可重构的关节臂式坐标测量机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关节臂式坐标测量机是一种新型非正交坐标测量系统,与传统的正交坐标测量机相比,具有结构简单、体积小、重量轻、测量范围大、操作方便灵活、成本低、可在现场或野外测量等特点,已较广泛地应用于模具设计、零件逆向工程测量、产品质量在线检测、设备装配与维修等领域。然而关节臂式坐标测量机的测量精度与传统的正交坐标测量机相比要低(两者通常相差一至两个数量级),导致其使用范围受到较严重的限制。究其原因,自由度大、关节数目多、空间串联结构等特点,其结构参数的误差在过程中会发生积累和放大,导致其精度不高。另外,采用关节臂式坐标测量机测量小尺寸零件时,其测量空间往往比被测零件大得多,造成测量空间较大的浪费,损失了测量精度。因此,如何提高关节臂式坐标测量机的测量精度成为研究的焦点与热点。
     本论文提出一种可重构的关节臂式坐标测量机,采用变测量空间和变自由度的方法提高测量精度,具体实现方法为采用重构的方式实现关节臂式坐标测量机测量臂长度和关节数目可变,测量时根据被测量工件的几何特点,选择满足工件测量个性化需求的、较少冗余测量空间的方案,提高测量分辨率和测量精度。全文围绕这个思路展开理论分析、系统设计、仿真研究与实验验证工作,主要章节内容包括:
     第一章首先介绍关节臂式坐标测量机的研究背景与意义,然后综述国内外关于关节臂式坐标测量机的研究现状、相关产品的优点与不足,最后结合课题任务要求提出本论文的主要研究内容,并对论文的整体构架进行阐述。
     第二章介绍可重构的关节臂式坐标测量机的工作原理,将可重构的关节臂式坐标测量机与普通的关节臂式坐标测量机进行对比,阐述可重构的关节臂式坐标测量机在测量精度方面的优势,最后给出可重构的关节臂式坐标测量机的数学计算模型和误差模型。
     第三章阐述可重构的关节臂式坐标测量机的设计思路,然后详细介绍可重构的关节臂式坐标测量机机械结构及工作方式。
     第四章设计一种基于现场可编程门阵列(FPGA)的数据采集系统,用于可重构的关节臂式坐标测量机的测量系统数据采集,其采集功能包括6路光栅传感器、1路温度传感器以及3个按钮等相关信号的采集和处理,并通过RS-232C串口与计算机通讯。
     第五章对可重构的关节臂式坐标测量机的测量空间与测量精度之间的关系进行了研究,主要是对不同臂长、不同自由度配置时测量机的测量误差进行仿真分析和实验验证。基于可重构的关节臂式坐标测量机解析误差模型,采用Matlab软件进行误差仿真分析,并在一台商品化的关节臂式坐标测量机上进行实验验证。
     第六章对论文的研究内容和取得的结论进行总结,并对今后的研究工作进行展望。
The articulated arm coordinate measuring machine (AACMM) is a new type of non-cartesian measuring system. Compared with traditional orthogonal coordinate measuring machine it has many advantages such as simple structure, compact size, light weight, large measuring volume, high flexibility, low cost and easy to be used in industrial field. Recently AACMMs have been widely applied in mould design, reverse engineering, quality inspection online, equipment assembly and maintenance and so on. However, the accuracy of AACMMs is much lower than traditional orthogonal coordinate measuring machines, because they are serial mechanisms with many joints and freedoms, the parameter errors transmitting to measuring probe will be accumulated and amplified, on the other hand, the measuring volume of AACMMs is usually much bigger than size of measured parts, therefore it will cause the accuracy loss. So how to improve the accuracy of AACMMs become the focus and hotspot of the research work on AACMMs.
     In this thesis, a reconfigurable articulated arm coordinate measuring machine is presented, through an operation of changing measuring volume or decreasing degrees of freedom (DOF) of machine, the new type of machine can meet the requirements of high accuracy as well as high resolution by making the measuring volume fitting to the sizes of measured objects. Around this train of thought, the thesis carries out the theoretical analysis, simulation study and experimental validation.
     In the first chapter, the background and the significance of articulated arm coordinate measuring machines are introduced, and then the disadvantages of AACMMs in the market are analyzed. Finally the main framework of the dissertation is presented.
     In the second chapter, the work principle of the reconfigurable articulated arm coordinate measuring machine is explained, the advantages of the reconfigurable articulated arm coordinate measuring machine are discussed, then the mathematical model and the error model of the reconfigurable articulated arm coordinate measuring machine are established.
     In the third chapter, the mechanical structure of the reconfigurable articulated arm coordinate measuring machine are presented in detailed.
