p204在3T3-L1细胞成脂分化过程中的表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰素诱导蛋白p204是干扰素诱导蛋白p200家族的成员之一。近年来的研究表明,p204参与了多种中胚层来源组织的发生及发育过程。其中p204参与调控的中胚层组织包括:骨,肌肉以及软骨等。然而,至今尚未有关于p204参与调控脂肪组织生成的相关报道。我们的预实验结果显示,p204在3T3-L1前脂肪细胞中表达,并且其表达量随着脂肪分化的进程而升高。据此,我们推测p204可能参与了脂肪分化的调控。本课题的主要目的就是探究p204在脂肪分化过程中的功能及相关机制。
     本研究结果显示,在脂肪分化早期p204表达短时增高而后恢复。并且p204蛋白从细胞质转移到了细胞核中。为进一步研究p204在脂肪分化过程中的功能,我们分别应用RNA干扰技术构建p204低表达模型以及通过转染p204重组质粒构建p204过表达模型。研究结果显示,抑制p204的表达可显著的抑制脂肪生成,而过表达p204可以促进脂肪生成。与此同时,一些脂肪分化标记分子,包括PPARγ(过氧化物酶体增生物激活受体γ), C/EBPα(CCAAT/增强子结合蛋白α),LPL(脂蛋白脂肪酶)及adipsin(降脂蛋白)的基因表达量在p204低表达模型中减低而在p204过表达模型中升高。应用免疫共沉淀技术与免疫荧光技术,我们发现p204与C/EBPδ存在蛋白质相互作用并且两者共定位于细胞核中。进一步研究表明,应用RNA干扰技术抑制p204在3T3-L1细胞系中的表达,可导致p204与C/EBPδ形成的蛋白质复合体遭到破坏。而这可能是导致C/EBPδ蛋白与PPARγ基因启动子元件形成的蛋白质基因复合物发生解离从而抑制PPARγ基因转录活性的原因之一。
     综上所述,我们的研究结果表明p204在脂肪分化早期的短时上调在脂肪的发生中是不可或缺的。因为如果人为干扰了p204在脂肪分化早期的表达模式将会导致脂肪生成的不可逆损伤。
A member of the interferon-inducible p200 family of proteins, p204, has recently been reported to function in the development of many mesoderm-derived tissues, such as bone, muscle, and cartilage. However, no published study has yet investigated the role of p204 in adipogenesis. Our preliminary experiments showed that p204 can be found in 3T3-L1 preadipocytes and its expression was up-regulated in a differentiation-dependent manner. As such, we hypothesized that p204 is associated with adipogenesis and focused on the influence of p204 on adipogenesis.
     In the present study we investigated the transient elevated expression and cytoplasm-to-nucleus translocation of p204 in the early stage of adipogenesis. To determine the effect of p204 on adipogenesis, p204-siRNA and expression vector were produced for p204 suppression and overexpression, respectively. The knockdown of p204 resulted in a significantly depressed adipocyte differentiation, whereas p204 overexpression promoted adipocyte differentiation. The mRNA expression of adipogenic markers, such as peroxisome-proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding-protein (C/EBP)α, lipoprotein lipase (LPL), and adipsin, was decreased by p204 suppression and increased by p204 overexpression. A co-immunoprecipitation assay coupled with an indirect immunofluorescence assay also indicated that p204 interacted and co-localized with C/EBPδin the nucleus. Furthermore, the knockdown of p204 disrupted the interaction between p204 and C/EBPδand partially suppressed the PPARγtranscriptional activity by dissociating C/EBPδwith the PPARγpromoter element.
     Collectively, our data indicate that the transient expression of p204 in the early stage is indispensable for adipocyte differentiation. Disruption of p204 expression patterns at this stage leads to irreversible damage in fat formation.
引文
[1] Samanta H, Pravtcheva D D, Ruddle F H, et al. Chromosomal location of mouse gene 202 which is induced by interferons and specifies a 56.5 kD protein. J Interferon Res, 1984, 4:295-300.
    [2] Wang H, Chatterjee G, Meyer J J, et al. Characteristics of three homologous 202 genes (Ifi202a, Ifi202b, and Ifi202c) from the murine interferonactivatable gene 200 cluster. Genomics, 1999, 60:281-294.
    [3] Gribaudo G, Ravaglia S, Guandalini L, et al. Molecular cloning and expression of an interferon-inducible protein encoded by gene 203 from the gene 200 cluster. Eur J Biochem, 1997, 249:258-264.
