强震下RC结构基于性能的刚塑性抗震设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震是威胁人类安全的主要灾害之一,人们在抵御地震灾害的长期斗争中,逐步积累起许多减轻灾害的实践经验。随着科学技术的进步,对地震的成因及其破坏现象的认识不断深入,特别是上世纪不同时期产生过多种工程结构抗震设计理论和方法。在这些理论的指导下的结构设计,有效地避免了或减轻了地震造成的灾害。上世纪末,在广泛使用反应谱理论和弹塑性地震反应时程分析的基础上,国际抗震界出现了基于性能抗震设计(PBSD)和基于位移抗震设计(DBSD)理论,指出在强震作用下位移和塑性耗能是影响结构抗震性能的两个主要因素。我国现行抗震设计规范(GB50011-2001)采用三水准,两阶段设计,并将时程分析和静力弹塑性分析(Push-over)两个主要方法纳入规范,这在一定程度体现了基于性能设计的理念,但是还不能完全实现基于性能抗震设计所期望的控制结构在未来不同抗震设防等级下的破坏状态和抗震性能指标。目前我国抗震设计正顺应国际发展趋势,发展适合我国国情的基于性能抗震设计理论。
     本文综述了基于性能抗震理论的研究现状,分析了该理论的特点及今后进一步的研究方向。在此基础上,基于延性钢筋混凝土结构在强震下的荷载-位移关系特点,采用动力刚塑性分析模型,建立了强震作用下钢筋混凝土结构基于性能刚塑性抗震设计理论的基本框架。主要研究内容和成果如下:
     1、根据强震作用下能量耗散机制和基于性能抗震设计的位移控制原则,发展了一种适合于钢筋混凝土框架结构的刚塑性抗震设计方法,为基于性能抗震设计提供了一种新途径。该方法包括两个主要步骤,一是控制结构模式形成合理的倒塌机构,通过虚功原理建立单自由度力学模型;二是利用刚塑性反应谱计算结构的动力需求。该方法概念清晰,计算简单,大量算例表明可提供满意的精度。
     2、以屈服加速度a y为参数,选用了EL Centro波,Taft波和兰州波等多条典型地震加速度记录作为输入,利用Matalab编制计算程序完成时程分析,给出了刚塑性单自由度系统的位移反应谱曲线,由这些曲线的包络得到了刚塑性反应设计谱。根据地震设防水准调整地面加速度的峰值,便可将其用于抗震设计。
     3、根据剪力墙的变形和受力特点,通过虚功原理将其转化为相应的单自由度模型。在分析中考虑了墙肢弯矩-剪力相互作用,引入了适当参数对反应谱修正后按照与平面框架相同的步骤,完成剪力墙的刚塑性设计。算例表明,由此给出的结果与弹塑性时程分析结果相差在10%以内。
     4、基于强震下滑移隔震结构的反应特点与耗能机理,利用刚塑性力学模型描述滑移支座的力学行为,运用RPSD方法确定支座与上部结构的抗震需求后,对结构进行抗震设计。算例表明采用的模型合理,计算结果精确。
     5、考虑到在双向强震作用下,塑性变形阶段柱端塑性铰双向弯矩的非线性相互作用,采用了广义应力空间的屈服函数及其相关流动法则,推导出了理想刚塑性模型的本构关系,在此基础上,建议了一种双向地震作用下基于性能的刚塑计算模型。
The practical experience of relieving earthquake disaster is accumulated during struggling against the earthquake which is one of disasters threat to human. With scientific and technological progressing, the seismic causes and its damage phenomenon is constantly specialized. Especially, with emergence of many seismic theories and methods, structures designed based on these theories void or relieve the earthquake disasters during the different phase of 20th century. At the end of the 20th century, the spectrum and the elstoplastic time history analysis are used widely and the performance (displacement)based seismic deign (PBSD) theory is proposed in international seismic field. The displacement and plastic energy dissipation are considered two important influence factors of seismic performance in the theory. The PBSD conception is embodied to some extent in the Chinese code for seismic design of buildings(GB50011-2001) which has three levels of fortification and two phases of designing estimates and adopts time-history analysis and push-over analysis, but this doesn’t fully implement the structural performance levels and damage behaviors which are expected by PBSD at various seismic fortification levels in future earthquake. Now seismic design are adjusting to international developing trend and developing PBSD suitable to Chinese condition.
     Current Status of the Study is expatiated and the feature of PBSD is analyzed and the research trend is represented, and on the basis of character of ductility R.C. structural load-displacement curve, using rigid-plastic model, the performance rigid-plastic seismic design for R.C. structures under strong earthquake theory outline is presented and main findings listed as follow:
     1. Base on the docility structural mechanism of energy dissipation and displacement control principles of PBSD, a new method of rigid-plastic available to RC frame is developed and a new approach of the performance based design is provided. The design proceeds by two steps. First step is controlling suitable collapse mechanism and transforming it into single degree of system using virtual work principle. Second one is determining seismic demand by rigid–plastic spectrum. The method has advantages of clear notion, simple calculation and reliable accuracy.
     2. Rigid-plastic displacement spectrum in which the yield acceleration was considered as the parameter is produced, by means of nonlinear time history analysis using the program developed employing Matlab. Then the envelope of the rigid-plastic response spectrums, which are reproduced by sufficient number of accelerograms such as El Centro record, Taft record and Lan-zhou can be used to estimate the seismic demand after adjusting to specified peak ground acceleration.
     3. Based on the plastic deformation characters of shear wall, which is transformed into single degree of system respectively using virtual work principle. Effects of shearing deformation on the plastic deformation of shear wall are analyzed. RC shear wall can be designed following the same procedure as the plan frame using modified response spectrum through a suitable parameter. The comparison of result with ones by using non-linear time-history analysis shows good agreement, and the difference is less than 10%.