     In the fourth chapter, a data acquisition system based on Field Programable Gate Array (FPGA) is designed, which can collect signals of 6 channel circular grating angle sensors,1 channel temperature value, and 3 operation buttons input and communicate with PC based on protocol of RS-232C.
     In the fifth chapter, the error simulation and experimental research are carried out. Based on the error model of the reconfigurable articulated arm coordinate measuring machine, the error simulation is carried out with the software of Matlab; finally a validation experiment is carried out with a commercial AACMM product.
     In the sixth chapter, the research work is summarized and the futural work is proposed.
引文
[1]RAGHUNANDAN R, VENKATESWARA RAO P. Selection of sampling points for accurate evaluation of flatness error using coordinate measuring machine[J]. Journal of Materials Processing Technology,2008,202(1-3):240-245.
    [2]张国雄.三坐标测量机[M].天津:天津大学出版社,1999,1-12.
    [3]张国雄.坐标测量技术发展方向.红外与激光工程[J],2008,37(S1):1-5.
    [4]小美农武久.多关节型三次元测定机精度向上.精密工学会志[J],1986,52(8):1300-1304.
    [5]LOTZE W. ScanMax--a novel 3D coordinate measuring machine for the shopfloor environment[J]. Measurement,1996,18(1):17-25.
    [6]汪平平.柔性坐标测量机精度理论及应用技术研究[博士学位论文].合肥:合肥工业大学,2006.
    [7]高贯斌.关节臂式坐标测量机自标定方法与误差补偿研究[博士学位论文].杭州:浙江大学,2010.
    [8]http://www.Faro.com.
    [9]http://www.hexagonmetrology.com.cn.
    [10]http://www.vtechams.com.
    [11]王文,林铿,高贯斌,等.关节臂式坐标测量机角度传感器偏心参数辨识[J].光学精密工程.2010,18(1):135-141.
    [12]王文,卢科青,张选高,高贯斌,陈子辰.一种可重构关节臂式坐标测量机.中国:实用新型专利,CN201020168446.2,2010.11.24.
    [13]王学影,刘书桂,张洪涛,等.多关节柔性三坐标测量系统误差分析研究[J].传感技术学报.2007,20(2):4.
    [14]徐吉霞.关节式坐标测量机的研制[硕士学位论文].合肥:合肥工业大学,2009.
    [15]余志华.虚拟柔性臂测量机研究[硕士学位论文].杭州:浙江大学,2007.
    [16]黄志东.关节式坐标测量机机械结构和测量误差研究[硕士学位论文].武汉: 华中科技大学,2005.
    [17]魏霖.关节式坐标测量机标定的研究[硕士学位论文].武汉:华中科技大学,2006.
    [18]YE D, CHE R, HUANG Q. Calibration for kinematics parameters of articulated CMM[C]. Proceedings of the second International Symposium on Instrumentation Science and Technology Jinan:Harbin Institute of Technology,2002.
    [19]樊志新.多关节坐标测量机的机械结构与标定技术研究[硕士学位论文].哈尔滨:哈尔滨工业大学,2002.
    [20]邹璇,李德华.多关节机械臂的坐标模型和参数标定[J].光学精密工程.2001,9(3):253-257.
    [21]叶怀储,高贯斌,陈欢,等.关节臂式坐标测量机的运动学建模与误差研究[J].计量学报.2009,30(1):27-30.
    [22]张普星,刘勇,姜楠,等.关节臂式坐标测量机的精度分析[J].航空精密制造技术.2009,45(3).
    [23]王学影,岩君芳,叶树亮,等.关节臂式坐标测量系统关键技术研究[J].中国计量学院学报.2010,21(1):12-15.
    [24]王斌,刘书桂,王学影,等.关节臂式坐标测量机的数学模型和参数简化[J].制造技术与机床.2007(7):3-5.
    [25]王斌.关节臂式三坐标测量系统数学模型及标定技术的研究[硕士学位论文].天津:天津大学,2007.
    [26]孙增玉.关节臂式坐标测量机标定技术的研究[硕士学位论文].天津:天津大学,2008.
    [27]裘祖荣,孙增玉,张国雄,等.关节臂式坐标测量机标定系统的设计[J].计算机测量与控制.2009,17(1).
    [28]汪平平,费业泰,林慎旺,等.柔性三坐标测量臂的标定技术研究[J].西安交通大学学报.2006,40(3):5.
    [29]裘祖荣,孙增玉,张国雄,等.关节臂式坐标测量机标定系统的设计[J].计算 机测量与控制.2009.17(1):88-90.
    [30]SANTOLARIA J. YAGUE J A, JIMENEZ R, et al. Calibration-based thermal error model for articulated arm coordinate measuring machines[J]. Precision Engineering.2009,33(4):476-485.
    [31]SANTOLARIA J, AGUILAR J J, YAGUE J, et al. Kinematic parameter estimation technique for calibration and repeatability improvement of articulated arm coordinate measuring machines[J]. Precision Engineering.2008,32(4): 251-268.