    [4] Choubey D, Lengyel P. Interferon action: nucleolar and nucleoplasmic localization of the interferon-inducible 72-kD protein that is encoded by the Ifi 204 gene from the gene 200 cluster. J Cell Biol, 1992, 116:1333-1341.
    [5] Tannenbaum C S, Major J, Ohmori Y, et al. A lipopolysaccharide-inducible macrophage gene (D3) is a new member of an interferon-inducible gene cluster and is selectively expressed in mononuclear phagocytes. J Leukocyte Biol, 1993, 53:563-568.
    [6] Trapani J A, Browne K A, Dawson M J, et al. A novel gene constitutively expressed in human lymphoid cells is inducible with interferon-gamma in myeloid cells. Immunogenetics, 1992, 36:369-376.
    [7] Briggs J A, Burrus G R, Stickney B D,et al. Cloning and expression of the human myeloid cell nuclear differentiation antigen: regulation by interferon alpha. J Cell Biochem, 1992, 49:82-92.
    [8] DeYoung K L, Ray M E, Su Y A, et al. Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene, 1997, 15:453-457.
    [9] Dawson M J, Trapani J A. HIN-200: a novel family of IFN-inducible nuclear proteins expressed in leukocytes. J Leukocyte Biol, 1996, 60:310-316.
    [10] Landolfo S, Gariglio M, Gribaudo G, et al. The Ifi 200 genes: an emerging family of IFN-inducible genes. Biochimie, 1998, 80:721-728.
    [11] Lengyel P. Tumor-suppressor genes: news about the interferon connection. Proc Natl Acad Sci USA, 1993, 90:5893-5895.
    [12] Johnstone R W, Trapani J A. Transcription and growth regulatory functions of the HIN-200 family of proteins. Mol Cell Biol, 1999, 19:5833-5838.
    [13] Choubey D, Walter S, Geng Y, et al. Cytoplasmic localization of the interferon-inducible protein that is encoded by the AIM2 (absent in melanoma) gene from the 200-gene family. FEBS Lett, 2000, 474:38-42.
    [14] Choubey D, Snoddy J, Chaturvedi V, et al. Interferons as gene activators. Indications for repeated gene duplication during the evolution of a cluster of interferon-activatable genes on murine chromosome 1. J Biol Chem, 1989, 264:17182-17189.
    [15] Datta B, Li B, Choubey D, et al. p202, an interferon-inducible modulator of transcription, inhibits transcriptional activation by the p53 tumor suppressor protein, and a segment from the p53-binding protein 1 that binds to p202 overcomes this inhibition. J Biol Chem, 1996, 271:27544-27555.
    [16] Koul D, Obeyesekere N U, Gutterman J U, et al. p202 self-associates through a sequence conserved among the members of the 200-family proteins. FEBS Lett, 1998, 438:21-24.
    [17] Staub E, Dahl E, Rosenthal A. The DAPIN family: a novel domain links apoptotic and interferon response proteins. Trends Biochem Sci, 2001, 26:83-85.
    [18] Asefa B, Klarmann K D, Copeland N G, et al. The interferon-inducible p200 family of proteins: a perspective on their roles in cell cycle regulation and differentiation. Blood Cells Mol Dis, 2004, 32:155-167.
    [19] Asefa B, Klarmann K D, Copeland N G, et al. The interferon-inducible p200 family of proteins: a perspective on their roles in cell cycle regulation and differentiation. Blood Cells Mol Dis, 2004, 32:155-167.
    [20] Deschamps S, Meyer J, Chatterjee G, et al. The mouse Ifi200 gene cluster: genomic sequence, analysis, and comparison with the human HIN-200 gene cluster. Genomics, 2003, 82:34-46.
    [21] Lengyel P. From RNase L to the multitalented p200 family proteins: an exploration of the modes of interferon action. J Interferon Cytokine Res, 2008, 28:273-281.
    [22] Lengyel P, Choubey D, Li S J, et al. The interferon-activatable gene 200 cluster: from structure toward function. Semin Virol, 1995, 6:203-213.
    [23] Opdenakker G, Snoddy J, Choubey D, et al. Interferons as gene activators: a cluster of six interferon-activatable genes is linked to the erythroid alpha-spectrin locus on murine chromosome 1. Virology, 1989, 171:568-578.
