MRI影像生物标记物评价结肠癌裸鼠皮下移植瘤抗肿瘤血管生成药物疗效的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:在结肠癌裸鼠皮下移植瘤模型中,探讨磁共振动态增强扫描(DCE-MRI)联合多梯度敏感因子b值的扩散加权成像(DWI)技术无创性评价肿瘤血管生成以及抗肿瘤血管药物治疗后反映肿瘤血管关闭情况的应用价值,并探讨DCE-MRI及DWI技术评估抗肿瘤药物早期疗效的作用。方法:10只结肠癌裸鼠皮下移植瘤模型连续四天进行DCE-MRI、多b值的DWI扫描及常规MRI检查,动态观察以下参数的变化:信号最大上升斜率(MSI)、血浆容积分数(Vp)、血管外细胞外容积分数(Ve)、微血管转运常数(K~(trans))、反流速率常数(K_(ep))及各类表观扩散系数值(ADC_(3b)、ADC_(10b)、ADC_(low)、ADC_(high)、ADC_(perf)),分别于第三天及第四天MRI扫描结束后各处死5只载瘤裸鼠行病理免疫组化方法测定移植瘤的微血管密度(Microvessel density,MVD)计数、血管内皮生长因子(Vascular endothelial growth factor,VEGF)表达和增殖细胞核抗原(Proliferating cell nuclear antigen,PCNA)检测,分析MRI各参数与病理免疫组化结果的相关性。随后,50只结肠癌裸鼠皮下移植瘤随机分为三组(对照组10只、抗肿瘤血管药物治疗组20只、抗肿瘤细胞毒性药物治疗组20只),分别在治疗前、治疗后1h、24h、48h行DCE-MRI及多b值的DWI检查,动态观察上述各参数值的变化,并于治疗后24h及治疗后48h MRI检查结束后,每组分别随机处死一半载瘤裸鼠行病理免疫组化染色,MRI各参数与病理免疫组化结果进行相关性分析。结果:在无任何药物干预情况下,随着观察时间的延长,K~(trans)、K_(ep)、MSI及ADC_(perf)值逐渐增加,ADC_(3b)及ADC_(10b)值逐渐减低(P<0.05)。K~(trans)与K_(ep)、MSI、ADC_(perf)四个参数之间相互均存在正相关性;而K~(trans)、K_(ep)分别与ADC_(3b)及ADC_(10b)值之间具有负相关性。ADC_(perf)值分别与MVD计数、VEGF计分具有较好的正相关性;ADC_(10b)与MVD计数、VEGF计分及PCNA计分呈显著的负相关性。K~(trans)、MSI分别与MVD计数、VEGF计分及PCNA计分均具有很好的正相关性;K_(ep)与MVD计数及VEGF计分之间存在线性相关。在抗肿瘤血管药物及抗肿瘤细胞毒性药物的干预下,三组间各ADC值及K~(trans)、Vp、K_(ep)、MSI均存在统计学差异。两组药物治疗后1h,各参数均明显下降;治疗后24h,抗肿瘤血管药物组中ADC_(low)、ADC_(perf)值及DCE-MRI各参数持续下降,到治疗后48h轻度恢复;而抗肿瘤细胞毒性药物组中各参数值在治疗后24h开始轻度恢复。在药物干预的情况,ADC_(3b)、ADC_(10b)与免疫组化结果呈负相关,ADC_(perf)、K~(trans)、K_(ep)、MSI与免疫组化结果呈正相关。Ve、Vp值与免疫组化染色之间无相关性。因子分析法分析后将K~(trans)、Vp、K_(ep)、MSI、ADC_(perf)、ADC_(low)值归为肿瘤微循环灌注因子,ADC_(3b)、ADC_(10b)、ADC_(high)值归为细胞代谢因子,Ve为综合因子。结论:DCE-MRI及多b值的DWI技术获得的定量及半定量参数可以作为影像生物标记物无创性的评价肿瘤血管生长状态及评估抗肿瘤血管药物治疗后肿瘤血管的关闭情况。K~(trans)、K_(ep)、MSI、ADC_(perf)、ADC_(low)值主要用于评价肿瘤微循环灌注情况,而ADC_(3b)、ADC_(10b)、ADC_(high)值主要反映肿瘤细胞密度及组织水肿情况,Vp及Ve值的价值尚未肯定。两种技术的联合应用可以从肿瘤微循环灌注及细胞代谢方面全面的反映药物治疗后的早期变化,有利于药物早期疗效的评价,有望成为抗肿瘤血管药物研发过程中药物临床四期试验评估药物疗效的主要观察终点之一,促进药物的研发和临床应用。
Objective: To discuss dynamic contrast-enhanced (DCE-MRI) combined withdiffusion-weighted MR imaging (DWI) for noninvasive evaluation of tumor angiogenesisand tumor vessel closure after anti-angiogenesis drugs treatment, and to exploreDCE-MRI and DWI assessment value of early effect of anticancer treatment. Methods:DCE-MRI, DWI scans and conventional MRI were performed for four consecutive daysin10subcutaneous colon cancer xenograft model. The following parameters weredynamic observation, including maximum slope of increase (MSI), microvascularpermeability transfer constant (K~(trans)), volume fraction of the plasma space (Vp),extravascular extracellular volume fraction (Ve), microvascular permeability refluxconstant (K_(ep)) and various types of apparent diffusion coefficient (ADC_(3b), ADC_(10b),ADC_(low), ADC_(high), ADC_(perf)).Immunohistochemical examination were observed at third andfourth days, including microvessel density (MVD), vascular endothelial growth factor(VEGF) and proliferating cell nuclear antigen (PCNA). Correlation analysis wasperformed between MRI parameters and immunohistochemistry. Subsequently,50subcutaneous colon cancer xenograft model were randomly divided into three groups (10in the control group,20in the anti-angiogenesis drug treatment group,20in the anti-tumorcytotoxic drug treatment group). DWI and DCE-MRI were acquired at baseline,1h,24hand48h post-treatment. The MRI imaging biomarkers were quantified and correlatedwith immunohistochemical examination in24h and48h post-treatment. Results: In theabsence of any drug intervention case, tumor K~(trans), K_(ep), MSI and ADC_(perf)graduallyincreased, ADC_(3b)and ADC_(10b)gradually reduce With the extension of the observation time.There was positively correlation between K~(trans)and K_(ep), MSI, ADC_(perf). However, therewas respectively negative correlation between K~(trans), K_(ep)and ADC_(3b), ADC_(10b). ADC_(perf)were positively correlated well with the MVD and VEGF. ADC_(10b)were negatively correlated significantly with MVD, VEGF and PCNA. There are positive correlationbetween K~(trans), MSI and MVD, VEGF and PCNA. There are linear correlation betweenK_(ep)and MVD and VEGF. Under the drug intervention, the value of ADCs and K~(trans), Vp,K_(ep), MSI were significant difference between the three groups. Two drug groups1h aftertreatment, all parameters decreased significantly;24h after treatment, ADC_(low), ADC_(perf)and parameters from DCE-MRI continued to decline in the anti-angiogenesis drug group,however, various parameters mild recovery in the anti-tumor cytotoxic drugs group.ADC_(3b), ADC_(10b)and immunohistochemistry were negatively correlated. ADC_(perf), K~(trans), K_(ep),MSI and immunohistochemistry were positively correlated. No correlation between Ve,Vp and immunohistochemistry. Analysis of the factor analysis, K~(trans), Vp, K_(ep), MSI,ADC_(perf)and ADC_(low)classified as tumor microcirculation factor, ADC_(3b), ADC_(10b)andADC_(high)normalized for cell metabolism factor, and Ve is integrated factor. Conclusion:Obtaining MRI quantitative and semi-quantitative parameters from DCE-MRI and DWIused as imaging biomarkers can be noninvasive evaluation of tumor angiogenesis andassessment of tumor vascular closure after anti-angiogenesis drugs treatment. K~(trans), K_(ep),MSI, ADC_(perf)and ADC_(low)are mainly used for the evaluation of tumor microcirculation,ADC_(3b), ADC_(10b)and ADC_(high)value mainly reflects the density of tumor cells and tissueedema, and the application value of the Vp and Ve have not confirmed. Combination ofthe two technologies make the more comprehensively reflect the early changes after drugtherapy from tumor microcirculation and cell metabolism, and conducive to the evaluationof the early effects of the drugs. MRI is expected to become one of the main endpoint ofthe evaluation of drug efficacy in the development process of tumor vascular medicine,and to facilitate drug development and clinical application.
