关节式坐标测量机热变形误差建模及修正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生产和科学技术的不断发展,现代制造业正朝着高效率、高精度、高质量及高智能等技术方向发展,对精密测量和精密加工提出了越来越高的要求,精密仪器和精密机床等设备的热变形是制约精密测量和精密加工精度进一步提高的主要因素之一。坐标测量机有着近五十年的发展历史,关节式坐标测量机后期发展而来,但由于其精度高、使用灵活、便携和对使用环境要求低等优点,得到了广泛的推广和应用,在我国的需求也与日俱增。关节式坐标测量机可以工作在10℃~40℃范围内,其热变形引起的测量误差为该机器的主要误差源之一,要实现测量机高精度测量必需对热变形误差加以修正。本文在关节式坐标测量机测量模型基础上,首次对测量机多温度误差源及误差特性进行了研究,并建立了基于神经网络和神经网络集成的关节式坐标测量机热变形误差修正模型,经实验,这对于减小关节式坐标测量机热变形误差有一定的效果。
     论文在关节式坐标测量机测量模型和误差模型的基础上,对关节式坐标测量机的热特性进行了较为深入的研究,分析了在内、外热源作用下关节式坐标测量机上关节构件、臂、圆光栅传感器等热变形及对测量产生的影响。特别针对关节构件的热变形导致光栅动、定尺相互位置变化,论文采用傅里叶频谱分析方法,建立包含定动光栅位置姿态参数的光场输出模型,给出了定、动栅不平行时输出光场的数学表达式,并在matlab中进行了仿真,给出了不同偏角下的莫尔条纹误差值和及变化趋势。采用模糊聚类分析方法对关节式坐标测量机热变形误差建模及修正中温度测点进行分类,并确定以其中两个测点为参与建模的最佳温度测点。使用神经网络理论对关节式坐标测量机热变形误差数学建模进行了研究分析,以测头三坐标及两温度测点温度为输入、相对于20℃该点的变化量为输出构建了具有单隐层BP神经网络的关节式坐标测量机热变形误差模型。
     考虑到测量机位姿对测量误差、温度误差的影响,提出了基于神经网络集成的决策级数据融合热变形误差修正模型,该模型中的两个子网络一个是基于空间坐标点的神经网络----在单一姿态下以测量空间点坐标为输入特征变量的热变形误差神经网络模型;另一个是基于测量机位姿的的神经网络----所选择的有限个空间测量点在不同测量位姿下六个角度为输入特征变量的热变形误差神经网络模型。将两网络数据融合以提高模型的泛化能力。
     成功研制了关节式坐标测量机数据采集系统,该系统包括六个圆光栅传感器的数据采集、两个温度测点上温度传感器的数据采集及与上位机通信的电路,编制了下位机软件。系统采集的数据作为建模的数据样本。
     建立了关节式坐标测量机温度实验系统。做了关节式坐标测量机上温度场分布实验;通过对一标准杆件的长度测量,给出了关节式坐标测量机在环境温度改变及内热对测量的影响,通过实验表明了必须要对测量机的热误差进行修正;就模型所需数据样本进行了长时间的测量采集,并用此对所建模型进行训练和仿真。实验结果表明所建模型对关节式坐标测量机热变形误差修正是有成效的,特别是融合模型,可使误差达到原误差的二分之一。
With the rapid development of manufacturing science and technology, the modern manufacturing industry is developing towards the directions of high- effective, high-precision, high-qualitative and high-intelligent, which brings higher and higher demands on precision measurement and process. The thermal deformation of precision instruments, precision machine tools and other devices is the key restraint for further improving the accuracy of precision measurement and process. Coordinate measuring machines have developed for about fifty years, and articulated arm coordinate measuring machines developed later. However, because of its advantages of high precision, flexible use, low demand for operational environment and portable, articulated arm coordinate measuring machines are being widely used and promoted, also highly demanded in China. These machines can work with temperature ranging from 10℃to 40℃. The measurement error caused by thermal deformation is the major one among all their error sources, so only correcting the thermal deformation error can realize the high precision measurement. Based on the measurement models of articulated arm coordinate measuring machines, multi-temperature error sources and error properties for the measuring machine have been studied first time, and the thermal deformation error correction model based on BP neural network and neural network integration have been built. The experiments show that the work can effectively reduce thermal deformation error of the measuring machine.