     4. Based on the response character and energye dissipational mechanism, the mechanical behavior of sliding seismic isolated structure is descried by a rigid-perfectly pastic model. Seismic demands of sliding seismic isolated bearing and upper structure are determined by RPSD method, and the sliding seismic isolated structure is designed. The results of example indcats that the adopted model is approate and the results is accrtate.
     5. A PBSD rigid-plastic scheme to estimate seismic demands for RC frame structures subjected to bi-directional ground motion is proposed. The inelastic interaction of the biaxial member end moments at the plastic hinges is considered. By using the yield condition in generalized stress space and associated flow rule, the Rigid-Plastic constitutive relation is deduced.
引文
[1.1] Housner, G W.,Calculating the Response of an Oscillator to Arbitrary ground motion [J]. bulletin of the seismological society of America,1941,31:143-149.
    [1.2] R.克拉夫,J.彭金著,王光远译,结构动力学[M].北京:高等教育出版社,2006:475-507
    [1.3] Anil K.. Chora著,谢礼立等译,结构动力学理论及其在地震工程中的应用[M].北京:高等教育出版社,2007:414-472.
    [1.4]爱德华?L?威尔逊.结构静力与动力分析—强调地震工程学的物理方法[M ].北京:中国建工出版社,2006:201-230.
    [1.6]张善元,在地震作用下结构物的扭转反应[J].太原理工大学学报,1980,(1):85-98.
    [1.7]张善元,框加结构平扭耦联弹塑性地震反应分析的力学模型[J].固体力学学报,1983,4:511-519.
    [1.8]张善元,多层框架结构的非弹性地震反应的一种算法[J].太原工学院学报,1982,4:17-32.
    [1.9]沈聚敏,周锡元,高小旺等,抗震工程学[M].北京:中国建筑工业出版社,2000:58-66.
    [1.10]邓胜江,汪梦甫.高层建筑结构几种抗震弹塑性分析方法的比较[J].湖南文理学院学报,2004,16(1):57-59.
    [1.11]高小旺,地震作用下多层剪切型结构弹塑性位移反应的实用计算方法[J].土木工程学报,1984, 17(3):79-87.
    [1.12] Biot.M.A,Analytical and experimental methods in engineering seismology[J]. ASCE Transactions 1942,108:365-408.
    [1.13] Priestley .M.J.N., Myths and Fallacies in earthquake Engineering (Revisited)[M].IUSS Press: Pavia,2003.
    [1.14] Freeman .S.A.,Developments and use of the capacity spectrum method[C].Proceedings of the 6th U.S. National Conference on Earthquake Engineering,Seattle,1998:556-568.
    [1.15]王松涛,曹资,现代结构抗震设计方法[M].北京:中国建筑工业出版社,1997,5-10.
    [1.16] Estimating seismic demands for performance-based engineering of buildings. Key-note Lecture at the 13th World Conference on Earthquake Engineering,Vancouver,Paper No.5007, 2004.
    [1.17] J.P.Moehle. Displacement-based design of RC structures subjected to earthquakes [J]. Earthquake spectra,1992,3:403-428
    [1.18] K.Peter. Application of the capacity spectrum method to R.C .buildings with bearing walls[C]. The 12th world Conference On Earthquake Engineering ,paper No.0609,2000:689-701.
    [1.19] T.E. Kelly. Analysis Procedures for Performance Based Design[C]. The 12th World Conference On Earthquake Engineering, Paper No.2400,2000:248-262.
    [1.20] H.S. Lew. Evaluation of analysis Procedures for Performance-Based Seismic Design of buildings[C]. The 12th World Conference On Earthquake Engineering, Paper No. 1005,2000:
    [1.21] Xiao-Kang Zou, Chun-Man Chan. Seismic drift performance based design optimization of reinforced concrete buildings[C]. The 13th World conference On Earthquake Engineering ,Paper No.223,2004.
    [1.22] S.S.LEE,S.C.Goel,S.H. Chao. Performance-based Seismic Design of steel Moment Frames Using Target Drift and Yield Mechanism[C]. The 13th World Conference on Earthquake Engineering, Paper No.266,2004.
    [1.23] S.Otan., Japanese Seismic Design of High-Rise Reinforced Concretes Buildings‘An Example of Performance-based Design Code and state of Practices’[C].The 13th World Conference on earthquake Engineering, Paper No.5010,2004.
    [1.24]李刚,程耿东,基于性能的结构抗震设计–理论、方法与应用[M].北京科学出版社,2004:6-8.
    [1.25] SEAOC Vision 2000Committee. Performance―Based Engineering of Building[R]. Report Prepared by structural Engineers Association of California,USA,1995.
    [1.26] ATC-34.A Critical Review of Current Approaches to Earthquake-resistant Design[R]. Applied Technology Council, Redwood City, 1995.
    [1.27] ATC-40. Seismic Evaluation and Retrofit of Concrete buildings[R]. Applied Technology Council,Redwood City California,1996.
    [1.28] FEMA273 NEHRP. Commentary on the Guidelines for Rehabilitation of Buildings[R]. Federal Emergency management Agency,Washington D.C.,September,1996.
    [1.29] FEMA274 NEHRP. Commentary on the Guidelines for Rehabilitation of Buildings[R]. Federal Emergency management Agency, Washington D.C.,September,1996.
    [1.30] Building Center of Japan .Report of development of new engineering framework for building structures[R]. Integrated Development Project,Ministry of construction,1998.
    [1.31] S.Otani,Recent Development in Seismic Design Criteria in Japan[C]. The 11th World Conference on Earthquake Engineering,Paper No. 2124,1996.
