Thesis. Department of Soil Sci., Universoty of Alberta Edmonton, Alta, 1983, pp100.
    [23] Neff J C, Hopper D U. Vegetation and climate controls on potential CO2, DOC and DON production in northem latitude soils [J]. Global Change Biology, 2002, 8:872-884.
    [24] Post W M, Emanuel W R, Zinke P J, et al.soil carbon pools and world life zones [J]. Nature, 1982, 298(8):156-159.
    [25] Scheffer B. Stabilization of organic matter in sand mixed cultures [J]. In Soil organic matter studies, Int. Atomic Energy Agency, Vienna, Austria, 1984, 2:359-363.
    [26] Schlesinger W H. Evidence from chronoseauence studies for a low carbon storage potential of soil [J]. Nature, 1990, 348(15):232-234.
    [27] Smith J L, Paul E A. The significance of soil microbial biomass estimate [J]. Soil Biochemistry, 1991, 23:359-396.
    [28] Spycher G, Sollins P, Roses S. Carbon and nitrogen in the light fraction of a forest soil:Verticle distribution and seasonal patterns. Soil Seience, 1983, 135:79-87.
    [29] Titlyanove A A, Bulavko G I, Kudryashova S, et al. The reserves and losses of organic carbon in the soils of Siberia [J]. Pochrovedenie, 1998, 1:51-59.
    [30] Trujillo W, Amezquita E, Fisher M J, et al. Soil organic carbon dynamics and land use in the colobian savanuas I.aggregate size distribution [A]. Lal R, et al. Soil Processes and the Carbon Cycle [C]. Boca Ration:CRC Press, 1997, pp267-280.
    [31] Wu J, Brookes P C, Jenkinson D S. Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil [J]. Soil Biology, 1993, 25(10):1435-1441.
    [32] Wu J , The turn over of organic carbon in soil [D]. Reading : Reading Unversity,1990.
    [33]陈安磊,王凯荣,谢小立.施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响[J].农业环境科学学报, 2005, 24(6):1094-1099.
    [34]陈国潮.土壤微生物测量方法现状及其在红壤上的应用[J].土壤通报, 1999, 30(6):284-287.
    [35]陈国潮,何振立,黄昌勇.红壤微生物量C周转及其研究[J].土壤学报,2002,39(20):152-160.
    [36]戴慧.天童地区不同土地利用类型土壤的碳库特征[D]. :华东师范大学, 2007.
    [37]方升佐,徐锡增,吕士行..杨树定向培育[M].合肥:安徽科学技术出版社,2004.
    [38]高云超,朱文珊,陈文新.土壤微生物量周转的[J].生态学杂志.1993,12(6):6-10.
    [39]高云超,朱文珊,陈文新.秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业科学,1994,27(6):41-49.
    [40]韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境,2005,21(4):6-11.
    [41]何英.森林固碳估算方法综述[J].世界林业研究, 2005,2(18):22-27.
    [42]何振立.土壤微生物量及其养分循环和环境质量评价中的意义[J].土壤.1997,(2):61-69.
    [43]何振立.土壤微生物量的测定方法:现状和展望[J].土壤学进展,1994,22(9) 36-44.
    [44]黄伟生,彭佩钦,苏以荣,等.洞庭湖区耕地利用方式对土壤活性有机碳的影响[J].农业环境科学学报,2006,25(3):756-760.
    [45]姜小三,潘剑君,李学林.江苏表层土壤有机碳密度和储量估算和空间分布分析[J].土壤通报,2005,36(4):501-503.
    [46]姜培坤.不同林分下土壤活性有机碳库研究[J].林业科学,2005,41(1):10-13.
    [47]刘守龙,肖和艾,童成立,等.亚热带稻田土壤微生物生物量碳、氮、磷、状况及其对施肥的反应特点[J].农业现代化研究.2003,24(4):279-283.
    [48]刘允芬.农业生态系统碳循环研究[J].自然资源学报,1995,10(1):1-8.
    [49]刘允芬.中国农业系统碳汇功能[J].农业环境保护,1998,17(5):197-20.
    [50]李怒云.中国林业碳汇[M].北京:中国林业出版社,2007.
    [51]李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其土壤有机碳矿化的关系[J].土壤学报2004,41(4):544-552.
    [52]李淑芬,俞元春,何晟.土壤溶解性有机碳的研究进展[J].土壤与环境,2002,11(4):422-429.
    [53]吕晓涛.西双版纳热带季雨林碳储量研究[D].中国科学院西双版纳热带植物园,2006.
    [54]鲁春霞,谢高地,肖玉,等.我国农田生态系统碳蓄积及其变化特征研究[J].中国生态农业学报,2005,13(3):35-37.
    [55]倪进治.土壤生物活性有机碳库的表征指标及其在农业利用过程中的变化[D].博士学位论文,2001.
    [56]朴河春,洪业汤,袁芷云.贵州山区土壤中微生物生物量是能源物质碳流动的源与汇[J]生态学杂志,2001,20(1):33-37.
    [57]漆良华,张旭东,周金星,等.湘西北小流域不同植被恢复模式土壤养分库效应[J].东北林业大学学报,2010,38(2):38-42.
    [58]沈宏,曹志红,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    [59]沈宏,曹志红.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J].热带亚热带土壤科学,1998,7(1):1-5.
    [60]沈宏,曹志红,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,37(2):166-173.
    [61]史军,刘纪远,高志强,等.造林对陆地碳汇影响的研究进展[J].地理科学进展, 2004, 23(2):58-66.
    [62]唐罗忠,生原喜久雄,黄宝龙,等.江苏省里下河地区杨树人工林的碳储量及其动态[J].南京林业大学学报(自然科学版),2004,28(2),1-6.
    [63]孙波,张桃林,赵其国.我国中亚热带缓丘区红壤肥力的演化、化学和生物学肥力的演化[J].土壤学报,1999,36(2):203-217.
    [64]陶澎,曹军.山地土壤表层水溶性有机物淋溶动力学模拟研究[J].中国环境科学,1996, 16(6): 410-414.
    [65]陶水龙,林启美,赵小荣.土壤微生物量研究方法进展[J].土壤肥料,1998(5): 15-18.
    [66]吴建国.土地利用变化对土壤有机碳的影响—理论、方法和实践[M].北京:中国林业出版社,2004,15(4):593-599.
    [67]王春梅,刘艳红,邵彬,等.量化退耕还林后土壤碳变化[J].北京林业大学学报, 2007, 29(3):112-119.
    [68]王岩,沈其荣,史瑞和,等.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45-51.
    [69]王清奎,汪思龙,冯宗炜.杉木纯林土壤可溶性有机质及其与土壤养分的关系[J].生态学报,2005,25(6):1299-1305.
    [70]于严严,郭正堂,吴海斌.1980—2000年中国耕作土壤有机碳的动态变化[J].海洋地质与第四纪地质, 2006,26(6):123-130.
    [71]张于光,张小全,刘学端,等.不同林型土壤微生物有机碳降解基因的多样性[J].生态学报, 2007,27(4):1412-1419.
    [72]赵荣钦,黄爱民,秦明周,等.中国农田生态系统碳增汇/减排技术研究进展[J].河南大学学报,2004,34(1):60-65.
    [73]张庆忠,吴文良,林光辉.小麦秸秆还田对华北高产粮区碳截留的作用[J].辽宁工程技术大学学报,2006,25(5):773-776.