     Based on the measurement models and error models of articulated arm coordinate measuring machines, this paper deeply researched their thermal character, analyzed the influence of measurement errors resulted from the thermal deformation of joint components, arms and circular grating sensors on articulated arm coordinate measuring machine under the action of internal and external heat sources. Especially, for the mutual position change between moving and fixed scales of gratings resulted from joint component deformation, Fourier spectrum analysis method was applied to build the optical field output model involving fixed and moving gratings pose parameters, to introduce the mathematic formulas for output optical field with fixed and moving gratings unparallel mutually. All of which are simulated in Matlab. This paper also gave Moire fringe error values and their variation trend for different offset angle. The fuzzy group analysis method has been adopted to select the temperature measurement points for articulated arm coordinate measuring machines thermal deformation model building and compensation. The two points in which as the best temperature measuring points to join in the modeling have defined.
     Using neural network mathematical modeling of articulated arm coordinate measuring machines thermal deformation error was studied and analyzed. A BP neural network model with a single hidden layer was built, which inputs were the 3-D measurement data of measuring heads and temperature data at the two temperature measuring points on machine, and outputs were the changes of the space coordinate points compared to that at 20 degree. Considering the influence of measurement errors and temperature errors coming from machines’pose, the paper proposed the thermal deformation error correction model for decision-level data fusion on a basis of neural network integration. This model has two sub-networks, one based on space coordinate points is thermal deformation error neural network model using space point coordinates measured as input characteristic variables under single machine pose, and the other one based on the poses of measuring machines is to use the six angle values of selected limited space measuring points in different measuring poses as input characteristic variables. Fusing the two network data can improve the generalization ability of models.
     A data collection system for articulated arm coordinate measuring machines was developed successfully, which includes the circuits for data collection of six circle grating sensors and temperature sensors on two temperature measuring points and the circuit for communicating with upper monitor. Software compilation for lower computer was performed. The data collected by the system was used for modeling as the data sample.
     We also set up the temperature experiment system for articulated arm coordinate measuring machine. The experiment of temperature field distribution of the articulated arm coordinate measuring machine was done. Measuring a standard bar using the measuring machine, its length changed with ambient temperature and internal thermal, that shows the measuring machine thermal deformation error shall be corrected. The data samples needed in models were collected for a long time, and using these samples to exercise and simulate built models. The experimental results certified the effectiveness of correcting the articulated arm coordinate measuring machines’thermal deformation errors by these models set up, especially the fusion models in which the original errors can be reduced by half.
引文
[1]张国雄,三坐标测量机[M],天津:天津大学出版社,1999.
    [2] [日]小美濃武久,ほガ.多關節型三次元測定機精度向上[J].精密工學會志,Vol.52(8):1300-1304,1986.
    [3] Werner Lotze,ScanMax - a novel 3D coordinate measuring machine for the shop-floor environment [J]. Measurement,Vol.18 (1):17~25,1996.
    [4] http://www.21tex.com/fun/bussniss_1965348.aspx.
    [5] http://www.yzw.cc/productshow/offerdetail/46-1455-0-2293.html.
    [6] ASME B89.4.22. Methods for Performance Evaluation of Articulated Arm Coordinate Measuring Machines,2004.
    [7] F. J. van der Walt. Performance Evaluation of Articulated Arm Coordinate Measuring Machines according to ASME B89.4.22-2004[C]. Test and Measurement Conference,2008.
    [8] J Denavit and R S Hartenberg. A kinematic notation for lower pair mechanisms based on matrices [J]. ASME Journal of applied mechanics,Vol.22(2):215-221,1955.
    [9]叶东,多关节坐标测量机的理论和技术,哈尔滨:哈尔滨工业大学博士学位论文[C],1999.
    [10]汪平平,费业泰,林慎旺.柔性三坐标测量臂的标定技术研究.西安交通大学学报[J],Vol.40(3):284-288,2006.
    [11]李中伟,王从军,周晓慧.多关节坐标测量机的数学模型和参数标定[J].新技术新工艺, Vol.6:35-36,2006.