    [1.32] S.Otani,Development of performance-based seismic design method in Japan[J]. BuildingStructures,2000,30(6): 3-9.
    [1.33] FEMA356. Prestandard and commentary for the seismic rehabilitation of buildings[R]. Federal Emergency Management Agency,Washington D.C.,2000.
    [1.34] Eurocode8. Design of structures for earthquake resistance[S], General rules for buildings. British Standards Institution,London,2003.
    [1.35]谢礼立,抗震性态设计和基于形态的抗震设防[C].大型复杂结构的关键科学问题和设计理论研究论文集(1999),大连:大连理工大学理工大学出版社,2000,5:26-34.
    [1.36]王亚勇,我国2000年抗震设计模式展望[J].建筑结构,1999(6):13-19.
    [1.37]李应斌,刘伯权,史庆轩,基于结构性能的抗震设计理论研究与展望[J].地震工程与工程振动,2001,21(4):11-16.
    [1.38]黄群贤,林建华,建筑结构基于功能的抗震设计[J],工业建筑,2003,33(4):53-55.
    [1.39]周云,安宇,梁兴文,基于性态的抗震设计理论和方法的研究发展[J],世界地震工程,2001,17(2):1-7.
    [1.40]汪梦甫,周锡元,基于性能的建筑结构抗震设计[J],建筑结构,2003,33(3):59-65.
    [1.41]梁兴文,邓明科等.钢筋混凝土高层建筑结构基于位移的抗震设计方法研究[J].建筑结构, 2006, 36 (7) : 15- 22.
    [1.42]钱稼茹,方鄂华,基于位移延性设计的剪力墙设计研究[C].第十五届全国高层建筑结构学术交流会议论文集,1998:293-297.
    [1.43]吕西林,郭子雄,建筑结构在罕遇地震下弹塑性变形验算讨论[J].工程抗震,1999(1):15-20.
    [1.44]王光远,吕大刚,基于最优设防烈度和损伤性能的抗震结构优化设计[J].哈尔滨建筑大学学报,1999,32(10):1-5.
    [1.45]王亚勇,我国2000年工程抗震设计模式规范基本问题研究综述[J] .建筑结构学报,2000,21(1):2-4.
    [1.46]陈耿东,李刚,基于性能抗震设计中一些问题的探讨[J].建筑结构学报,2000,21(1):5-11.
    [1.47] Yamanouchi, H. etc,Performance-based engineering for structural design of buildings[M]. Building Research Institute,Japan,2000:15-18.
    [1.48]李晓莉,吴敏哲,郭棣,基于性能抗震设计研究[J],世界地震工程,2004,20(1):153-156.
    [1.49] Priestley,M.J.N.,Performance Based Seismic Design[C]. The 12th World Conference on Earthquake Engineering,Paper No 2831,2000.
    [1.50] Priestley,M.J.N.,Kowalsky,M.J.,Direct displacement-based Seismic Design of ConcreteBuildings[J]. Bulletin of the New Zealand Society for Earthquake Engineering,2000,33(4);421-444.
    [1.51] Freeman .S .A, Nicoletti .J .P. and Tyrell, Evaluation of Existing Buildings for Seismic Risk-A Case Study of Puget Sound Naval Shipyard Bremerton[C]. Proceedings of 1st U.S. National Conference on Earthquake Engineering, Washington, Earthquake Engineering Research Institution, 1975:113-122.
    [1.52] Freeman .S .A, Nicoletti .J .P. and Tyrell, Evaluation of Existing Buildings for Seismic Risk-A Case Study of Puget Sound Naval Shipyard Bremerton[C].Proceedings of 1st U.S. National Conference on Earthquake Engineering, Washington, Earthquake Engineering Research Institution, 1975:113-122
    [1.53] VidicT, P and Fischinger M., Consistent Inelastic Design Spectra: Strength and Displacement [J]. Earthquake Engineering& Structural Dynamics,1992,23:507-521.
    [1.54] Miranda E and Bertero .V.V., Evaluation of Strength Reduction Factors for Earthquake- Resistant Design [J]. Earthquake Spectra, 1994,10:357-379.
    [1.55] Fajfar.P., Gaspersis .P, The N2 Method: the Seismic Damage Analysis of RC Buildings [J]. Earthquake Engineering & Structural Dynamics, 1996, 25: 31-46.
    [1.56] Ghosh S K.Seismic Detailing of Reinforced Concrete Structures and Performance-Based Codes[R]. Seismic Design Methodologies for the Next Generation of Codes, Fajfar& Krawinkler (eds), Balkema, 1997.
    [1.57] Fajfar.P.,Capacity spectrum method based on inelastic demand spectra[R]. IKIPR Report EE, September,Ljubljana, Slovenia: University of Ljubljana.1998,3.
    [1.58] Chopra .A. K., Goel .B. K., Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures : SDOF Systems[R]. Report No.PEER-1999/02.Pacific Earthquake Engineering Research Center,University of California at Berkeley, 1999.
    [1.59] Chopra.A.K.,Goel .R.K., Capacity-demand-diagram methods based on inelastic design spectrum[J]. Earthquake Spectra, Earthquake Engineering Research Institute,1999,15(4): 637 -656.
    [1.60] FEMA 356,Prestandard and commentary for the seismic rehabilitation of Buildings[R],Report FEMA 356,Federal Emergency Management Agency, Washington DC. 2000.
    [1.61]王崇昌,王宗哲,钢筋混凝土弹塑性抗震结构的机构控制理论[J].西安冶金建筑学院学报,1986,46(2):1-12.
    [1.62]程文瀼,陆勤,结构自控的概念和方法[J].东南大学学报,1991,21(4):53-58.