引文
[1] Folkman J. Tumor angiogenesis:therapeutic implications[J]. N Engl J Med,1971,285(21):1182-6.
    [2]赵京龙,张贵祥.调控血管内皮生长因子治疗脑膜转移的MRI监测.实用放射学杂志,2004,20(5):457-460.
    [3] Leung DW, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is asecreted angiogenic mitogen. Science,1989,246(4935):1306-9.
    [4]刘晓梅,陈忠平.肿瘤血管生成拟态和肿瘤干细胞[J].中国神经肿瘤杂志,2009,(04):275-278.
    [5] Ullrich RT, Jikeli JF, Diedenhofen M, et al. In-vivo visualization of tumormicrovessel density and response to anti-angiogenic treatment by high resolutionMRI in mice[J]. PLOS ONE,2011,6(5):e19592.
    [6] Fukumura D, Jain RK. Tumor microvasculature and microenvironment:targets foranti-angiogenesis and normalization[J]. Microvasc Res,2007,74(2-3):72-84.
    [7]彭芳,陈明.抗血管生成和肿瘤血管正常化的研究进展[J].中国肺癌杂志,2009,(07):799-804.
    [8] Pircher A, Hilbe W, Heidegger I, et al. Biomarkers in tumor angiogenesis andanti-angiogenic therapy[J]. Int J Mol Sci,2011,12(10):7077-99.
    [9]丁洪基.肿瘤微血管密度检测及其临床病理意义.诊断病理学杂志,2008,(03):241-243.
    [10] van KCS, van LMS, den Bosch MA v, et al. Accuracy of multislice liver CT and MRIfor preoperative assessment of colorectal liver metastases after neoadjuvantchemotherapy[J]. Dig Surg,2011,28(1):36-43.
    [11] Ng CS, Raunig DL, Jackson EF, et al. Reproducibility of perfusion parameters indynamic contrast-enhanced MRI of lung and liver tumors:effect on estimates ofpatient sample size in clinical trials and on individual patient responses[J]. AJR Am JRoentgenol,2010,194(2):W134-40.
    [12]王晓强,孙立军.肿瘤血管生成的分子影像学临床应用及研究进展[J].实用放射学杂志,2008,(11):1554-1558.
    [13] Perini R, Choe R, Yodh AG, et al. Non-invasive assessment of tumor neovasculature:techniques and clinical applications[J]. Cancer Metastasis Rev,2008,27(4):615-30.
    [14]刘莉,吴宁. MRI在肿瘤血管生成研究中的初步应用[J].当代医学,2009,(08):108-111.
    [15] van LPJ, der Grond J v, Hendrikse J. Brain perfusion territory imaging:methods andclinical applications of selective arterial spin-labeling MR imaging[J]. Radiology,2008,246(2):354-64.
    [16] Gilad AA, Israely T, Dafni H, et al. Functional and molecular mapping of uncouplingbetween vascular permeability and loss of vascular maturation in ovarian carcinomaxenografts:the role of stroma cells in tumor angiogenesis[J]. Int J Cancer,2005,117(2):202-11.
    [17]王悍,郑林丰,张贵祥.肿瘤血管生成及抗血管生成的分子影像学研究进展[J].现代生物医学进展,2009,(24):4775-4777.
    [18]陈铟铟,郭亮. USPIO在评价肿瘤微血管生成中的作用及其临床应用[J].国际医学放射学杂志,2009,(04):327-330.
    [19] Franiel T, Hamm B, Hricak H. Dynamic contrast-enhanced magnetic resonanceimaging and pharmacokinetic models in prostate cancer[J]. Eur Radiol,2011,21(3):616-26.
    [20]贾文霄,易华,王俭.磁共振心肌灌注成像急性心肌梗死的实验研究.[J].实用放射学杂志,2009,25(1):97-100.
    [21] Essock-Burns E, Lupo JM, Cha S, et al. Assessment of perfusion MRI-derivedparameters in evaluating and predicting response to antiangiogenic therapy inpatients with newly diagnosed glioblastoma[J]. Neuro Oncol,2011,13(1):119-31.
    [22] Padhani AR, Miles KA. Multiparametric imaging of tumor response to therapy[J].Radiology,2010,256(2):348-64.
    [23] Oto A, Yang C, Kayhan A, et al. Diffusion-weighted and dynamic contrast-enhancedMRI of prostate cancer:correlation of quantitative MR parameters with gleason scoreand tumor angiogenesis[J]. AJR Am J Roentgenol,2011,197(6):1382-90.
    [24] Yankeelov TE, Gore JC. Dynamic Contrast Enhanced Magnetic Resonance Imagingin Oncology:Theory, Data Acquisition, Analysis, and Examples[J]. Curr MedImaging Rev,2009,3(2):91-107.
    [25] Wang H, Li J, Chen F, et al. Morphological, functional and metabolic imagingbiomarkers:assessment of vascular-disrupting effect on rodent liver tumours[J]. EurRadiol,2010,20(8):2013-26.
    [26] Collins DJ, Padhani AR. Dynamic magnetic resonance imaging of tumor perfusion.Approaches and biomedical challenges. IEEE Eng Med Biol Mag,2004,23(5):65-83.
    [27] Wang H, Marchal G, Ni Y. Multiparametric MRI biomarkers for measuring vasculardisrupting effect on cancer[J]. World J Radiol,2011,3(1):1-16.
    [28] Wu X, Jeong EK, Emerson L, et al. Noninvasive evaluation of antiangiogenic effectin a mouse tumor model by DCE-MRI with Gd-DTPA cystamine copolymers[J].Mol Pharm,2010,7(1):41-8.
    [29] O'Connor JP, Rose CJ, Jackson A, et al. DCE-MRI biomarkers of tumourheterogeneity predict CRC liver metastasis shrinkage following bevacizumab andFOLFOX-6[J]. Br J Cancer,2011,105(1):139-45.
    [30] Sun X, Wang H, Chen F, et al. Diffusion-weighted MRI of hepatic tumor inrats:comparison between in vivo and postmortem imaging acquisitions[J]. J MagnReson Imaging,2009,29(3):621-8.
    [31] Nowosielski M, Recheis W, Goebel G, et al. ADC histograms predict response toanti-angiogenic therapy in patients with recurrent high-grade glioma[J].Neuroradiology,2011,53(4):291-302.
    [32] Wybranski C, Zeile M, Lowenthal D, et al. Value of diffusion weighted MR imagingas an early surrogate parameter for evaluation of tumor response to high-dose-ratebrachytherapy of colorectal liver metastases[J]. Radiat Oncol,2011,6(1):43.