    [24] Samanta H, Dougherty J, Brawner M E, et al. Interferon action: cloning of cDNA segments complementary to messenger RNAs induced by interferons. In: Merigan T, Friedman R, Fox C F, editors. Chemistry and Biology of Interferons Relationship to Therapeutics, UCLA Symposium of Molecular and Cellular Biology. New York, NY: Academic Press, 1982, p. 59-72.
    [25] Stehlik C, Krajewska M, Welsh K, et al. The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASCmediated nuclear-factor-kappa B and pro-caspase-1 regulation. Biochem J, 2003, 373:101-113.
    [26] Stehlik C, Fiorentino L, Dorfleutner A, et al. The PAAD/PYRIN-family protein ASC is a dual regulator of a conserved step in nuclear factor kappaB activation pathways. J Exp Med, 2002, 196:1605-1615.
    [27] Stehlik C, Reed J C. The PYRIN connection: novel players in innate immunity and inflammation. J Exp Med, 2004, 200:551-558.
    [28] Liu C J, Chang E, Yu J, et al. The interferon-inducible p204 protein acts as a transcriptional coactivator of Cbfa1 and enhances osteoblast differentiation. J Biol Chem, 2005, 280:2788-2796.
    [29] Pinna L A, Ruzzene M. How do protein kinases recognize their substrates? Biochim Biophys Acta, 1996, 1314:191-225.
    [30] Choubey D, Lengyel P. Interferon action: nucleolar and nucleoplasmic localization of the interferon-inducible 72-kD protein that is encoded by the Ifi 204 gene from the gene 200 cluster. J Cell Biol 1992, 116: 1333-1341.
    [31] Liu C, Wang H, Zhao Z, et al. MyoD dependent induction during myoblast differentiation of p204, a protein also inducible by interferon. Mol Cell Biol, 2000, 20:7024-7036.
    [32] Ding B, Lengyel P. p204 protein is a novel modulator of Ras activity. J Biol Chem, 2008, 283:5831-5848.
    [33] Zhang Y, Kong L, Carlson C S, et al. Cbfa1-dependent expression of an interferon-inducible p204 protein is required for chondrocyte differentiation. Cell Death Differ, 2008, 15:1760-7171.
    [34] Gariglio M, De Andrea M, Lembo M, et al. The murine homolog of the HIN 200 family, Ifi 204, is constitutively expressed in myeloid cells and selectively induced in the monocyte/macrophage lineage. J Leukoc Biol, 1998, 64:608-614.
    [35] Rolle S, De Andrea M, Gioia D, et al. The interferon-inducible 204 gene is transcriptionally activated by mouse cytomegalovirus and is required for its replication. Virology, 2001, 286:249-255.
    [36] Gribaudo G, Riera L, De Andrea M, et al. The antiproliferative activity of the murine interferon-inducible Ifi 200 proteins depends on the presence of two 200 amino acid domains. FEBS Lett, 1999, 456:31-36.
    [37] Gariglio M, Panico S, Cavallo G, et al. Impaired transcription of the poly rI:rC- and interferon-activatable 202 gene in mice and cell lines from the C57BL/6 strain. Virology, 1992, 187:115-123.
    [38] Wang H, Ding B, Liu C J, et al. The increase in levels of interferon-inducible proteins p202a and p202b and RNA-dependent protein kinase (PKR) during myoblast differentiation is due to transactivation by MyoD: their tissue distribution in uninfected mice does not depend on interferons. J Interferon Cytokine Res, 2002, 22:729-737.
    [39] Ding B, Liu C J, Huang Y, et al. p204 is required for the differentiation of P19 murine embryonal carcinoma cells to beating cardiac myocytes: its expression is activated by the cardiac GATA4, NKX2.5, and TBX5 proteins. J Biol Chem, 2006, 281:14882-4889.
    [40] Ding B, Liu C J, Huang Y, et al. p204 protein overcomes the inhibition of the differentiation of P19 murine embryonal carcinoma cells to beating cardiac myocytes by Id proteins. J Biol Chem, 2006, 281:14893-14906.
    [41] De Andrea M, Zannetti C, Noris E, et al. The mouse interferon-inducible gene ifi204 product interacts with the tpr protein, a component of the nuclear pore complex. J Interferon Cytokine Res, 2002, 22:1113-1121.
    [42] Lembo M, Sacchi C, Zappador C, et al. Inhibition of cell proliferation by the interferon-inducible 204 gene, a member of the Ifi 200 cluster. Oncogene, 1998, 16:1543-1551.