    [1.63]傅传国,蔣永生,对梁端开缝人工塑性铰的进一步研究[J].山东建筑工程学院学报,1993,8(1):1-6.
    [1.64]吴有富,梁书亭,丁大钧,采用人工塑性铰对多层框架地震响应的控制。东南大学学报,1994,24(3):83-88.
    [1.65] Hanson Robert D, Aiken Ian D, Nims Douglas etc.,State-of–the-art and state-of-the-practice in seismic Energy Dissipation[C].Proceeding of ATC-17-1 on seismic Isolation,Passive Energy Dissipation and Active Control,1993,2:865-878.
    [1.66]周福霖,工程结构减震控制[M].北京:地震出版社,1997.
    [1.67]樊长林,张善元,路国运,某房屋外套框架加层摩擦设计研究[J]. 2009,31(4)81-86.
    [1.67]樊长林,路国运,张善元,某办公楼动力测试与摩擦阻尼抗震加固研究[J]. 2009,31(6):74-78.
    [1.68] Newmark, N.M.,Veletos, W.J.,Effect of Inelastic Behavior on the Response of Simple System to earthquake Motion[C].2WCEE ,1960.
    [1.69] Newmark, N.M.,Hall W.J.,seismic design coition For Nuclear Reactor Facilities[C]. Proc. 4WCEE,1969 (2):37-50.
    [1.70] Newmark N. M.,Hall .W. J.,Earthquake Spectra and Design[R]. Earthquake Engineering Research Institute, University of California at Berkeley,1982.
    [1.71] Elghadamsi F .E.,Mohraz B., Inelastic Earthquake Spectra[J]. Earthquake Engineering and Structural Dynamics,1987,15:91-104.
    [1.72] Krawinkler H ,Nassar A A.,Seismic Design Based on Ductility and Cumulative Damage Demands and Capacities[R].Nonlinear Seismic Analysis and Design of Reinforced Concrete Buildings, Elsevier Applied Science, London and New York,1992:23-29.
    [1.73] T.Vidic, P.Fajfar, M. Fishinger, Consistent Inelastic Design Spectra: Strength and Displacement [J]. Earthquake Engineering and Structural Dynamics,1994,23:507-521.
    [1.74] R. Riddell, Inelastic Design Spectra: Accounting for Soil Conditions. Earthquake Engineering and Structural Dynamics.1995,24:1491-1510.
    [1.75] M.Ordaz,L.E.Perez-rocha. Estimation of Strength-reduction Factors for Elas-plastic System: A New Approach [J], Earthquake Engineering and Structural Dynamics.1998,27:889-901.
    [1.76]卓卫东,范立础.结构抗震设计中的强度折减系数研究[J].地震工程与工程振动,2001,21(1):84-88.
    [1.77] Riddell,J.E.Garcia,Inelastic Deformation Response of SDOF Systems Subjected to Earthquake [J]. Earthquake Engineering Structural Dynamics.2002,31(3):515-538.
    [1.78]翟长海,公茂盛,张茂花等,工程结构等延性地震抗力谱研究[J].地震工程与工程振动,2004,24(1):22-29.
    [1.79]吕西林,周定松,考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱[J].地震工程与工程振动,2004,24(1):39-48.
    [1.80]韦承基,弹塑性结构的位移比谱[J].建筑结构,2002,32(5):47-50。
    [1.81]肖明葵,王耀伟,严涛等,抗震结构的弹塑性位移谱[J].重庆建筑大学学报,2000,22:34-40。
    [1.82] B.Borzi,G.M.Calvi,Inelastic Spectra for Displacement-based Seismic Design[J]. Soil Dynamics and Earthquake Engineering ,2001,21:47-61
    [1.83]杨松涛,叶列平,钱稼茹,地震位移反应谱特性的研究[J].建筑结构,2002,32(5):47-50。
    [1.84] A.K. Tiwari, K. Gupta. Scaling of Ductility and Damage-based Strength Reduction Factors for Horizontal Motions[J],Earthquake Engineering and Structural Dynamics,2000,29:969-987。
    [1.85] Y.Bozorgnia,V.V.Bertero.,Damage Spectra: Characteristics and Applications to Seismic Risk Reduction [J]. Journal of Structural Engineering,ASCE,2003,129(10):1330-1340.
    [1.86]陈聃,王前信,非线性地震反应谱[M].北京:地震出版社.1989,55-56.
    [1.87]肖明葵,王耀伟,严涛等,抗震结构的弹塑性位移谱.重庆大学学报,2000,22:34-40.
    [1.88] G.Haika,Overview of Elastic and Inelastic Response Spectra[M]. University of Minions at Urbana,Champaign,2003.
    [1.89]王东升,李宏男,王国新,双向地震动作用弹塑性反应谱研究[J].大连理工大学学报,2005,45(2):248-254。
    [1.90]王东升,李宏男,王国新,双向地震作用的拟等延性系数谱[J].地震工程与工程振动,2004,24(4):25-31.
    [1.91] P.G.霍奇著,蒋秋,熊祝华译,结构的塑性分析[M].北京:科学出版社,1966.
    [1.92] [英]斯图亚特,S.J.莫易著,陈维纯等译,钢结构与混凝土结构塑性设计方法[M].北京:中国建筑工业出版社,1986.
    [1.93] A.Paglietti,M.C.Porcu,Rigid-plastic approximation to predict plastic motion under strong earthquakes [J]. earthquake Engineering and Structural Dynamics,2001,(30):115-126.
    [1.94] Marubashi N.,Domingues Costa J.L.,NielsenM.P.,Ichinose T., A basic study on asymmetry of seismic response using the rigid-plastic model [J]. Structural and Construction Engineering 2005,598:75-80.