    [32]KOVAC I, FRANK A. Testing and calibration of coordinate measuring arms[J]. Precision Engineering.2001,25(2):90-99.
    [33]KAVAV I, KLEIN A. Naprava in postopek za kalibriranje clenkastih koordinatnih merilnih napravApparatus and a procedure to calibrate coordinate measuring arms[J]. Strojniski Vestnik/Journal of Mechanical Engineering.2002,48(1): 17-32.
    [34]FURUTANI R, SHIMOJIMA K, TAKAMASU K. Parameter calibration for non-cartesian CMM[C]. VDI Verlag GMBH,2004:317-326.
    [35]高贯斌,王文,林铿,等.圆光栅角度传感器的误差补偿及参数辨识[J].光学精密工程.2010,18(8).
    [36]高贯斌,王文,林铿,等.基于RBF神经网络的关节转角误差补偿[J].机械工程学报,2010,46(12).
    [37]李爱林,王文,陈子辰.机器人化柔性三坐标测量机的设计与研究[J].机床与液压,2007,35(3):142-144.
    [38]林铿.关节臂式坐标测量机的误差分析与补偿研究[硕士学位论文].杭州:浙江大学,2010.
    [39]陈雪勇.多关节坐标测量机标定技术研究[硕士学位论文].武汉:华中科技大学,2009.
    [40]丁洋.关节式坐标测量机的标定方法研究[硕士学位论文].合肥:合肥工业大学,2010.
    [41]凌清平.关节臂式坐标测量机数据采集系统的研究[硕士学位论文].天津:天津大学,2009.
    [42]魏杰.基于USB接口的光栅数据采集卡的设计与实现[硕士学位论文].保定:河北大学,2008.
    [43]王霞,胡毅,章赞,等.基于FPGA的多角度圆光栅数据采集系统的研制[J].合肥工业大学学报(自然科学版).2006,29(8).
    [44]王霞.智能关节式坐标测量机数据采集系统的研制[硕士学位论文].合肥:合肥工业大学,2006.
    [45]郭丽峰,张国雄,郑志翔,等.关节臂式坐标测量机数据采集系统的研制[J].中国机械工程.2007,18(7):5.
    [46]朱凯歌.便携式坐标测量机无线传输技术研究[硕士学位论文].天津:天津大学,2007.
    [47]凌清平,刘书桂,王学影,等.关节臂式坐标测量机数据采集系统的关键点设计[J].计量学报.2009,30(6).
    [48]关冬亮.基于串行总线的智能关节传感器测量电路及数采系统[硕士学位论文].哈尔滨:哈尔滨工业大学,1999.
    [49]张铁,谢存喜.机器人学.广州:华南理工大学出版社,2001.
    [50]高贯斌,王文,林铿,等.应用改进模拟退火算法实现关节臂式坐标测量机的参数辨识[J].光学精密工程.2009,17(10).
    [51]DENAVIT J, HARTENBERG R. A kinematic notation for lower pair mechanism based on matrices[J]. ASME Journal of Applied Mechnics,1955,22(6):215-221.
    [52]GAO G, WANG W, LIN K, et al. Structural parameter identification for articulated ARM coordinate measuring machines[C]. Zhangjiajie, Hunan, China: IEEE Computer Society,2009:128-131.
    [53]周雄辉.柔性坐标测量机的结构设计与精度研究[硕士学位论文].杭州:浙江大学,2008.
    [54]尚平,费业泰.柔性关节式坐标测量机的误差源分析与建模[J].工具技术.2009,43(8):95-98.
    [55]叶东,黄庆成,车仁生.多关节坐标测量机的误差模型[J].光学精密工程.1999,7(2):91-96.
    [56]臧红彬.六自由度关节臂式坐标测量机的误差研究[硕士学位论文].合肥:中国科学技术大学,2008.
    [57]赵艳华,曹丙霞,张睿.基于Quartus Ⅱ的FPGA/CPLD设计与应用.北京:电子工业出版社,2009.
    [58]杨海钢,孙嘉斌,王慰,等FPGA器件设计技术发展综述[J].电子与信息学报.2010,32(3):714-727.
    [59]王传新FPGA设计基础.北京:高等教育出版社,2007.
    [60]杨恒,李爱国,王辉,王新安FPGA/CPLD最新实用技术指南.北京:清华大学出版社,2005.
    [61]王旭东,潘明海.数字信号处理的FPGA实现.北京:清华大学出版社,2011,
    [62]谢敏.基于FPGA的多路光栅数据采集系统[硕士学位论文].合肥:合肥工业大学,2010.
    [63]王学影.关节臂式坐标测量机系统研究[博士学位论文].天津:天津大学,2008.