    [12]魏霖,王从军.多关节坐标测量机的坐标转换和参数标定[J].光电工程,Vol.340(5):57-61,2007.
    [13] Jorge Santolaria,Juan-JoséAguilar,José-Antonio Yagüe,Jorge Pastor. Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines[J]. Precision Engineering,32(2008)251-268,2008.
    [14]高贯斌,王文,林铿,陈子辰.应用改进模拟退火算法实现关节臂式坐标测量机的参数辨识[J].光学精密工程,Vol.17(10) :2499-2504,2009.
    [15]王学影,刘书桂,张国雄,王斌.多关节柔性三坐标测量系统标定技术研究[J].哈尔滨工业大学学报,Vol.40 (09):1439-1442,2008.
    [16]程文涛,于连栋,费业泰.关节式坐标测量机参数识别算法研究[J].中国科学技术大学学报. 2011(1):45-49.
    [17]叶东,黄庆成,车仁生.多关节坐标测量机的误差模型[J].光学精密工程,Vol.7(2):11-16,1999.
    [18]汪平平,柔性坐标测量机精度理论与应用技术研究[D],合肥工业大学博士学位论文,2006.
    [19]王文,林铿,高贯斌,陈子辰关.节臂式坐标测量机角度传感器偏心参数辨识[J].光学精密工程,Vol.18(1):135-140,2010.
    [20]任继文,龙铭.关节式坐标测量机关节轴晃动导致测量误差的分析及建模[J].工具技术,Vol.39(11):59-62,2005
    [21] Liu Wanli and Qu Xinghu. Self-Calibration and Error Compensation of Flexible Coordinate Measuring Robot[C]. International Conference on Mechatronics and Automation, August 5– 8:2489-2491,2007.
    [22] Miha Vrhovec,Marko Munih. Improvement of Coordinate Measuring Arm Accuracy[C]. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,2007.
    [23]郑大腾,费业泰,张梅.柔性坐标测量机建模的泛函网络研究[J].电子测量与仪器学报, Vol. 23(4):33-37,2009.
    [24] http://www.hexagonmetrology.com.cn/
    [25]费业泰,罗哉.精密技术中热变形误差影响的基本问题[J].纳米技术与精密工程,Vol.1 (1):79-84,2003.
    [26] D.A.StePhenson. Assessment of Steady State Metal Cutting Temperature Models Based on Simultaneous Intfared and Thermoeouple Data. ASME Journal of Engineering for Industry[C]. Vol.ll3,199la.
    [27] D.A.StePhenson. An Inverse Method for Investigating Deformation Zone Temperatures in Metal Cutting[C]. ASME Journal of Engineering for Industry. Vol.ll3,199lb.
    [28]胡鹏浩,费业泰.考虑受热和受力变形的公差与配合设计[J].应用科学学报,Vol.18(2):153-155,2000.
    [29]费业泰,黄强先.机械热变形及最佳热配合设计研究[J].机械月刊(台湾),1999年第286期:291-297,1999.
    [30]李桂华,费业泰.标准渐开线齿轮热变形时的非渐开特性研究[J].哈尔滨工业大学学报, Vol.22(2):22-24,2006
    [31] P.Tuomaala,K.Piira,M.Vulle. A rotational method for the distribution of nodes in modeling of transient heat conduction in plane slabs[J]. Building and Enviroment,35:97-406,2000.
    [32] Lo.C,J.Yuan,J.Ni. Optimal temperature variable selection by grouping approach for thermal error modeling and compensation[C]. International Journal of Machine Tools and Manufacture,vol.39(9):1383-1396,1999.
    [33] R.Venugopal,M. Barash. Thermal effects on the accuracy of numerically controlled machinetools[C]. Annals of the CIRP,vol.35(1):255-258,1986.
    [34] Suykens J.A.K. Weighted least squares support vector machines:robustness and spares approximation[J]. Neurocomputing,vol.48(1):85-105,2002.
    [35]谢庆生,尹健,罗延科.机械工程中的神经网络方法[M].北京:机械工业出版社,2004.
    [36]罗佑新,张龙庭,李敏.灰色系统理论及其在机械工程中的应用[M].北京:国防科技大学出版社,2001.