    [1.95] J.L.Domingues Costa,R.Bento,V.,Rigid-plastic seismic design of reinforced concrete structures[J]. Earthquake Engng Struct.Dyn.2007,(36):55-76.
    [1.96]樊长林,张善元,路国运,钢筋混凝土框架刚塑性设计方法研究[J],世界地震工程,2009,25(3):67-73.
    [1.97] C.L. Fan,S.Y. Zhang, RIGID–PLASTIC DESIGN OF REIFORCED CONCRETE SHEAR WALL[J]. MODERN PHYSICS B,2008,22(31):5740-5745.
    [1.98] Fan Chang Lin , Lu Guo Yun , Zhang Shan Yuan ,Rigid-Plastic seismic Design of reinforced concrete structures to multiple earthquake excitations[C]. Dynamic 2009, Brussels, Proc. of Dynamic2009:825-831.
    [2.1]杨桂通,弹塑性力学[M].北京:人民教育出版社,1980:83-88.
    [2.2]王仁,黄文彬,塑性力学引论[M].北京:北京大学出版社,1992.
    [2.3] [英]斯图亚特,S.J.莫易著,陈维纯等译,钢结构与混凝土结构塑性设计方法[M].北京:北京建筑工业出版社,1986.
    [2.4] PrageW.,The general theory of limit design[C]. Proc.8th Intern,Congr. Appl.Mech., Istanbul 1952:65-72.
    [2.5] P.G.霍奇著,蒋秋,熊祝华译,结构的塑性分析[M].北京:科学出版社,1966.
    [2.6]张善元,框架平扭藕联弹塑性地震反应分析的力学模型[J].固体力学学报,1983(04):511-519.
    [2.7]余同希,华云龙,结构塑性动力学引论[M],合肥:中国科学技术大学出版社,1994.
    [2.8]余同希,W.J.斯壮,塑性结构的动力学模型[M],北京:北京大学出版社,2002
    [2.9] Marubashi N.,Domingues Costa J.L.,NielsenM.P.,Ichinose T., A basic study on asymmetry of seismic response using the rigid-plastic model[J],Structural and Construction Engineering 2005,598:75-80.
    [2.10] A.Paglietti, M.C.Porcu, Rigid-plastic approximation to predict plastic motion under strong earthquakes [J]. earthquake Engineering and Structural Dynamics,2001, (30):115-126.
    [2.11] J.L.Domingues Costa,R.Bento,Vsevolod Levtchitch,Rigid-plastic seismic design of reinforced concrete structures[J]. Earthquake Engng Struct.Dyn.2007,(36):55-76。
    [2.12]王松涛,曹资,现代抗震设计方法[M].北京:中国建筑工业出版社,1997.
    [2.13] GB50011-2001,建筑抗震设计规范[S].北京:建筑工业出版社,2001.
    [2.14]王亚勇,戴国莹,建筑抗震设计规范疑问解答[M].北京:中国建筑工业出版社,2006:45-50.
    [2.15]龚思礼,建筑抗震设计手册[M],北京:建筑工业出版社,2003.
    [2.16] Trifunac. M. D.,Brady.A.G.,A study of the duration of strong Earthquake ground motion [J]. Bulltin of Seismological Society of America,1975,65:581-626.
    [2.17]谢礼立,张晓志,地震动记录持时与工程持时[J].地震工程与工程振动,1988,8(1):6-11.
    [2.18]徐植信,强烈地面运动持时对结构物倒塌的影响[J],同济大学学报,1982,(02):7-24.
    [2.19]徐植信,强烈地面运动持时对结构物倒塌的影响[J],同济大学学报,1982,(02):7-24.
    [2.20]尹保江,地震作用下结构弹塑性位移反应规律[D],重庆:重庆大学,1997,6.
    [2.21] R.克拉夫,J.彭金著,王光远译,结构动力学[M].北京:高等教育出版社,2006.
    [2.22] Anil K.. Chora著,谢礼立等译,结构动力学理论及其在地震工程中的应用[M].北京:高等教育出版社,2007.
    [2.23]爱德华.L.威尔逊.结构静力与动力分析—强调地震工程学的物理方法[M ].北京:中国建工出版社,2006.
    [2.24]朱镜清,结构动力学中积分格式的稳定性[J],地震工程与工程振动,1983(3):24-28。
    [2.25]朱可善,刘西拉,钢筋混凝土非线性全过程分析[J],建筑结构学报,1982,3(3):35-45.
    [2.26]樊长林,张善元,路国运,钢筋混凝土框架刚塑性设计方法研究[J],世界地震工程,2009,25(3):67-73.
    [3.1]程斌,薛伟辰.基于性能的框架结构抗震设计研究[J].地震工程与工程振动,2003,23 (4) :50 - 55.
    [3.2]梁兴文,黄雅捷,杨其伟.钢筋混凝土框架结构基于位移的抗震设计方法研究[J].土木工程学报,2005 ,38 (9) :53 - 60.
    [3.3] Priestly M.N.J., Kowalsky M.J., Direct Displacement-based Seismic Design of concrete Buildings[J],Bulletin of the New Zealand Society for Earthquake Engineering,2000, 33(2): 421-444.
    [3.4] Kowalsky M.J., Priestly M.N.J., Macrae G.A., Displacement-based Design of RC Bridge Columns in Seismic Regions[J],Earthquake Engineering and Structural Dynamics,1995,24:1623- 1643.
    [3.5] Sozen.M.A.,Review of Earthquake Response of Reinforced Concrete Buildings with a View to Drift Control[J]. State of the Art in Earthquake Engineering ,Ankara, 1981: 383 - 418.
    [3.6] Calvi G.M.,Kingsley G.R.,Displacement-based Design of Multi-degree-freedom Bridge structures[J]. Earthquake Engineering and Structural Dynamics,1995,24:1247-1266.