    [33] Chiu FY, Jao JC, Chen CY, et al. Effect of intravenous gadolinium-DTPA ondiffusion-weighted magnetic resonance images for evaluation of focal hepaticlesions[J]. J Comput Assist Tomogr,2005,29(2):176-80.
    [34] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell,2000,100(1):57-70.
    [35] Patan S. Vasculogenesis and angiogenesis. Cancer Treat Res,2004,117:3-32.
    [36] Weissleder R, Mahmood U. Molecular imaging. Radiology,2001,219(2):316-33.
    [37]张景峰,张敏鸣.肿瘤血管生成的影像学研究及进展.国外医学(临床放射学分册),2007,(06):361-365.
    [38] Schirner M, Menrad A, Stephens A, et al. Molecular imaging of tumor angiogenesis.Ann N Y Acad Sci,2004,1014:67-75.
    [39] Benjaminsen IC, Brurberg KG, Ruud EB, et al. Assessment of extravascularextracellular space fraction in human melanoma xenografts by DCE-MRI and kineticmodeling[J]. Magn Reson Imaging,2008,26:160-70.
    [40] Weidner N. Current pathologic methods for measuring intratumoral microvesseldensity within breast carcinoma and other solid tumors[J]. Breast Cancer ResTreat,1995,36(2):169-180.
    [41]张冬,邹利光,冯晓源. MRI评价肿瘤血管生成的进展[J].重庆医学,2008,(07):768-770.
    [42]金惠铭.血管新生与疾病[J].中国微循环,2001,(03):173-177.
    [43]李启明,李宁,陈正堂.血管内皮生长因子与肿瘤转移[J].重庆医学,2006,(22):2085-2087.
    [44]卢珠明,王铭辉.肿瘤血管生成和肿瘤的微转移[J].岭南现代临床外科,2005,(01):71-73.
    [45]陈晶,卢娜,郭青龙,等.肿瘤血管生成机制及抗血管生成药物的研究进展[J].药学服务与研究,2007,7(1):49-52.
    [46] Fidler IJ, Ellis LM. Neoplastic angiogenesis--not all blood vessels are createdequal[J]. N Engl J Med,2004,351(3):215-216
    [47]黄煌,严鹏科.血管生成的开关因子[J].南华大学学报(医学版),2007,(05):789-791.
    [48] Jain RK, Duda DG, Clark JW, et al. Lessons from phase III clinical trials onanti-VEGF therapy for cancer[J]. Nat Clin Pract Oncol,2006,3(1):24-40.
    [49]孙海侠,范恩学,李爱丽.血管内皮细胞生长因子表达肿瘤微血管密度的意义[J].中国实验诊断学,2006,10(6):596-598.
    [50] Hicklin DJ, El lis LM. Role of the vascular endothelial growth factor pathway intumor growth and angiogenesis[J]. J Clin Oncol,2005,23:1011-1027
    [51] Fukumura D, Jain RK. Imaging angiogenesis and the microenvironment[J]. APM IS,2008,116(7-8):695-715.
    [52] Rogatsch H, Hittmair A, Reissigl A, et al. Microvessel density in core biopsies ofprostatic adenocarcinoma:a stage predictor[J]. J Pathol,1997,182(2):205-10.
    [53]陈勇,刘巍.恶性肿瘤微血管研究进展[J].中华肿瘤防治杂志,2007,(11):876-879.
    [54]邹煜,张敏鸣,王丽君,等.肺癌MRI动态增强模式与肿瘤血管生成的相关性研究[J].中华放射学杂志,2003,37(12):1150-1155.
    [55]王夕富.肿瘤微血管密度及其与医学影像学的相关研究[J].国外医学(临床放射学分册),2004,(06):337-340.
    [56] Takagi K, Takada T, Amano H. A high peripheral microvessel density count correlateswith a poor prognosis in pancreatic cancer. J Gastroenterol,2005,40(4):402-8.
    [57] Imamura M, Yamamoto H, Nakamura N, et al. Prognostic significance ofangiogenesis in gastrointestinal stromal tumor. Mod Pathol,2007,20(5):529-37.
    [58] Hannen EJ, Riediger D. The quantification of angiogenesis in relation to metastasis inoral cancer:a review[J]. Int J Oral Maxillofac Surg,2004,33(1):2-7.
    [59]苏利文,杨国栋,熊斌.增殖细胞核抗原在大肠癌中的表达及其临床意义[J].中国肿瘤临床与康复,2004,11(6):501-502.
    [60]高平,李巍,鲍雷.大肠癌组织中增殖细胞核抗原(PCNA)和微血管密度(MVD)的表达及临床意义[J].中国医药指南,2008,(16):545-546.
    [61]毛更生,付玉,高航,等. VEGF PCNA MVD flk-1在人脑显形细胞瘤中的表达及临床意义[J].中国实验诊断学,2006,10(8):823-826.
    [62]刘进康,熊曾,周晖,等.多层螺旋CT肺癌灌注成像与VEGF和PCNA表达的关系[J].中南大学学报(医学版),2009,(5):406-411.
    [63] Tozer GM. Measuring tumour vascular response to anti-vascular and anti-angi ogenicdrugs[J]. Br JRadiol,2003,76(Spec1):S23-S35.
    [64]陈波,许健,卢光明.肿瘤血管生成的影像学评价[J].医学研究生学报,2011,24(2):196-202.
    [65] Xiao YP, Xiao EH, Luo JG, et al. The clinical value of MR diffusion-weightedimaging in hepatocellular carcinoma after trancatheter arterial chemoembolization[J].Chin J Med Imaging Technol,2008,24(2):270-273.
    [66]于德新,马祥兴,魏华刚,等.磁共振扩散加权成像ADC值和eADC值与肝细胞癌血管生成的关系[J].实用放射学杂志,2009,25(7):976-980.
    [67]曹崑,张晓鹏,汪宁,等. MR扩散成像评价宫颈癌放(化)疗早期疗效[J].中国医学影像技术,2009,25(9):1657-1660.
    [68] Sun YS, Zhang XP, Tang L, et al. Locally Advanced Rectal Carcinoma Treated withPreoperative Chemotherapy and Radiation Therapy:Preliminary Analysis ofDiffusion-weighted MR Imaging for Early Detection of Tumor HistopathologicDownstaging[J]. Radiology,2010,254(1):170-178.
    [69] Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver[J]. Radiology,2010,254(1):47-66.
    [70] Chenevert TL, Stegman LD, Taylor JM, et al. Diffusion magnetic resonanceimaging:an early surrogate marker of therapeutic efficacy in brain tumors[J]. J NatlCancer Inst,2000,92(24):2029-36.
    [71] Bammer R. Basic principles of diffusion-weighted imaging[J]. Eur J Radiol,2003,45(3):169-84.
    [75]孙希杰,金显跃,梁文等.肝脏病变的磁共振扩散成像的量化研究初探[J].实用放射学杂志,2003,19(7):596-599.
    [72] Nasu K, Kuroki Y, Kuroki S, et al. Diffusion-weighted single shot echo planarimaging of colorect al cancer using a sensitivity-encoding technique[J]. Jpn J ClinOncol,2004,34(10):620-626.
    [73]孙应实,张晓鹏,唐磊.直肠癌扩散加权成像b值选取及其对直肠癌显示能力的评价[J].中国医学影像技术,2005,21(12):1839-1843.
    [74] Patterson DM, Padhani AR, Collins DJ. Technology insight:water diffusion MRI--apotential new biomarker of response to cancer therapy. Nat Clin Pract Oncol,2008,5(4):220-33.
    [75] Yiftach R, Thomas T, Genady K, et al. High-b-Value diffusion-weighted MR imagingfor pretreatment prediction and early monitoring of tumor response to therapy inmice[J]. Radiology,2004,232:685-692.