    [37] Harris JO,Spence AD. Geometric and quasi-static thermal error compensation for a laser digitizer equipped coordinate measuring machine[C]. International Journal of Machine Tools and Manufacture,44:65–77,2004.
    [38] J.-P. Kruth,C.Van den Bergh,P.Vanherck. Correcting Steady-State Temperature Influences on Coordinate Measuring Machines[J]. Journal of Manufacturing Systems, Vol.19(6),2001.
    [39] Heisel U,Richter F,Wurst KH. Thermal behaviour of industrial robots and possibilities for error compensation[C]. Annals of the CIRP1997,46:283–6,1997.
    [40] Wu Hao, Zhang Hongtao. Thermal error optimization modeling and real-time compensation on a CNC turning center[J], journal of materials processing technology,207:172-179,2008.
    [41] F.L.M. Delbressine, G.H.J. Florussen, L.A. Schijvenaars, P.H.J. Schellekens. Modelling thermomechanical behaviour of multi-axis machine tools[J]. Precision Engineering,30:47–5,2006.
    [42]杨庆东,C. Van Den Bergh.三坐标测量机的热变形和神经网络误差补偿[J],计量学报,Vol.21(2):113-118,2000.
    [43]林述温,吴昭同.基于热变形反馈信息的三坐标测量机误差建模与补偿[J],机械工程学报,Vol.37(12):70-74,2001.
    [44]陈子辰等.热敏感度和热耦合度研究[C].1992年全国机床热误差控制和补偿研究会议论文集,49-53,1992.
    [45]罗立辉,郭建钢.机床热误差温度测点优化和补偿建模研究现状[J],机床和液压, 9:52-53,2006
    [46]杨建国,薛秉源. 1CNC车削中心热误差模态分析及鲁棒建模[J],中国机械工程,9 (5):31-351,1998.
    [47]张弈群,李书和,张国雄.机床热误差建模中温度测点选择方法的研究[J].航空精密制造技术,32(6):37 -391,1996.
    [48] J Denavit and R S Hartenberg. A kinematic notation for lower pair mechanisms based on matrices [J]. ASME Journal of applied mechanics, 22(2):215-221,1955.
    [49] Shuhe Li, Yiqun Zhang, Fuoxiong Zhang. A study of pre-compensation for thermal errors CNC machime tools. Int.J.Mac. Tools Manufac,37(12):1715-1719,1997.
    [50] Jorge Santolaria,José-Antonio Yagüe,Roberto Jiménez,Juan-JoséAguilar. Calibration-based thermal error model for articulated arm coordinate measuring machines[J]. Precision Engineering,33:476–485,2009.
    [51]梁允奇.机械制造中的传热与热变形基础[M].北京:机械工业出版社,1982.
    [52]胡鹏浩.非均匀温度场中机械零部件热变形的理论及应用研究[D].合肥工业大学博士学位论文,2001.
    [53]苗恩铭.精密零件热膨胀及材料精确热膨胀系数研究[D].合肥工业大学博士学位论文,2004.
    [54]罗哉.精密机械中孔轴最佳热配合理论及应用研究[D].合肥工业大学博士学位论文,2005.
    [55]李桂华.复杂规则曲面形体的热变形理论[D].合肥工业大学博士学位论文,2006.
    [56]如何选定适合的坐标测量机材料,http://cad.newmaker.com/art_32658.html.
    [57]陈兴样,赵培炎.传热与热变形基础[M].长沙:湖南大学出版社,1988.
    [58]郁道银,谈恒英.工程光学[M].北京:机械工业出版社,2002.
    [59]曹向群,黄维实等.光栅计量技术[M].杭州:浙江大学出版社,1992.
    [60]刘普寅,吴孟达.模糊理论及其应用[M],长沙:国防科技大学出版社,1998.
    [61]叶兵.基于遗传神经网络模型实时误差修正任意角测量系统[D].合肥工业大学博土论文,2004.
    [62] LS7266R1 Data Sheet
    [63] http://www.511b.com/product/show.asp?id=272.
    [64]张国雄等编.测控电路[M].北京:机械工业出版社,2004.
    [65] MAXIM. MAX1402CAI Data Sheet. www.maxim.com.
    [66] Silicon Laboratory. Single-Chip USB To UART Bridge. www.silabs.com.