    [3.7]钟益村,王文基,田家骅,钢筋混凝土结构房屋变性性能及容许指标[J].建筑结构,1984 (3):38-45.
    [3.8]邓小刚,多层钢筋混凝土框架房屋的震害预测方法[J].工程抗震,1993(1):28-33.
    [3.9]郭子雄,吕西林,王亚勇,建筑结构抗震变形验算中层间弹塑性位移角限值的讨论[J],工程抗震,1998(2):1-6.
    [3.10]童岳生,钱国芳,砖填充框架的变形性能及承载力[J].西安冶金建筑学院学报,1985(2):1-21.
    [3.11]施卫星,徐磊,玻璃幕墙抗震性能试验方法研究[C],第15届全国高层建筑结构学术交流会,1998.
    [3.12] Behr R.A., Seismic performance of Architectural Glass in Mid-rise Curtain WALL[J], Architectural Engineering,1998,4(3):94-98
    [3.13]沈伟民,卢文胜,曹文清,幕墙抗震性能试验方法研究[J],四川建筑科学研究,2001,27(4):79-81.
    [3.14] GB50011-2001,建筑抗震设计规范[S].北京:中国建筑工业出版社,2002,1.
    [3.15] J.L.Domingues Costa,R.Bento,Vsevolod Levtchitch,Rigid-plastic seismic design of reinforced concrete structures[J]. Earthquake Engng Struct.Dyn.,2007, (36):55-76.
    [3.16]樊长林,张善元,路国运,钢筋混凝土框架刚塑性设计方法研究,世界地震工程,2009,25(3):67-73.
    [3.17]傅传国,蒋永生,对梁端开缝塑性铰的进一步研究[J],山东建筑工程学院学报,1993,8(1):1-6.
    [3.18]朱伯龙,董振祥,钢筋混凝土非线性分析[M],上海:同济大学出版社,1985.
    [3.19]袁必果,钢筋混凝土压弯构件塑性铰的试验研究[J],南京工学院学报,1981,3:117-129.
    [3.20]姜锐,苏小卒,塑性铰长度经验公式的比较研究[J],工业建筑,2008,38:425-430.
    [3.21]周定松,吕西林,蒋欢军,钢筋混凝土框架梁的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2005,25(4):60-66.
    [3.22]吕西林,周定松,蒋欢军,钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2005,25(4):53-61.
    [3.23] Ono T, Zhao Y G, Probabilistic evaluation of column over design factors for frames [J]. Journal of Structural Engineering, 2000,126 (5): 605- 611.
    [3.24] Dooley K L,Bracci .J. M., Seismic evaluation of column-to beam strength ratios in reinforced concrete frames [J]. ACI Structural Journal,2001,98 (6) : 843- 851.
    [3.25] Dooley K L, Bracci .J. M., Seismic evaluation of column-to beam strength ratios in reinforced concrete frames[J], ACI Structural Journal, 2001, 98 (6) : 843- 851.
    [3.26]杨红,韦锋,白绍良等,柱增强系数取值对钢筋混凝土抗震框架塑性铰机构的控制效果[J].工程力学, 2005,22 (2) :155- 161.
    [3.27]蔡健,周靖,方小丹,柱端弯矩增大系数取值对RC框架结构抗震性能影响的评估[J].土木工程学报,2007,40(1):6-14.
    [3.28] Saadeghvaziri .M .A., Nonlinear response and modeling of RC columns subjected to varying axial load [J]. Engineering Structures, 1997, 19 (6): 417- 424.
    [3.29]杨红,白绍良.基于变轴力和定轴力试验对比的钢筋混凝土柱恢复力滞回特性研究[J],工程力学, 2003, 20 (6) :58- 64.
    [3.30] Fardis M N, Panagiotakos T B. Seismic design and response of bare and masonry-infilled reinforced concrete buildings part I: bare structures[J]. Journal of Earthquake Engineering,1997,1 (1) : 219- 256.
    [3.31] Pantazopoulou .S. J., French C W. Slab participation in practical earthquake design of reinforced concrete frame [J]. ACI Structural Journal, 2001, 98 (4): 479- 489.
    [3.32] P.G.霍奇著,蒋秋,熊祝华译,结构的塑性分析[M].北京:科学出版社,1966.
    [4.1] Priestley MJN., Aspect of Drift and Ductility Capacity of rectangular Cantilever Structural Walls[R]. Bulletin of New Zealand Society for Earthquake Engineering,1998,31(2):73-85.
    [4.2] Thomsen JH , Wallace JW. Displacement-based design of slender RC structure walls experimental verification[J]. Journal of Structural Engineering ,ASCE 2004;130(4): 618-630.
    [4.3]张松,吕西林,章红梅,钢筋混凝土剪力墙构件极限位移的计算方法及试验研究[J].土%木工程学报,2009,42(4):10-16.
    [4.4]钱稼茹,徐福江,钢筋混凝土剪力墙基于位移的变形能力设计方法[J],清华大学学报,2007 ,47 (3):1-4
    [4.5]钱稼茹,吕文,方鄂华,基于位移延性的剪力墙抗震设计[J],建筑结构学报,1999,20(3):42-49.
    [4.6] Tjen N.Tjhin,Mark A.Aschheim, John W.Wallace. Yield displacement-based seismic design of RC wall buildings[J]. Engineering Structures ,2007,29:2946-2959.
    [4.7] GB 50011—2001,建筑抗震设计规范[S].北京:中国建工出版社,2001.
    [4.8] JGJ 3—2002,高层建筑混凝土结构技术规程[S].北京:中国建工出版社,2002.