    [76] Ichikawa T, Erturk SM, Motosugi U, et al. High-B-value diffusion-weighted MRI incolorectal cancer[J]. AJR Am J Roentgenol,2006,187(1),181-184.
    [77] Koh DM, Padhani AR. Diffusion-weighted MRI:a new functional clinical techniquefor tumour imaging[J]. Br J Radiol,2006,79(944):633-5.
    [78] Padhani AR, Liu G, Koh DM, et al. Diffusion-Weighted Magnetic ResonanceImaging as a Cancer Biomarker:Consensus and Recommendations[J]. Neoplasia,2009,11(2):102-125.
    [79] Parikh T, Drew SJ, Lee VS, et al. Focal liver lesion detection and characterizationwith diffusion-weighted MR imaging:comparison with standard breath-holdT2-weighted imaging[J]. Radiology,2008,246(3):812-22.
    [80] den Bos IC v, Hussain SM, Krestin GP, et al. Liver imaging at3.0T:diffusion-induced black-blood echo-planar imaging with large anatomicvolumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences:feasibility study[J]. Radiology,2008,248(1):264-71.
    [81] Koh DM, Scurr E, Collins DJ, et al. Colorectal hepatic metastases:quantitativemeasurements using single-shot echo-planar diffusion-weighted MR imaging[J]. EurRadiol,2006,16(9):1898-1905.
    [82] Ogura A, Hayakawa K, Miyati T, et al. The effect of susceptibility of gadoliniumcontrast media on diffusion-weighted imaging and the apparent diffusioncoefficient[J]. Acad Radiol,2008,15(7):867-72.
    [83] Kobayashi M, Kawashima H, Matsui O, et al. Two different types of ring-likeenhancement on dynamic MR imaging in breast cancer:correlation with thehistopathologic findings[J]. J Magn Reson Imaging,2008,28(6):1435-43.
    [84] Jackson A, O'Connor JP, Parker GJ, et al. Imaging tumor vascular heterogeneity andangiogenesis using dynamic contrast-enhanced magnetic resonance imaging[J]. ClinCancer Res,2007,13:3449-3459.
    [85] Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusionimaging techniques[J]. J Neuroradiol,2005,32(5):294-314.
    [86]尹波,刘莉,邹丽萍,等.耿道颖乳腺癌新辅助化疗前后动态增强MRI半定量[J].中国医学计算机成像杂志,2011,17(3):226-229.
    [87]赵柄辉,李明华,周康荣,等.肾透明细胞癌磁共振成像动态增强相对强化指数与微血管密度增殖细胞核抗原相关性探讨[J].上海医学,2007,(5):343-346.
    [88] Unetsubo T, Konouchi H, Yanagi Y, et al. Dynamic contrast-enhanced magneticresonance imaging for estimating tumor proliferation and microvessel density of oralsquamous cell carcinomas[J]. Oral oncol,2009, Jul,45(7):621-6.
    [89] Buonaccorsi GA, Roberts C, Cheung S, et al. Comparison of the performance oftracer kinetic model-driven registration for dynamic contrast enhanced MRI usingdifferent models of contrast enhancement[J]. Acad Radiol,2006,13:1112-1123.
    [90] Walker-Samuel S, Parker CC, Leach MO, et al. Reproducibility of reference tissuequantification of dynamic contrast-enhanced data:comparison with a fixed vascularinput function[J]. Phys Med Biol,2007,52(1):75-89.
    [91] Jackson A. Analysis of dynamic contrast enhanced MRI[J]. Br J Radiol,2004,77Spec No2:S154-66.
    [92] Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamiccontrast-enhanced T(1)-weighted MRI of a diffusable tracer:standardized quantitiesand symbols[J]. J Magn Reson Imaging,1999,10:223-232.
    [93] Geraldes CF, Laurent S. Classification and basic properties of contrast agents formagnetic resonance imaging[J]. Contrast Media Mol Imaging,2009;4:1-23
    [94] Harry VN, Semple SI, Parkin DE, et al. Use of new imaging techniques to predicttumour response to therapy[J]. Lancet Oncol,2010,11(1):92-102.
    [95] Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases[J]. Nature,2000,407(6801):249-57.
    [96]都伟丽,吴晴,王理伟.抗肿瘤血管新生疗效评价以及相关抵抗性生物标志物[J].临床肿瘤学杂志,2010,15(5):472-476.
    [97] Padhani AR, Ollivier L. The RECIST criteria:implications for diagnosticradiologists[J]. B J Radiol,2001,74(887):983-6.
    [98] Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy andcharacterization of focal hepatic lesions with two single-shot echo-planar MRimaging sequences:prospective study in66patients[J]. Radiology,2003,226:71-78.
    [100]Harriet CT, Frederik DK, Feng Chen, et al. Diffusion-weighted MR imaging inmonitoring the effect of a vascular targeting agent on rhabdomyosarcoma in Rats[J].Radiology,2005,234:756-764.
    [101]张海梁,叶定伟.抗肿瘤血管靶向药物的研究进展[J].中国癌症杂志,2009,19(6):401-404.
    [102]Folkman J. Antiangiogenesis in cancer therapy--endostatin and its mechanisms ofaction[J]. Exp Cell Res,2006,312(5):594-607.
    [103]Hicklin DJ, Ellis LM. Role of the vascular endothelial growth fact or pathway intumor growth and angiogenesis[J]. Clin Oncol,2005,23:1011-1027.
    [104]Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan,fluorouracil, and leucovorin for metastatic colorectal cancer[J]. N Engl J Med,2004,350:2335-2342.
    [105]白春梅.抗血管生成治疗生物标志物[J].中国医学科学院学报,2010,32(4):361-365.
    [106]牟坤,沈方臻,肖文静,等.低剂量顺铂节律化疗抗血管生成作用的实验研究[J].青岛大学医学院学报,2009,45(2):115-118.
    [107]Hahnfeldt P, Folkman J, Hlatky L. Minimizing long-term tumor burden:the logic formetronomic chemotherapeutic dosing and its anti-angiogenic basis[J]. Theor Biol,2003,220(4):545-554.
    [108]王金万,孙燕,刘永煜,等.重组人血管内皮抑素联合NP方案治疗晚期NSCLC随机双盲对照多中心Ⅲ期临床研究[J].中国肺癌杂志,2005,8(4):283-290.
    [109]Hayashida Y, Yakushiji T, Awai K, et al. Monitoring therapeutic responses of primarybone tumors by diffusion-weighted image:initial Results[J]. Eur Radiol,2006,16:2637-2643.
    [110]Manenti G, Di Roma M, Mancino S, et al. Malignant renal neoplasms:correlationbetween ADC values and cellularity in diffusion weighted magnetic resonanceimaging at3T[J]. Radiol Med,2008,113(2):199-213.
    [111]Yoshikawa MI, Ohsumi S, Sugata S, et al. Relation between cancer cellularity andapparent diffusion coefficient values using diffusion-weighted magnetic resonanceimaging in breast cancer[J]. Radiat Med,2008,26(4):222-226.
    [112]Fiebach JB, Jansen O, Schellinger PD, et al. Serial analysis of the apparent diffusioncoefficient time course in human stroke[J]. Neuroradiology,2002,44(4):294-8.
    [113]Koh DM, Blackledge M, Collins DJ, et al. Reproducibility and changes in theapparent diffusion coefficients of solid tumours treated with combretastatin A4phosphate and bevacizumab in a two-centre phase I clinical trial[J]. Eur Radiol,2009,19(11):2728-38.
    [114]赵京龙,张贵祥.动态增强MR成像在肿瘤血管生成功能成像中的应用[J].中国医学影像技术,2004,20(8):1293-1295.