    [43] Liu C J, Wang H, Lengyel P. The interferon-inducible nucleolar p204 protein binds the ribosomal RNA-specific UBF1 transcription factor and inhibits ribosomal RNA transcription. EMBO J, 1999, 18:2845-2854.
    [44] Xin H, D’Souza S, Fang L, et al. p202, an interferon-inducible negative regulator of cell growth, is a target of the adenovirus E1A protein. Oncogene, 2001, 20:6828-39.
    [45] Hertel L, Rolle S, De Andrea M, et al. The retinoblastoma protein is an essential mediator that links the interferon-inducible 204 gene to cell-cycle regulation. Oncogene, 2000, 19:3598-3608.
    [46] Asefa B, Dermott J M, Kaldis P, et al. p205, a potential tumor suppressor, inhibits cell proliferation via multiple pathways of cell cycle regulation. FEBS Lett, 2006, 580:1205-1214.
    [47] Choubey D, Li S J, Datta B, et al. Inhibition of E2F-mediated transcription by p202. EMBO J, 1996, 15:5668-5678.
    [48] Min W, Ghosh S, Lengyel P. The interferon-inducible p202 protein as a modulator of transcription: inhibition of NF-kappa B, c-Fos, and c-Jun activities. Mol Cell Biol, 1996, 16:359-368.
    [49] Alland L, Muhle R, Hou H, et al. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature, 1997, 387:49-55.
    [50] Ayer D E, Laherty C D, Lawrence Q A, et al. Mad proteins contain a dominant transcription repression domain. Mol Cell Biol, 1996, 16:5772-5781.
    [51] Hassig C A, Fleischer T C, Billin A N, et al. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell, 1997:89:341-347.
    [52] Liu C J, Ding B, Wang H, et al. The MyoD-inducible p204 protein overcomes the inhibition of myoblast differentiation by Id proteins. Mol Cell Biol, 2002, 22:2893-2905.
    [53] Luan Y, Yu X P, Xu K, et al. The retinoblastoma protein is an essential mediator of osteogenesis that links the p204 protein to the Cbfa1 transcription factor thereby increasing its activity. J Biol Chem, 2007, 282:16860-16867.
    [54] Luan Y, Yu X P, Yang N, et al. p204 protein overcomes the inhibition of Cbfa1-mediated osteogenic differentiation by Id helix–loop–helix proteins. Mol Biol Cell, 2008, 19:2113-2126.
    [55] Dauffy J, Mouchiroud G, Bourette R P. The interferon-inducible gene, Ifi204, is transcriptionally activated in response to M-CSF, and its expression favors macrophage differentiation in myeloid progenitor cells. J Leukoc Biol, 2006, 79:173-183.
    [56] Deftos M L, Huang E, Ojala E W, et al. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity, 2000, 13:73-84.
    [57] Iavarone A, Lasorella A. ID proteins as targets in cancer and tools in neurobiology. Trends Mol Med, 2006, 12:588-594.
    [58] Suh H C, Leeanansaksiri W, Klarmann K D, et al. Id1 immortalizes hematopoietic progenitors in vitro and promotes a myeloproliferative disease in vivo. Oncogene, 2008, 27:5612-5623.
    [59] Wang H, Ding B, Liu C J, et al. The interferon- and differentiation-inducible p202a protein inhibits the transcriptional activity of c-Myc by blocking its association with Max. J Biol Chem, 2000, 275:27377-27385.
    [60] Yan D H, Wen Y, Spohn B, et al. Reduced growth rate and transformation phenotype of the prostate cancer cells by an interferon-inducible protein, p202. Oncogene, 1999, 18:807-811.
    [61] Wen Y, Giri D, Yan D H, et al. Prostatespecific antitumor activity by probasin promoter-directed p202 expression. Mol Carcinog, 2003, 37:130-137.
    [62] Wen Y, Yan D H, Spohn B, et al. Tumor suppression and sensitization to tumor necrosis factor alpha-induced apoptosis by an interferon-inducible protein, p202, in breast cancer cells. Cancer Res, 2000, 60:42-46.
    [63] Wen Y, Yan D H, Wang B, et al. p202, an interferon-inducible protein, mediates multiple antitumor activities in humanpancreaticcancerxenograftmodels.CancerRes, 2001, 61:7142-7147.