    [4.9]余同希、W.J斯壮,塑性结构动力学模型[M].北京:北京大学出版社,2002.
    [4.10]张善元,框架结构平扭耦联弹塑性地震反应分析的力学模型[J].固体力学学报,1983(4):511-519.
    [4.11] C.L. Fan, S.Y. Zhang, RIGID–PLASTIC DESIGN OF REIFORCED CONCRETE SHEAR WALL[J],MODERN PHYSICS B,22(31):5740-5745.
    [4.12] FEMA356. Prestandard and Commentary for the Seismic Rehabilitation of Buildings [S] , Washington D C: Federal Emergency Management Agency,2000.
    [4.13]钱稼茹,徐福江,钢筋混凝土剪力墙基于位移的变形能力设计方法[J ] .清华大学学报, 2007 ,47 (3) :1– 4.
    [4.14]钱稼茹,程丽荣,周栋梁.普通箍筋约束混凝土柱的中心受压性能[J ] .清华大学学报,2002 ,42 (10) :1369– 1373.
    [4.15]辛力,梁兴文,邓明科,基于塑性铰转角需求的剪力墙边缘构件设计方法[J],工业建筑,2009,39(6):50-54
    [4.16]过镇海,张秀琴.混凝土应力-应变全曲线的试验研究[J ] .建筑结构学报,1982, 3 (1) : 1-12.
    [4.17]梁兴文,邓明科,张兴虎,等.高性能混凝土剪力墙性能设计理论的试验研究[J ],建筑结构学报,2007 ,28 (5) : 80– 88.
    [4.18] Tom Paulay,The displacement capacity of Reinforced concrete coupled walls[J]. Engineering Structures,2002(24):1165-1175.
    [4.19]陈平,王社良,惠彦涛,开洞剪力墙抗震设计探讨[J],西安冶金建筑学院学报,1994,26 (3):267-275.
    [4.20]王社良,陈平,深亚鹏,钢筋混凝土抗震剪力强的性能[J].西安建筑科技大学学报,1996,28(1):397-401.
    [4.21]王社良,曹照平,双肢剪力墙结构弹塑性性能试验研究[J].工程力学,1998,15(2):88-96.
    [4.22] T. Paulay, J. R. Binney. Diagonally reinforced coupling beams of shear walls〔R〕. Shear in reinforced concrete ,SP - 42 , American Concrete Institute , Farmington Hills , 1974 ,579– 598.
    [4.23]白绍良,傅建平,赵杰林等,改善洞口连梁抗震性能的一种有效配筋方案[J],重庆建筑大学学报,2003,25(5):24-30.
    [4.24] New Zealand Standard , NZS 3101 : Part 1 :1995 ,Concrete Structures Standard , Part 1 - the Design of Concrete Structures[S], 1995。
    [4.25] Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI318R - 02〔)S〕. An ACI Standard, reported by ACI Committee 318 , American Concrete Institute , 2002。
    [4.26] European Prestandard, Eurocode 8,Design provisions for earthquake resistance of s tructures[S]. European Committee for Standardization , 1995,2。
    [4.27]戴瑞同,孙占国.菱形配筋剪力墙连梁的承载能力[J],工业建筑,1993 ,(10) :33 -38.
    [4.28]张彬彬.高层建筑剪力墙连系梁抗震性能的试验研究[D],重庆:重庆大学,2001。
    [4.29] Theodosios P. Tassios, Marina Moretti , Antonios Bezas.On the behaviour and ductility of reinforced concrete coupling beams of shear wall〔sJ〕.ACI Structural Journal , 1996 ,7,11– 20。
    [4.30] Luciano Galano , Andrea Vignoli. Seismic Beheviour of short coupling beams with different reinforcement Layouts [J]. ACI Structural Journal,2000:876– 885.
    [4.31]龚炳年,方鄂华,反复荷载下联肢剪力墙结构连系梁的性能[J],建筑结构学报,1988 , (1):34– 40.
    [5.1]张文芳,李爱群,建筑物滑移隔震研究现状及新进展[J].东南大学学报,1997,27(增刊):45-49.
    [5.2]张文芳,程文瀼,李爱群等,九层房屋基础滑移隔震的试验、分析及应用研究[J].建筑结构学报,2000,21(3):68.
    [5.3]张文芳,程文瀼,基础摩擦隔震结构设置摩擦阻尼器地震反应研究[J].土木工程学报,2001,34(5)1-9.
    [5.4]樊长林,张善元,张文芳,隔震体系基于双质点模型的参数分析比较[J].太原理工大学学报,2008, 39(3):320-323.
    [5.5] Y B yang,T Y Lee,I C Tsai, Response of Multi-degree-of-freedom Structures with Sliding Purports[J]. Earthquake Engineering Structural Dynamics.1990, 19(5):739-752.
    [5.6] M C Constantnou,J Caccese,H G Harris, Frictional Characteristics of Teflon-steel Interface Under Dynamic Conditions[J]. Earthquake Engineering Structural Dynamics, 1987, 15 (60): 751-759.
    [5.7]张文芳,程文瀼,基础摩擦隔震结构设置摩擦阻尼器地震反应研究[J].土木工程学报,2001,34(5)1-9.
    [5.8]樊长林,张善元,路国运,某房屋外套框架加层摩擦减震的设计研究[J].工程抗震与加固改造,2009,31(4):81-86.
    [5.9]樊长林,路国运,张善元,某办公楼动力测试与摩擦阻尼抗震加固的研究[J].工程与抗震与加固改造,2009,31(6):74-78.
    [5.10]周云,摩擦耗能减震结构设计[M],武汉:武汉理工大学出版社,2006,11。
    [5.11]毛利军,李爱群,多层滑移隔震建筑结构的简化模型及其分析精度[J].建筑结构学报,2005,26(2):117-123.