    [115]O'Connor JP, Jackson A, Parker GJ, et al. DCE-MRI biomarkers in the clinicalevaluation of anti-angiogenic and vascular disrupting agents[J]. British Journal ofCancer,2007,96:189-195.
    [116]史红媛,田迎,罗松等.动态增强MRI扩散加权成像及光学成像联合监测抗血管生成治疗后肿瘤反应的动物实验研究[J].中华放射学杂志,2012,46(3):269-274.
    [117]Hormigo A, Gutin PH, Rafii S. Tracking normalization of brain tumor vasculature bymagnetic imaging and proangiogenic biomarkers[J]. Cancer Cell,2007,11(1):6-8.
    [118]Wang H, Sun X, Chen F, et al. Treatment of rodent liver tumor with combretastatina4phosphate:noninvasive therapeutic evaluation using multiparametric magneticresonance imaging in correlation with microangiography and histology[J]. InvestRadiol,2009,44(1):44-53.
    [119]Tang Y, Kim M, Carrasco D, et al. In vivo assessment of RAS-dependentmaintenance of tumor angiogenesis by real-time magnetic resonance imaging[J].Cancer Res,2005,65(18):8324-30.
    [120]Gu J, Khong PL, Wang S, et al. Dynamic contrast-enhanced MRI of primary rectalcancer:quantitative correlation with positron emission tomography/computedtomography[J]. J Magn Reson Imaging,2011,33(2):340-7.
    [121]Hirashima Y, Yamada Y, Tateishi U, et al. Pharmacokinetic parameters from3-TeslaDCE-MRI as surrogate biomarkers of antitumor effects of bevacizumab plusFOLFIRI in colorectal cancer with liver metastasis[J]. Int J Cancer,2012,130(10):2359-65.
    [122]de Langen AJ, den Boogaart V v, Lubberink M, et al. Monitoring response toantiangiogenic therapy in non-small cell lung cancer using imaging markers derivedfrom PET and dynamic contrast-enhanced MRI[J]. J Nucl Med,2011,52(1):48-55.
    [123]史红媛,田迎,胡秋菊,等.动态增强磁共振评价重组人血管内皮抑素抑制人肺癌裸鼠皮下移植瘤的血管生成[J].临床肿瘤学杂志,2012,17(1):19-23.
    [124]Yopp AC, Schwartz LH, Kemeny N, et al. Antiangiogenic therapy for primary livercancer:correlation of changes in dynamic contrast-enhanced magnetic resonanceimaging with tissue hypoxia markers and clinical response[J]. Ann Surg Oncol,2011,18(8):2192-9.
    [125]Cui Y, Zhang XP, Sun YS, et al. Apparent diffusion coefficient:potential imagingbiomarker for prediction and early detection of response to chemotherapy in hepaticmetastases[J]. Radiology,2008,248(3):894-900.
    [126]Kharuzhyk SA, Petrovskaya NA, Vosmitel MA. Diffusion-weighted magneticresonance imaging in non-invasive monitoring of antiangiogenic therapy inexperimental tumor model[J]. Exp Oncol,2010,32(2):104-6.
    [127]Anzidei M, Napoli A, Zaccagna F, et al. Liver metastases from colorectal cancertreated with conventional and antiangiogenetic chemotherapy:evaluation with livercomputed tomography perfusion and magnetic resonance diffusion-weightedimaging[J]. J Comput Assist Tomogr,2011,35(6):690-6.
    [128]Banerji A, Naish JH, Watson Y, et al. DCE-MRI model selection for investigatingdisruption of microvascular function in livers with metastatic disease[J]. J MagnReson Imaging,2012,35(1):196-203.
    [129]Raatschen HJ, Simon GH, Fu Y, et al. Vascular permeability during antiangiogenesistreatment:MR imaging assay results as biomarker for subsequent tumor growth inrats[J]. Radiology,2008,247(2):391-9.
    [130]Galbraith SM, Maxwell RJ, Lodge MA, et al. Combretastatin A4phosphate hastumor antivascular activity in rat and man as demonstrated by dynamic magneticresonance imaging[J]. J Clin Oncol,2003,21(15):2831-42.
    [131]Salmon BA, Siemann DW. Characterizing the tumor response to treatment withcombretastatin A4phosphate[J]. Int J Radiat Oncol Biol Phys,2007,68:211-217.
    [1] Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med,1971,285(21):1182-6.
    [2] Weissleder R, Mahmood U. Molecular imaging. Radiology,2001,219(2):316-33.
    [3]张清波. MR灌注成像对大鼠脑C6胶质瘤血管生成的实验研究.影像医学与核医学,2006.
    [4]王晓强,孙立军.肿瘤血管生成的分子影像学临床应用及研究进展.实用放射学杂志,2008,(11):1554-1558.(12)
    [5] Patan S. Vasculogenesis and angiogenesis. Cancer Treat Res,2004,117:3-32.
    [6]张冬,邹利光,冯晓源. MRI评价肿瘤血管生成的进展.重庆医学,2008,(07):768-770.
    [7]李启明,李宁,陈正堂.血管内皮生长因子与肿瘤转移.重庆医学,2006,(22):2085-2087.(44)
    [8]卢珠明,王铭辉.肿瘤血管生成和肿瘤的微转移.岭南现代临床外科,2005,(01):71-73.(45)
    [9]陈晶,卢娜,郭青龙,等.肿瘤血管生成机制及抗血管生成药物的研究进展.药学服务与研究,2007,7(1):49-52.(46)
    [10]刘晓梅,陈忠平.肿瘤血管生成拟态和肿瘤干细胞.中国神经肿瘤杂志,2009,(04):275-278.(4)
    [11] Fukumura D, Jain RK. Tumor microvasculature and microenvironment:targets foranti-angiogenesis and normalization. Microvasc Res,2007,74(2-3):72-84.
    [12] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell,2000,100(1):57-70.
    [13] Kerbel RS. Tumor angiogenesis:past, present and the near future. Carcinogenesis,2000,21(3):505-15.
    [14]裘莹.肿瘤血管生成的调节机制研究进展.同济大学学报(医学版),2003,(02):168-170.
    [15]黄煌,严鹏科.血管生成的开关因子.南华大学学报(医学版),2007,(05):789-791.
    [16]赵京龙,张贵祥.调控血管内皮生长因子治疗脑膜转移的MRI监测.实用放射学杂志,2004,20(5):457-460.
    [17]逄利博,王绍武.肿瘤血管生成与MR灌注成像相关性研究进展.中国介入影像与治疗学,2005,(03):224-228.
    [18] Lamszus K, Ulbricht U, Matschke J, et al. Levels of soluble vascular endothelialgrowth factor(VEGF)receptor1in astrocytic tumors and its relation to malignancy,vascularity, and VEGF-A. Clin Cancer Res,2003,9(4):1399-405.
    [19] Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growthfactor-induced angiogenesis suppresses tumour growth in vivo. Nature,1993,362(6423):841-4.
    [20]丁洪基.肿瘤微血管密度检测及其临床病理意义.诊断病理学杂志,2008,(03):241-243.
    [27]陈勇,刘巍.恶性肿瘤微血管研究进展.中华肿瘤防治杂志,2007,(11):876-879.
    [21] Rogatsch H, Hittmair A, Reissigl A, et al. Microvessel density in core biopsies ofprostatic adenocarcinoma:a stage predictor. J Pathol,1997,182(2):205-10.
    [22]邹煜,张敏鸣,王丽君,等.肺癌MRI动态增强模式与肿瘤血管生成的相关性研究.中华放射学杂志,2003,37(12):1150-1155.