    [64] Woerner S M, Kloor M, Schwitalle Y, et al. The putative tumor suppressor AIM2 is frequently affected by different genetic alterations in microsatellite unstable colon cancers. Genes Chromosomes Cancer, 2007, 46:1080-1089.
    [65] Alimirah F, Chen J, Xin H, et al. Androgen receptor autoregulates its expression by a negative feedback loop through upregulation of IFI16 protein. FEBS Lett, 2006, 580:1659-1664.
    [66] Zhang Y, Howell R D, Alfonso D T, et al. IFI16 inhibits tumorigenicity and cell proliferation of bone and cartilage tumor cells. Front Biosci, 2007, 12:4855-4863.
    [67] De Andrea M, Gioia D, Mondini M, et al. Effects of IFI16 overexpression on the growth and doxorubicin sensitivity of head and neck squamous cell carcinoma-derived cell lines. Head Neck, 2007, 29:835-844.
    [68] Maeda T, Hobbs R M, Merghoub T, et al. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature, 2005, 433:278-285.
    [69] Hertel L, DeAndrea M, Azzimonti B, et al. The interferon-inducible 204 gene, amemberof the Ifi 200 family, isnot involved in the antiviral state induction by IFN-alpha, but is required by themouse cytomegalovirus for its replication. Virology, 1999, 262:1-8.
    [70] Benezra R, Davis R L, Lockshon D, et al. The protein Id: a negative regulator of helix–loop–helix DNA binding proteins. Cell, 1990, 61:49-59.
    [71] Gupta G P, Perk J, Acharyya S, et al. ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci USA, 2007, 104:19506-19511.
    [72] Moskowitz I P, Kim J B, Moore M L, et al. Amolecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell, 2007, 129:1365-1376.
    [73] Norton J D, Deed R W, Craggs G, et al. Id helix–loop–helix proteins in cell growth and differentiation. Trends Cell Biol, 1998, 8:58-65.
    [74] Datta B, Min W, Burma S, et al. Increase in p202 expression during skeletal muscle differentiation: inhibition of MyoD protein expression and activity by p202. Mol Cell Biol, 1998, 18:1074-1083.
    [75] Rudnicki M A, Jackowski G, Saggin L, et al. Actin and myosin expression during development of cardiac muscle from cultured embryonal carcinoma cells. Dev Biol, 1990, 138:348-358.
    [76] Molkentin J D. The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissuespecific gene expression. J Biol Chem, 2000, 275:38949-38952.
    [77] Harvey R P. NK-2 homeobox genes and heart development. Dev Biol, 1996, 178:203-316.
    [78] Lim J Y, Kim W H, Kim J, et al. Induction of Id2 expression by cardiac transcription factors GATA4 and Nkx2.5. J Cell Biochem, 2008, 103:182-194.
    [79] Marzia M, Sims N A, Voit S, et al. Decreased c-Src expression enhances osteoblast differentiation and bone formation. J Cell Biol, 2000, 151:311-320.
    [80] Miura Y, Miura M, Gronthos S, et al. Defective osteogenesis of the stromal stemcells predisposesCD18-null mice to osteoporosis. Proc Natl Acad Sci USA, 2005, 102:14022-14027.
    [81] Quack I, Vonderstrass B, Stock M, et al. Mutation analysis of core binding factor A1 in patients with cleidocranial dysplasia. Am J Hum Genet, 1999, 65:1268-1278.
    [82] Thomas D M, Carty S A, Piscopo D M, et al. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol Cell, 2001, 8:303-316.
    [83] Katagiri T, Yamaguchi A, Komaki M, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol, 1994, 127:1755-1766.
    [84] Ogata T, Wozney J M, Benezra R, et al. Bonemorphogenetic protein 2 transiently enhances expression of a gene, Id (inhibitor of differentiation), encoding a helix–loop–helix molecule in osteoblast-like cells. Proc Natl Acad Sci USA, 1993, 90:9219-9222.
    [85] Pache G, Schafer C, Wiesemann S, et al. Up-regulation of Id-1 via BMP-2 receptors induces reactive oxygen species in podocytes. Am J Physiol Renal Physiol, 2006, 291:F654-F662.
    [86] Vinals F, Reiriz J, Ambrosio S, et al. BMP-2 decreases Mash1 stability by increasing Id1 expression. EMBO J, 2004, 23:3527-3537.
    [87] Peng Y, Kang Q, Luo Q, et al. Inhibitor of DNA binding/differentiation helix–loop–helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J Biol Chem, 2004, 279:32941-32949.