    [5.12] Qamaruddin M, Arya A S , Chandra B. Seismic response of brick buildings with sliding Substructure, [J] . Struct. Engrg. , ASCE, 1986, 112 (9): 2001-2011.
    [5.13] Kunihito Masashi Iura,Toshimi Sasaki , Iku Kosaka,Periodic response of a rigid block resting on a footing subjected to harmonic excitation , Earthquake Engrg. Struct. Dyn. , 1991, 20: 683-697.
    [5.14]洪峰,王允红,摩擦基底隔震刚性结构滑移反应谱的确定[J].世界地震工程,1998,14(2):17-22.
    [5.15]毛利军,李爱群,基础滑移隔震体系的地震反应谱[J].土木工程学报,2004,37(2):58-66.
    [5.16] GB50010-2002,混凝土设计规范[S].北京:中国建筑工业出版社,2002.
    [5.17] GB 50011—2001,建筑抗震设计规范[S].北京:中国建工出版社,2001.
    [5.18]李宏男,王苏岩,采用基础摩擦隔震房屋高宽比限制的研究[J].地震工程与工程振动,1997,17(3):73-76.
    [6.1]张寰华,空间框架结构对多维地面运动的弹塑性动力反应[J],地震工程与工程振动, 1983,3(1):26-41.
    [6.2]张善元,框架结构平扭耦联弹塑性地震反应分析的力学模型[J].固体力学学报,1983(4):511-519
    [6.3]李宏南,结构多维抗震理论与设计方法。北京:科学出版社,1998.
    [6.4]杜宏彪,成国强,三维钢筋砼框架结构非线性动力分析[J],工程力学,1999,16(3):135-139.
    [6.5]孙焕纯,章元菘,张晓志,在两向地震波同时作用下,空间框架剪扭型弹塑性地震反应分析[J],大连工学院学报,1982,21(4):215-220
    [6.6] Nigam,N.C.,Yielding in Framed Structures under Dynamic Loads [J] . Engng. Mech. Div,ASCE, 1970,96(5):687-709.
    [6.7] Takizawa .H. Aoyama, H.,Biaxial effects in Modeling Earthquake Response of RC Structures[J], Earthquake Engineering and structural Dynamics,1974, 4(3):523-552
    [6.8] Pecknold, D.A., Inelastic Structural Response to 2D Ground Motion [J]. Engng. Mech. Div. ASCE,1976,100 (5):949-963.
    [6.9] Powell,G.H.,Chen,P.F.,3D Beam―Column Element with Generalized Plastic Hinges [J], Engng Div,ASCE, 1986,112(7):627-641.
    [6.10] Lain,S.S.,ET AL., Model for Inelastic Biaxial bending of concrete Members [J]. Struc. Engng Mech. Div. ASCE,1984,110 (11):2563-2584.
    [6.11] Lain,S.S.,ET AL,RC Space Frames with Column Axial Force and Biaxial Bending Moment Interactions [J]. Struc. Div. ASCE, 1986,112 (7):1553-1572.
    [6.12] Saiidi, M.et al., Five-Spring Element for Biaxial Bent RC Columns [J]. Struc. Engng. Div. ASCE,1989,115 (2):398-416.
    [6.13] Jang,Y., Saiidi, M., Four-Spring Element for Cyclic Responses of RC Columns[J]. Struc. Engng. Div. ASCE,1990,116 (4):1018-1029.
    [6.14] Kan C L ,Chopra A K. Torsional Coupling and earthquake response of simple elastic and in elastic systems[J], J Struct Div ASCE, 1981,107(7):1569-1588.
    
    [6.15]蔡贤辉,邬瑞锋,綦宝晖,偏心结构的弹塑性平扭耦合反应与地震强度[J].应用力学与数学,2000,21(5):451-458.
    [6.16]刘畅,邹银生,设计偏心距对偏心结构弹塑性扭转反应的影响[J].湖南大学学报,2007, 34(4):61-71.
    [6.17] Fan Chang Lin,Zhang Shan Yuan, Rigid-plastic seismic design of reinforced concrete structures to multiple earthquake excitations[C], Brussels, Dynamic 2009 : 825- 831
    [6.18] Furlong R.W., Concrete Column under Biaxially Eccentric Thrust [J]. Structural Journal of ACI, 1979,,(10): 1093– 1118.
    [6.19] R.克拉夫,J.彭金著,王光远译,结构动力学[M].北京:高等教育出版社,2006: 475-507
    [6.20] Anil K.. Chora著,谢礼立等译,结构动力学理论及其在地震工程中的应用[M].北京: 高等教育出版社,2007:414-472.
    [6.21] GB50011-2001,建筑抗震设计规范[S].北京:建筑工业出版社2006,2.
    [6.22]刘畅,邹银生,多层偏心结构的Pushover分析[J],重庆建筑大学学报,2007,29(3)61-65.
    [6.23]王耀伟,黄宗明,影响偏心结构非弹性地震反应的主要因素分析[J],重庆建筑大学学报,2001,23(6):510-517
    [6.24]朱伯龙,董振祥,钢筋混凝土非线性分析[M],上海:同济大学出版社,1985.
    [6.25]邱法维,刘中田,孙宪春,考虑双向耦合作用的钢筋混凝土柱弹塑性简化分析方法[J].建筑结构学报,2004,25(5):85-91.
    [6.26]陈忠汉,朱伯龙,钮宏,斜向受力钢筋混凝土压弯构件的非线性分析[J].土木工程学报,1984,17(4):67-78.
    [6.27]邱法维.钢筋混凝土柱的双向拟静力试验研究[J].建筑结构学报, 2001,22(5):26-31. --