    [67] Silicon Laboratory. CP210x Baud Rate Support [AN205]. www.silabs.com.
    [68]宏晶科技. STC89C51RC-RD+_GUIDE. http://www.stc-mcu.com.cn.
    [69] IMP708 Datasheet. http://www.impweb.com.
    [70]吴昌友.神经网络的研究及应用[D].东北农业大学硕士论文,2007.
    [71] Hebb D.O.The organization of behavior[M].New York:Wiley,1949.
    [72] Rosenblatt F.Principles of neuraodynmics[M]. New York:Spartan Books,1959.
    [73] Minsky M.L.,Papert S. Perceptrons,MIT press,Cambridge,MA. 1969.
    [74] Hopfield J.J.Neural networks and physical systems with emergent collective computational abilityes[J].Proc. Of the National Academy of Sciences,USA,79:2554-2558,1982.
    [75] Rumelhart D.E.,Hinton G.E.,Williams R.J.Learning internal representations by error propagation.Parallel Distributed processing,Editors Rumelhart D.E.,McClelland J.L. and thePDP Research Group,318~364,1986.
    [76] Cybenko G. Approximation by superpositions of a sigmidal function[J]. Math. Of Control, Signals and Systems,2:303-314,1989.
    [77]田景文,高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006.
    [78]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.
    [79]王科俊,王克成著神经网络建模、预报与控制[M].哈尔滨:哈尔滨工程大学出版社1996.
    [80]康耀红著.数据融合理论与应用(第二版) [M].西安:西安电子科学大学出版社,2006.
    [81] Waltz E和Llinas J.多传感器数据融合.赵宗贵等译.电子部28所(第一章[36])
    [82]刘同明等.数据融合技术及期应用[M].北京:国防工业出版社. 1998.
    [83]李存军.基于集成神经网络的城市道路交通流量融合预测研究[D].西南交通大学博士研究生学位论文. 2004.
    [84]李洪志.信息融合技术[M].北京:国防工业出版社,1996.
    [85]何友,王国宏等.多传感器信息融合及应用(第二版)[M].北京:电子工业出版社,2007.
    [86] Mongi A. Abide,Rafael C. Gonzalez. Data Fusion in Robotics and Machine Intelligence[J]. Academic Press,2-8,1992.
    [87] Sasiadek J Z. Sensor fusion[J]. Annual Reviews in Control,26:203-228,2002.
    [88]秦玉霞.神经网络集成、多传感器融合——在机器人对障碍物的识别中的应用[J].软件,5:27-29,47,2007.
    [89] Hansen L K,Salamon P. Neural Network Ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,12(10): 993-1001,1990.
    [90] Sollich P,Krogh A. Learning with ensembles: how over-fitting can be useful. In: Advances in Neural Information Processing Systems 8, Denver, CO: MIT Press, Cambridge, MA, 190-196,1996.
    [91] Opitz D,Maclin R. Popular Ensemble Methods: An Empirical Study[J]. Journal of Artificial Intelligence Research11,169-198,1999.
    [92] Kearns M,Valiant L G. Learning Boolean formulae or factoring. In: Technical Report TR-1488. Cambridge, MA: Aiken Computation Laboratory, Harvard University,1988.
    [93] Perrone M P,Coopler L N. When Networks Disagree: Ensemble Method for Neural Networks. In: Mammone R J ed. Artificial Neural Networks for Speech and Vision, London: Chapman-Hall,126-142,1993.
    [94] Opitz D, Shavlik J. Actively Searching for An Effective Neural Network Ensemble[J]. Connection Science,vol.8(3-4): 337-353,1996.
    [95] Rost B,Sander C. Prediction of Protein Secondary Structure at Better Than 70% Accuracy[J].Journal of Molecular Biology, 232: 584-599,1993.
    [96] Jacobs R, Jordan M,Nowlan S,Hinton G. Adaptive Mixtures of Local Experts[J]. Neural Computation,Vol.3(1): 79-87,1991.
    [97] Schapire R E. The Strength of Weak Learnability. Machine Learning[J],Vol.5(2): 197-227,1990.
    [98] Breiman L. Bagging Predictors[J]. Machine Learning,Vol.24(2): 123-140,1996.