    [88] Kong L, Liu C J. Mediation of chondrogenic and osteogenic differentiation by an interferon-inducible p202 protein. Cell Mol Life Sci, 2008, 65:3494-3506.
    [89] Luan Y, Lengyel P, Liu C J. p204, a p200 family protein, as a multifunctional regulator of cell proliferation and differentiation. Cytokine Growth Factor Rev, 2008, 19:357-369.
    [90] Karsenty G, Wagner E F. Reaching a genetic and molecular understanding of skeletal development. Dev Cell, 2002, 2:389-406.
    [91] Atkinson B L, Fantle K S, Benedict J J, et al. Combination of osteoinductive bone proteins differentiates mesenchymal C3H/10T1/2 cells specifically to the cartilage lineage. J Cell Biochem, 1997, 65:325-339.
    [92] Lefebvre V, Li P, de Crombrugghe B. A new long form of Sox5 (LSox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBOJ, 1998, 17:5718-5733.
    [93] Kronenberg H M. PTHrP and skeletal development. Ann N Y Acad Sci, 2006, 1068:1–13.
    [94] Moller D E, Flier J S. Insulin resistance: mechanisms, syndromes, and implication. N Engl J Med, 1991, 325:938-948.
    [95] Spiegelman B M, Choy L, Hotamisligil G S, et al. Regulation of adipocyte gene expression in differentiation and syndromes of obesity/diabetes. J Biol Chem, 1993, 268:6823-6826.
    [96] Cornelius P, MacDougald O A, Lane M D. Regulation of adipocyte development. Annu Rev Nutr, 1994, 14:99-129.
    [97] Burdi A R., Poissonnet C M, Garn S M, et al. Adipose tissue growth patterns during human gestation: a histometric comparison of buccal and gluteal fat depots. Int J Obes, 1985, 9:247-256.
    [98] MacDougald O A, Lane M D. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem, 1995, 64:345-373.
    [99] Ailhaud G, Grimaldi P, Negrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr, 1992, 12:207-233.
    [100] Ge′loen A, Roy P E, Bukowecki L J. Regression of white adipose tissue in diabetic rats. Am J Physiol, 1989, 257:E547-E553.
    [101] Green H, Kehinde O. An established pre-adipose cell line and its differentiation in culture. Cell, 1974, 1:113-116.
    [102] Ntambi J M, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr, 2000, 130:3122S-3126S.
    [103] Green H, Kehinde O. Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J. Cell Physiol. 1979, 101:169-172.
    [104] Novikoff A B, Novikoff P M, Rosen O M, et al. Organelle relationships in cultured 3T3–L1 preadipocytes. J Cell Biol, 1980, 87:180-196.
    [105] Student A K, Hsu R Y, Lane M D. Induction of fatty acid synthetase synthesis in differentiating 3T3–L1 preadipocytes. J Biol Chem, 1980, 255:4745-4750.
    [106] Smith P J, Wise L S, Berkowitz R, et al. Insulinlike growth factor-I is an essential regulator of the differentiation of 3T3–L1 adipocytes. J Biol Chem, 1988, 263:9402-9408.
    [107] Bernlohr D A, Bolanowski M A, Kelly T J, et al. Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3–L1 preadipocytes. J Biol Chem, 1985, 260:5563-5567.
    [108] Scott R E, Florine D L, Wille J J, et al. Coupling of growth arrest and differentiation at a distinct state in the G1 phase of the cell cycle: GD. Proc Natl Acad Sci USA, 1982, 79:845-849.
    [109] Cornelius P, Enerback S, Bjursell G, et al. Regulation of lipoprotein lipase mRNA content in 3T3–L1 cells by tumor necrosis factor. Biochem J, 1988, 249:765-769.
    [110] Dani C, Amri, E Z, Bertrand B, et al. Expression and regulation of pOb24 and lipoprotein lipase genes during adipose conversion. J Cell Biochem, 1990, 43:103-110.
    [111] Freytag S O. Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol Cell Biol, 1988, 8:1614-1624.
    [112] Clarke S L, Robinson C E, Gimble J M. CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferatoractivated receptor gamma 2 promoter. Biochem. Biophys Res Commun. 1997, 240:99-103.
    [113] Wu Z, Xie Y, Bucher N L R et al. Conditional ectopicexpression of C/EBPb in NIH3T3 cells induces PPARg and stimulates adipogenesis. Genes Dev, 1995, 9:2350-2363.