    [23]王夕富.肿瘤微血管密度及其与医学影像学的相关研究.国外医学(临床放射学分册),2004,(06):337-340.
    [24] Takagi K, Takada T, Amano H. A high peripheral microvessel density countcorrelates with a poor prognosis in pancreatic cancer. J Gastroenterol,2005,40(4):402-8.
    [25] Imamura M, Yamamoto H, Nakamura N, et al. Prognostic significance ofangiogenesis in gastrointestinal stromal tumor. Mod Pathol,2007,20(5):529-37.
    [26] Hannen EJ, Riediger D. The quantification of angiogenesis in relation to metastasisin oral cancer:a review. Int J Oral Maxillofac Surg,2004,33(1):2-7.
    [27]张景峰,张敏鸣.肿瘤血管生成的影像学研究及进展.国外医学(临床放射学分册),2007,(06):361-365.(37)
    [28] Wang H, Marchal G, Ni Y. Multiparametric MRI biomarkers for measuring vasculardisrupting effect on cancer. World J Radiol,2011,3(1):1-16.
    [29]彭芳,陈明.抗血管生成和肿瘤血管正常化的研究进展.中国肺癌杂志,2009,(07):799-804.
    [30] Jain RK, Duda DG, Clark JW, et al. Lessons from phase III clinical trials onanti-VEGF therapy for cancer. Nat Clin Pract Oncol,2006,3(1):24-40.
    [31] Schirner M, Menrad A, Stephens A, et al. Molecular imaging of tumor angiogenesis.Ann N Y Acad Sci,2004,1014:67-75.(38)
    [32]刘莉,吴宁. MRI在肿瘤血管生成研究中的初步应用.当代医学,2009,(08):108-111.
    [33] Kobayashi M, Kawashima H, Matsui O, et al. Two different types of ring-likeenhancement on dynamic MR imaging in breast cancer:correlation with thehistopathologic findings. J Magn Reson Imaging,2008,28(6):1435-43.
    [34] Perini R, Choe R, Yodh AG, et al. Non-invasive assessment of tumorneovasculature:techniques and clinical applications. Cancer Metastasis Rev,2008,27(4):615-30.
    [35]陈铟铟,郭亮. USPIO在评价肿瘤微血管生成中的作用及其临床应用.国际医学放射学杂志,2009,(04):327-330.
    [36] Geraldes CF, Laurent S. Classification and basic properties of contrast agents formagnetic resonance imaging. Contrast Media Mol Imaging,2009,4(1):1-23.
    [37] de Lussanet QG, Langereis S, Beets-Tan RG, et al. Dynamic contrast-enhanced MRimaging kinetic parameters and molecular weight of dendritic contrast agents intumor angiogenesis in mice. Radiology,2005,235(1):65-72.
    [38] Kobayashi H, Reijnders K, English S, et al. Application of a macromolecularcontrast agent for detection of alterations of tumor vessel permeability induced byradiation. Clin Cancer Res,2004,10(22):7712-20.
    [39]林冰影,张景峰,张敏呜.超顺磁性氧化铁与肿瘤血管生成磁共振成像和靶向治疗研究.国际肿瘤学杂志,2008,35(9):643-646.
    [40] Gambarota G, van LHW, Philippens M, et al. Assessment of absolute blood volumein carcinoma by USPIO contrast-enhanced MRI. Magn Reson Imaging,2006,24(3):279-86.
    [41] de Lussanet QG, Backes WH, Griffioen AW, et al. Gadopentetate dimeglumineversus ultrasmall superparamagnetic iron oxide for dynamic contrast-enhanced MRimaging of tumor angiogenesis in human colon carcinoma in mice. Radiology,2003,229(2):429-38.
    [42] Persigehl T, Bieker R, Matuszewski L, et al. Antiangiogenic tumor treatment:earlynoninvasive monitoring with USPIO-enhanced MR imaging in mice. Radiology,2007,244(2):449-56.
    [43] Wang H, Marchal G, Ni Y. Multiparametric MRI biomarkers for measuring vasculardisrupting effect on cancer. World J Radiol,2011,3(1):1-16.
    [44] Collins DJ, Padhani AR. Dynamic magnetic resonance imaging of tumor perfusion.Approaches and biomedical challenges. IEEE Eng Med Biol Mag,2004,23(5):65-83.
    [45] Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusionimaging techniques. J Neuroradiol,2005,32(5):294-314.
    [46] Padhani AR, Khan AA. Diffusion-weighted (DW) and dynamic contrast-enhanced(DCE) magnetic resonance imaging(MRI)for monitoring anticancer therapy. TargetOncol,2010,5(1):39-52.
    [47] Padhani AR. MRI for assessing antivascular cancer treatments. Br J Radiol,2003,76Spec No1:S60-80.
    [48]于德新,马祥兴,魏华刚,等.3.0T动态增强MR评价肝细胞癌血管生成及其成熟度的价值.临床放射学杂志,2009,(03):355-359.
    [49] Thoeny HC, De Keyzer F, Vandecaveye V, et al. Effect of vascular targeting agent inrat tumor model:dynamic contrast-enhanced versus diffusion-weighted MR imaging.Radiology,2005,237(2):492-9.
    [50] Wang H, Li J, Chen F, et al. Morphological, functional and metabolic imagingbiomarkers:assessment of vascular-disrupting effect on rodent liver tumours. EurRadiol,2010,20(8):2013-26.
    [51] Yankeelov TE, Gore JC. Dynamic Contrast Enhanced Magnetic Resonance Imagingin Oncology:Theory, Data Acquisition, Analysis, and Examples. Curr Med ImagingRev,2009,3(2):91-107.
    [52] Walker-Samuel S, Parker CC, Leach MO, et al. Reproducibility of reference tissuequantification of dynamic contrast-enhanced data:comparison with a fixed vascularinput function. Phys Med Biol,2007,52(1):75-89.
    [53] Jackson A. Analysis of dynamic contrast enhanced MRI. Br J Radiol,2004,77SpecNo2:S154-66.
    [54] Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamiccontrast-enhanced T(1)-weighted MRI of a diffusable tracer:standardized quantitiesand symbols. J Magn Reson Imaging,1999,10(3):223-32.
    [55]张帆,常双会,卢光明.动态增强磁共振成像与肿瘤新生血管.医学研究生学报,2010,(09):977-980.
    [56]张清波,张仪,冯晓源,等.立体定位放射治疗对大鼠C6胶质瘤抗血管生成的MR灌注研究.实用放射学杂志,2010,26(2):262-267.
    [57]杨本强,周丽娟,关长群.神经胶质瘤相对性脑血流容积与血管内皮生长因子蛋白表达及微血管密度的相关性研究.中华放射学杂志,2003,(04):39-43.
    [58]赵京龙.动态增强MR成像在肿瘤血管生成功能成像中的应用.中国医学影像技术,2004,(08):1293-1295.
    [59] Cooper RA, Carrington BM, Loncaster JA, et al. Tumour oxygenation levelscorrelate with dynamic contrast-enhanced magnetic resonance imaging parameters incarcinoma of the cervix. Radiother Oncol,2000,57(1):53-9.
    [60] Haider MA, Sitartchouk I, Roberts TP, et al. Correlations between dynamiccontrast-enhanced magnetic resonance imaging-derived measures of tumormicrovasculature and interstitial fluid pressure in patients with cervical cancer. JMagn Reson Imaging,2007,25(1):153-9.
    [61] Padhani AR, Miles KA. Multiparametric imaging of tumor response to therapy.Radiology,2010,256(2):348-64.