    [99] Breiman L. Bias,Variance,Arcing Classifiers. Technical Report,Department of Statistics, University of California at Berkeley,1996.
    [100] Freund Y. Boosting a Weak Algorithm by Majority[J]. Information and Computation,Vol.121(2): 256-285,1995.
    [101] Krogh A,Vedelsby J. Neural network ensembles, cross validation, and active learning. In: Advances in Neural Information Processing Systems 7, Denver, CO: MIT Press, Cambridge, MA, 231-238,1995.
    [102]张正道,胡寿松.基于神经网络免疫集成的非线性时间序列故障预报[J].东南大学学报(自然科学版),Vol.34增刊:15-19,2004.
    [103] Kohonen T. An Introduction to Neural Computing[J]. IEEE Transactions on Neural Networks,Vol.1(1): 3-16,1988.
    [104] Freund Y. Boosting a weak algorithm by majority[J]. Information and Computation,121(2): 256-285,1995.
    [105] Ho T K. The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.20(8): 832-844, 1998.
    [106] Duin R P W,Tax D M J. Experiments with classifier combining rules[C]. In: Proceedings of the International Workshop on Multiple Classifier Systems, Calgiari, Italy: Springer, 16-19,2000.
    [107] Islam M M,Yao X,Murase K. A constructive algorithm for training cooperative neural network ensembles[J]. IEEE Transactions on Neural Networks,Vol.14(4):820-834,2003.
    [108] Maclin R,Shavlik J W. Combining the predictions of multiple classifiers: using competitive learning to initialize meural networks[C]. In: Proceedings of the 14th International Joint Conference on Arti. Cial Intelligence, Montreal, Canada, 524-530,1995.
    [109] Islam M M,Yao X,Murase K. A constructive algorithm for training cooperative neural network ensembles[J]. IEEE Transactions on Neural Networks1,Vol.4(4):820-834,2003.
    [110]傅强.选择性神经网络集成算法研究[D].浙江大学博土学位论文,2007.
    [111]陈兆乾,周志华,陈世福.神经计算研究现状及发展趋势. http://wenku.baidu.com/view/74225bf67c1cfad6195fa7ce.html.
    [112] Ethem Alpayd1n著,范明,昝红英,牛常勇译.机器学习导论[M].北京:机械工业出版社,2009.
    [113]郑大腾,费业泰.柔性坐标测量机空间误差模型研究[J].机械工程学报,Vol.46(10):20-24,2010.
    [114]尚平,费业泰.柔性关节式坐标测量机的误差源分析与建模[J],工具技术,vol.43(8):95-98,2009.
    [115]郭辉.关节臂式柔性三坐标测量系统关键技术的研究[D],天津大学硕士论文,2005.
    [116] http://cs.nju.edu.cn/~gchen/teaching/phd-course/chenzq-paper.doc.
    [117]赵海涛.数控机床热误差模态分析、测点布置及建模研究[D],上海交通大学博士学位论文,2006.
    [118] Hornik K M,Stinchcombe M,White H. Multilayer Feedforward Networks Are Universal Approximators[J]. Neural Networks,Vol.2(2): 359-366,1989.
    [119]姚敏,赵敏.基于数据融合的小卫星温度测量冗余设计方法[J].仪器仪表学报,Vol.127(10):1267-1269,2006.
    [120]滕召胜.基于多传感器数据融合的热处理炉温度测量方法[J].计量学报,vol.21(2)::148-152,2000.
    [121]李国玉,孙以材,潘国峰,何平.基于BP网络的压力传感器信息融合[J].仪器仪表学报,vol.26(2):168-171,2005.
    [122]曾庆茂,丁正生.多传感器信息融合技术综述[J].赣南师范学院学报,6:21-23,2004.
    [123]王耀南,李树涛.多传感器信息融合及其应用综述[J].控制与决策,Vol.16 (9) :518-521,2001.
    [124]膨胀系数决定精度—海德汉用于车间型测量机的光栅尺. http://www.newmaker.com/art_30226.html
    [125]高贯斌,王文,林铿,陈子辰.圆光栅角度传感器的误差补偿及参数辨识[J].光学精密工程,Vol.18(8):1766-1772,2010.