    [114] Christy R J, Kaestner K H, Geiman D E, et al. CCAAT/ enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3–L1 preadipocytes. Proc Natl Acad Sci USA, 1991, 88:2593-2597.
    [115] Lin F T, Lane M D. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3–L1 adipocyte differentiation program. Proc Natl Acad Sci USA, 1994, 91:8757-8761.
    [116] Shao D, Lazar M A. Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem, 1997, 272:21473-21478.
    [117] Gregoire F M, Smas C M, Sul H S. Understanding adipocyte differentiation. Physiol Rev, 1998, 78:783-809.
    [118] Brun R P, Tontonoz P, Forman B M, et al. Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev, 1996, 10:974-984.
    [119] Hu E, Tontonoz P, Spiegelman B M. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci USA, 1995, 92:9856-9860.
    [120] Tontonoz P, Hu E, Spiegelman B M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell, 1994, 79:1147-1156.
    [121] Umek R M, Friedman A D, McKnight S L. CCAAT-enhancer binding protein: a component of a differentiation switch. Science (Washington, DC), 1991, 251:288-292.
    [122] Ericsson J, Jackson S M, Kim J B, et al. Identification of glycerol-3-phosphate acyltransferase as an adipocyte determination factor 1- and sterol regulatory element-binding proteinresponsive gene. J Biol Chem, 1997, 272:7298-7305.
    [123] Tontonoz P, Graves R A, Budavari AI, et al. Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res, 1994, 22:5628-5634.
    [124] Tontonoz P, Hu E, Graves R A, et al. mPPARg2: tissue-specific regulator of an adipocyte enhancer. Genes Dev, 1994, 8:1224-1234.
    [125] Barak Y, Nelson M C, Ong E S, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell, 1999, 4:585-595.
    [126] Rosen E D, Sarraf P, Troy A E, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell, 1999, 4:611-617.
    [127] Fajas L, Auboeuf D, Raspe E, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem, 1997, 272:18779-18789.
    [128] Meirhaeghe A, Fajas L, Gouilleux F, et al. A functional polymorphism in a STAT5B site of the human PPAR gamma 3 gene promoter affects height and lipid metabolism in a French population. Arterioscler Thromb Vasc Biol, 2003, 23:289-294.
    [129] Mueller E, Drori S, Aiyer A, et al. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms. J Biol Chem, 2002, 277:41925-41930.
    [130] Zhang J, Fu M, Cui T, et al. Selective disruption of PPARgamma 2 impairs the development of adipose tissue and insulin sensitivity. Proc Natl Acad Sci USA, 2004, 101:10703-10708.
    [131] Freytag S O, Paielli D L, Gilbert J D. Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev, 1994, 8:1654-1663.
    [132] Wang N D, Finegold M J, Bradley A, et al. Impaired energy homeostasis in C/EBP alpha knockout mice. Science, 1995, 269:1108-1112.
    [133] Linhart H G, Ishimura-Oka K, DeMayo F, et al. C/EBPalpha is required for differentiation of white, but not brown, adipose tissue. Proc Natl Acad Sci USA, 2001, 98: 12532-12537.
    [134] Rosen E D, Hsu C H, Wang X, et al. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev, 2002, 16:22-26.
    [135] El-Jack A K, Hamm J K, Pilch P F, et al. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARg and C/EBPa. J Biol Chem, 1999, 274:7946-7951.
    [136] Wu Z, Rosen E D, Brun R., et al. Cross-regulation of C/EBPa and PPARg controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell1, 1999, 3:151-158.
    [137] Cao Z, Umek R M, McKnight S L. Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev, 1991, 5: 1538-1552.
    [138] Yeh W C, Cao Z, Classon M, et al. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev, 1995, 9:168-181.
    [139] Wu Z, Xie Y, Bucher N L R., et al. Conditional ectopic expression of C/EBPb in NIH-3T3 cells induces PPARg and stimulates adipogenesis. Genes Dev, 1995, 9:2350-2363.
    [140] Wu Z, Bucher N L R., et al. Induction of peroxisome proliferator-activated receptor gamma during conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPb, C/EBPd and glucocorticoids. Mol Cell Biol, 1996, 16:4128-4136.
    [141] Zuo Y, Qiang L, Farmer S R. Activation of C/EBPalpha expression by C/EBPbeta during adipogenesis requires a PPARgamma-associated repression of HDAC1 at the C/EBPalpha gene promoter. J Biol Chem, 2006, 281:7960-7967.