    [62] Cheng HL, Wallis C, Shou Z, et al. Quantifying angiogenesis in VEGF-enhancedtissue-engineered bladder constructs by dynamic contrast-enhanced MRI usingcontrast agents of different molecular weights. J Magn Reson Imaging,2007,25(1):137-45.
    [63] Turetschek K, Preda A, Novikov V, et al. Tumor microvascular changes inantiangiogenic treatment:assessment by magnetic resonance contrast media ofdifferent molecular weights. J Magn Reson Imaging,2004,20(1):138-44.
    [64] Benjaminsen IC, Brurberg KG, Ruud EB, et al. Assessment of extravascularextracellular space fraction in human melanoma xenografts by DCE-MRI and kineticmodeling. Magn Reson Imaging,2008,26(2):160-70.
    [65] Egeland TA, Gaustad JV, Vestvik IK, et al. Assessment of fraction ofradiobiologically hypoxic cells in human melanoma xenografts by dynamiccontrast-enhanced MRI. Magn Reson Med,2006,55(4):874-82.
    [66] Vestvik IK, Egeland TA, Gaustad JV, et al. Assessment of microvascular density,extracellular volume fraction, and radiobiological hypoxia in human melanomaxenografts by dynamic contrast-enhanced MRI. J Magn Reson Imaging,2007,26(4):1033-42.
    [67] van LPJ, der Grond J v, Hendrikse J. Brain perfusion territory imaging:methods andclinical applications of selective arterial spin-labeling MR imaging. Radiology,2008,246(2):354-64.
    [68] Schor-Bardach R, Alsop DC, Pedrosa I, et al. Does arterial spin-labeling MRimaging-measured tumor perfusion correlate with renal cell cancer response toantiangiogenic therapy in a mouse model. Radiology,2009,251(3):731-42.
    [69] Moffat BA, Chen M, Kariaapperms, et al. Inhibition of vascular endothelial growthfactor(VEGF)-A causes a paradoxical increase in tumor blood flow andup-regulation of VEGF-D. Clin Cancer Res,2006,12(5):1525-32.
    [70] de Bazelaire C, Alsop DC, George D, et al. Magnetic resonance imaging-measuredblood flow change after antiangiogenic therapy with PTK787/ZK222584correlateswith clinical outcome in metastatic renal cell carcinoma. Clin Cancer Res,2008,14(17):5548-54.
    [71] Weber MA, Thilmann C, Lichy MP, et al. Assessment of irradiated brain metastasesby means of arterial spin-labeling and dynamic susceptibility-weightedcontrast-enhanced perfusion MRI:initial results. Invest Radiol,2004,39(5):277-87.
    [72] Tang Y, Kim M, Carrasco D, et al. In vivo assessment of RAS-dependentmaintenance of tumor angiogenesis by real-time magnetic resonance imaging.Cancer Res,2005,65(18):8324-30.
    [73] Gilad AA, Israely T, Dafni H, et al. Functional and molecular mapping of uncouplingbetween vascular permeability and loss of vascular maturation in ovarian carcinomaxenografts:the role of stroma cells in tumor angiogenesis. Int J Cancer,2005,117(2):202-11.
    [74]于德新,马祥兴,魏华刚,等.磁共振扩散加权成像ADC值和eADC值与肝细胞癌血管生成的关系.实用放射学杂志,2009,25(7):976-980.
    [75] Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology,2010,254(1):47-66.
    [76] Kharuzhyk SA, Petrovskaya NA, Vosmitel MA. Diffusion-weighted magneticresonance imaging in non-invasive monitoring of antiangiogenic therapy inexperimental tumor model. Exp Oncol,2010,32(2):104-6.
    [77] Chiu FY, Jao JC, Chen CY, et al. Effect of intravenous gadolinium-DTPA ondiffusion-weighted magnetic resonance images for evaluation of focal hepaticlesions. J Comput Assist Tomogr,2005,29(2):176-80.
    [78] Ogura A, Hayakawa K, Miyati T, et al. The effect of susceptibility of gadoliniumcontrast media on diffusion-weighted imaging and the apparent diffusion coefficient.Acad Radiol,2008,15(7):867-72.
    [79] Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol,2003,45(3):169-84.
    [80] Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imagingas a cancer biomarker:consensus and recommendations. Neoplasia,2009,11(2):102-25.
    [81] Dudeck O, Zeile M, Wybranski C, et al. Early prediction of anticancer effects withdiffusion-weighted MR imaging in patients with colorectal liver metastasesfollowing selective internal radiotherapy. Eur Radiol,2010,20(11):2699-706.
    [82] Koh DM, Padhani AR. Diffusion-weighted MRI:a new functional clinical techniquefor tumour imaging. Br J Radiol,2006,79(944):633-5.
    [83] Patterson DM, Padhani AR, Collins DJ. Technology insight:water diffusion MRI--apotential new biomarker of response to cancer therapy. Nat Clin Pract Oncol,2008,5(4):220-33.
    [84] Thoeny HC, De Keyzer F, Chen F, et al. Diffusion-weighted MR imaging inmonitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats.Radiology,2005,234(3):756-64.
    [85] Sun X, Wang H, Chen F, et al. Diffusion-weighted MRI of hepatic tumor inrats:comparison between in vivo and postmortem imaging acquisitions. J MagnReson Imaging,2009,29(3):621-8.
    [86] Thoeny HC, De Keyzer F, Vandecaveye V, et al. Effect of vascular targeting agent inrat tumor model:dynamic contrast-enhanced versus diffusion-weighted MR imaging.Radiology,2005,237(2):492-9.
    [87] Parikh T, Drew SJ, Lee VS, et al. Focal liver lesion detection and characterizationwith diffusion-weighted MR imaging:comparison with standard breath-holdT2-weighted imaging. Radiology,2008,246(3):812-22.
    [88] den Bos IC v, Hussain SM, Krestin GP, et al. Liver imaging at3.0T:diffusion-induced black-blood echo-planar imaging with large anatomicvolumetric coverage as an alternative for specific absorption rate-intensiveecho-train spin-echo sequences:feasibility study. Radiology,2008,248(1):264-71.
    [89] Pope WB, Kim HJ, Huo J, et al. Recurrent glioblastoma multiforme:ADC histogramanalysis predicts response to bevacizumab treatment. Radiology,2009,252(1):182-9.
    [90]于德新,马祥兴,张宗立,等.~(31)P-MRS无创量化肝细胞癌细胞代谢水平及其与血管生成的关系.中华肝胆外科杂志,2010,16(4):261-265.
    [91]彭洪娟.~1HMRS基本原理及成像技术.医学影像学杂志,2004,(12):1033-1035.
    [92] Arias-Mendoza F, Payne GS, Zakian KL, et al. In vivo31P MR spectral patterns andreproducibility in cancer patients studied in a multi-institutional trial. NMR Biomed,2006,19(4):504-12.
    [93] Beloueche-Babari M, Chung YL, Al-Saffar NM, et al. Metabolic assessment of theaction of targeted cancer therapeutics using magnetic resonance spectroscopy. Br JCancer,2010,102(1):1-7.
    [94] Evelhoch J, Garwood M, Vigneron D, et al. Expanding the use of magneticresonance in the assessment of tumor response to therapy:workshop report. CancerRes,2005,65(16):7041-4.
    [95]赵蕤,徐凯,李绍东,等.3D MRS在前列腺外周带T2低信号病变的诊断价值.中国CT和MRI杂志,2010,(4):54-56,59.
    [96] Beloueche-Babari M, Peak JC, Jackson LE, et al. Changes in choline metabolism aspotential biomarkers of phospholipase C{gamma}1inhibition in human prostatecancer cells. Mol Cancer Ther,2009,8(5):1305-11.