    [142] Tanaka T, Yoshida N, Kishimoto T, et al. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J, 1997, 16:7432-7443.
    [143] Hamm J K, Park B H, Farmer S R. A role for C/EBPbeta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem, 2001, 276:18464-18471.
    [144] Zhang J W, Klemm D J, Vinson C, et al. Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. J Biol Chem, 2004, 279:4471-4478.
    [145] Fu M, Sun T, Bookout A L, et al. A Nuclear Receptor Atlas: 3T3-L1 adipogenesis. Mol Endocrinol, 2005, 19:2437-2450.
    [146] Soukas A, Socci N D, Saatkamp, B D, et al. Distinct transcriptional profiles of adipogenesis in vivo and in vitro. J Biol Chem, 2001, 276:34167-34174.
    [147] Chen Z, Torrens J I, Anand A, et al. Krox20 stimulates adipogenesis via C/EBPbeta-dependent and–independent mechanisms. Cell Metab, 2005, 1:93-106.
    [148] Tang Q Q, Lane M D. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev, 1999, 13:2231-2241.
    [149] Tang Q Q, Gronborg M, Huang H, et al. Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc Natl Acad Sci USA, 2005, 102:9766-9771.
    [150] Park B H, Qiang L, Farmer S R. Phosphorylation of C/EBPbeta at a consensus ERK/GSK3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol Cell Biol, 2004, 24:8671-8680.
    [151] Oishi Y, Manabe I, Tobe K, et al. Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 2005, 1:27-39.
    [152] Li D, Yea S, Li S, et al. Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem, 2005, 280:26941-26952.
    [153] Mori T, Sakaue H, Iguchi H, et al. Role of Kruppel- like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem, 2005, 280:12867-12875.
    [154] Kim J B, Sarraf P, Wright M, et al. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest, 1998, 101:1-9.
    [155] Kim J B, Spiegelman B M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev, 1996, 10:1096-1107.
    [156] Kim, J B, Wright H M, Wright M, et al. ADD1/ SREBP1 activates PPAR gamma through the production of endogenous ligand. Proc Natl Acad Sci USA, 1998, 95:4333-4337.
    [157] Fajas L, Schoonjans K, Gelman L, et al. Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol, 1999, 19:5495-5503.
    [158] Teglund S, McKay C, Schuetz E, et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell, 1998, 93:841-850.
    [159] Shimba S, Ishii N, Ohta Y, et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA, 2005, 102:12071-12076.
    [160] Fontaine C, Dubois G, Duguay Y, et al. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation. J Biol Chem, 2003, 278:37672-37680.
    [161] Farmer S R. Transcriptional control of adipocyte formation. Cell Metab, 2006, 4:263-273.
    [162] Susan K, Sidney E G. Interferon inhibits the conversion of 3T3-L1 mouse fibroblasts into adipocytes. Proc Nati Acad Sci USA, 1980, 77:4099-4103.
    [163] Gregoire F M, Smas C M, Sul H S. Understanding adipocyte differentiation. Physiol Rev, 1998, 78:783-809.
    [164] Nishimura S, Manabe I, Nagasaki M, et al. Adipogenesis in obesity requires close interplay between differentiating adipocytes, stromal cells, and blood vessels. Diabetes, 2007, 56:1517-1526.
    [165] Liu B, Faia L, Hu M, Nussenblatt R B. Pro-angiogenic effect of IFNgamma is dependent on the PI3K/mTOR/translational pathway in human retinal pigmented epithelial cells. Mol Vis, 16:184-193
    [166] Indraccolo S. Interferon-alpha as angiogenesis inhibitor: Learning from tumor models. Autoimmunity.
    [167] Bourette R P, Mouchiroud G. The biological role of interferon-inducible p204 protein in the development of the mononuclear phagocyte system. Front Biosci, 2008, 13:879-886.
    [168] Ailhaud G. Adipose tissue as a secretory organ: from adipogenesis to the metabolic syndrome. C R Biologies, 2006, 329:570-577.
    [169] Tanaka T, Yoshida N, Kishimoto T, et al. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J, 1997, 16:7432-7443.
    [170] Wu Z, Rosen E D, Brun R, et al. Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell, 1999, 3:151-158.
    [171] Welch J S, Ricote M, Akiyama T E, et al. PPARgamma and PPARdelta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc Natl Acad Sci USA, 2003, 100:6712-6717.