    [97]李传亭,魏海港,刘献庆,等.脑星形细胞肿瘤1H-MRS代谢物含量与微血管密度的相关性.医学影像学杂志,2009,19(11):1369-1372.
    [98] Chung YL, Troy H, Kristeleit R, et al. Noninvasive magnetic resonancespectroscopic pharmacodynamic markers of a novel histone deacetylase inhibitor,LAQ824, in human colon carcinoma cells and xenografts. Neoplasia,2008,10(4):303-13.
    [99] Sehgal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimagingwith susceptibility-weighted imaging. J Magn Reson Imaging,2005,22(4):439-50.
    [100]Howe FA, Robinson SP, Rodrigues LM, et al. Issues in GRE&SE magneticresonance imaging to probe tumor oxygenation. Adv Exp Med Biol,2003,530:441-8.
    [101]Robinson SP, Rijken PF, Howe FA, et al. Tumor vascular architecture and functionevaluated by non-invasive susceptibility MRI methods and immunohistochemistry. JMagn Reson Imaging,2003,17(4):445-54.
    [102]Bradley DP, Tessier JJ, Ashton SE, et al. Correlation of MRI biomarkers with tumornecrosis in Hras5tumor xenograft in athymic rats. Neoplasia,2007,9(5):382-91.
    [103]Chen G, Horsman MR, Pedersen M, et al. The effect of combretastatin A4disodiumphosphate and5,6-dimethylxanthenone-4-acetic acid on water diffusion and bloodperfusion in tumours. Acta Oncol,2008,47(6):1071-6.
    [104]Seshadri M, Bellnier DA, Cheney RT. Assessment of the early effects of5,6-dimethylxanthenone-4-acetic acid using macromolecular contrast media-enhancedmagnetic resonance imaging:ectopic versus orthotopic tumors. Int J Radiat OncolBiol Phys,2008,72(4):1198-207.
    [105]Vogel-Claussen J, Gimi B, Artemov D, et al. Diffusion-weighted andmacromolecular contrast enhanced MRI of tumor response to antivascular therapywith ZD6126. Cancer Biol Ther,2007,6(9):1469-75.
    [106]Madhu B, Waterton JC, Griffiths JR, et al. The response of RIF-1fibrosarcomas tothe vascular-disrupting agent ZD6126assessed by in vivo and ex vivo1H magneticresonance spectroscopy. Neoplasia,2006,8(7):560-7.
    [107]Akisik FM, Sandrasegaran K, Aisen AM, et al. Abdominal MR imaging at3.0T.Radiographics,2007,27(5):1433-44;discussion1462-4.
    [108]Kuhl CK, Traber F, Gieseke J, et al. Whole-body high-field-strength(3.0-T)MRimaging in clinical practice. Part II. Technical considerations and clinicalapplications. Radiology,2008,247(1):16-35.
    [109]Yopp AC, Schwartz LH, Kemeny N, et al. Antiangiogenic therapy for primary livercancer:correlation of changes in dynamic contrast-enhanced magnetic resonanceimaging with tissue hypoxia markers and clinical response. Ann Surg Oncol,2011,18(8):2192-9.
    [110]Koh DM, Padhani AR. Diffusion-weighted MRI:a new functional clinical techniquefor tumour imaging. Br J Radiol,2006,79(944):633-5.
    [111]Wang H, Sun X, Chen F, et al. Treatment of rodent liver tumor with combretastatina4phosphate:noninvasive therapeutic evaluation using multiparametric magneticresonance imaging in correlation with microangiography and histology. InvestRadiol,2009,44(1):44-53.
    [112]Yeung SC, She M, Yang H, et al. Combination chemotherapy includingcombretastatin A4phosphate and paclitaxel is effective against anaplastic thyroidcancer in a nude mouse xenograft model. J Clin Endocrinol Metab,2007,92(8):2902-9.
    [113]Lencioni R, Llovet JM. Modified RECIST(mRECIST)assessment for hepatocellularcarcinoma. Semin Liver Dis,2010,30(1):52-60.
    [114]Schima W, Ba-Ssalamah A, Kurtaran A, et al. Post-treatment imaging of livertumours. Cancer Imaging,2007,7Spec No A:S28-36.
    [115]Kanthou C, Tozer GM. Microtubule depolymerizing vascular disrupting agents:noveltherapeutic agents for oncology and other pathologies. Int J Exp Pathol,2009,90(3):284-94.
    [116]Siemann DW, Horsman MR. Vascular targeted therapies in oncology. Cell Tissue Res,2009,335(1):241-8.
    [117]Luo Y, Hradil VP, Frost DJ, et al. ABT-751, a novel tubulin-binding agent, decreasestumor perfusion and disrupts tumor vasculature. Anticancer Drugs,2009,20(6):483-92.
    [118]Jackson A, O'Connor JP, Parker GJ, et al. Imaging tumor vascular heterogeneity andangiogenesis using dynamic contrast-enhanced magnetic resonance imaging. ClinCancer Res,2007,13(12):3449-59.
    [119]Evelhoch JL, LoRusso PM, He Z, et al. Magnetic resonance imaging measurementsof the response of murine and human tumors to the vascular-targeting agent ZD6126.Clin Cancer Res,2004,10(11):3650-7.
    [120]McKeage MJ, Fong P, Jeffery M, et al.5,6-Dimethylxanthenone-4-acetic acid in thetreatment of refractory tumors:a phase I safety study of a vascular disrupting agent.Clin Cancer Res,2006,12(6):1776-84.
    [121]Buonaccorsi GA, Roberts C, Cheung S, et al. Comparison of the performance oftracer kinetic model-driven registration for dynamic contrast enhanced MRI usingdifferent models of contrast enhancement. Acad Radiol,2006,13(9):1112-23.
    [122]Harry VN, Semple SI, Parkin DE, et al. Use of new imaging techniques to predicttumour response to therapy. Lancet Oncol,2010,11(1):92-102.
    [123]Thoeny HC, De Keyzer F, Chen F, et al. Diffusion-weighted MR imaging inmonitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats.Radiology,2005,234(3):756-64.
    [124]Fiebach JB, Jansen O, Schellinger PD, et al. Serial analysis of the apparent diffusioncoefficient time course in human stroke. Neuroradiology,2002,44(4):294-8.
    [125]Cui Y, Zhang XP, Sun YS, et al. Apparent diffusion coefficient:potential imagingbiomarker for prediction and early detection of response to chemotherapy in hepaticmetastases. Radiology,2008,248(3):894-900.
    [126]Koh DM, Blackledge M, Collins DJ, et al. Reproducibility and changes in theapparent diffusion coefficients of solid tumours treated with combretastatin A4phosphate and bevacizumab in a two-centre phase I clinical trial. Eur Radiol,2009,19(11):2728-38.
    [127]Nowosielski M, Recheis W, Goebel G, et al. ADC histograms predict response toanti-angiogenic therapy in patients with recurrent high-grade glioma. Neuroradiology,2011,53(4):291-302.
    [128]Padhani AR, Liu G, Koh DM, et al. Diffusion-weighted magnetic resonance imagingas a cancer biomarker:consensus and recommendations. Neoplasia,2009,11(2):102-25.
    [129]Moffat BA, Chenevert TL, Lawrence TS, et al. Functional diffusion map:anoninvasive MRI biomarker for early stratification of clinical brain tumor response.Proc Natl Acad Sci U S A,2005,102(15):5524-9.
    [130]Padhani AR, Miles KA. Multiparametric imaging of tumor response to therapy.
    Radiology,2010,256(2):348-64.