PDCD1基因与系统性红斑狼疮以及维生素D受体基因与银屑病关联研究的Meta-分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分PDCD1基因PD1.3A/G多态性与系性红斑狼疮关联研究的Meta-分析
     背景系统性红斑狼疮(systemiclupuserythematosus,SLE,OMIM 152700)是一种复杂的自身免疫性遗传疾病,已有的研究结果提示该病与遗传、环境、免疫系统紊乱和性激素等多种因素的综合作用有关,其中遗传因素可能是SLE发病的根本原因。通过运用全基因组扫描策略,迄今被OMIM收录的易感区域有SLEB1—12。其中,位于SLEB2的PDCD1基因PD1.3A/G多态性与系统性红斑狼疮的关联研究有很多,但结果不完全一致,甚至截然相反。
     目的评价PDCD1基因PD1.3A/G多态性与系统性红斑狼疮关联研究的合并证据、评价该多态与系统性红斑狼疮关联的效应大小并探索影响该效应的主要因素。
     方法在PubMed上系统检索截至到2008年5月的关于PDCD1基因PD1.3A/G多态性与系统性红斑狼疮关联研究的文献。浏览获得的文献、按事先制定的标准剔除不合格的研究并提取所纳入研究的关键信息。通过敏感性分析评估异质性、探索其根源,然后按研究人群的不同来源并根据异质性检测结果选择固定或随机效应模型进行分层Meta-分析以计算合并的危险比(OR)。用漏斗图和Egger检验检测出版偏倚,同时计算合并研究的统计效能。
     结果通过筛选所检索到的文献,来自8篇文献的20个研究符合本分析的纳入标准,进入了我们的研究。在这20个研究中有15个来自欧洲高加索人群,包含1 837个病例和3 001个正常对照。分层Meta-分析结果显示:在欧洲非西班牙人群中PD1.3A与系统性红斑狼疮的易感性存在显著关联(OR=1.290,95%CI=1.098-1.516;z=3.10,P=0.002),而在欧洲西班牙人群中PD1.3G与系统性红斑狼疮的易感性存在显著关联(OR=1.414,95%CI=I.075-1.862;z=2.48,P=0.013)。这两个关联分析的统计效能都超过80%。另外,在本Meta-分析所纳入的研究中不存在显著的发表偏倚。
     结论在欧洲非西班牙人群中PDCD1基因PD1.3A与系统性红斑狼疮的易感性存在显著关联,而在欧洲西班牙人群中与系统性红斑狼疮易感性存在显著关联的是PD1.3G;PDCD1基因可能是系统性红斑狼疮的易感基因。
     第二部分维生素D受体基因BsmI、TaqI、ApaI和FokI多态性与银屑病易感性关联研究的Meta-分析
     背景1,25-双羟维生素D_3[1,25(OH)2D_3]及其类似物对银屑病具有治疗作用。通过与维生素D受体(Vitamin D receptor,VDR)结合,1,25-双羟维生素D_3可以抑制培养的人角质形成细胞增殖和分化,同时也可通过多种途径调节机体的免疫系统。迄今,对VDR基因多态性与银屑病关联分析的研究大部分集中在BsmI、TaqI、ApaI和FokI四个位点,但来自不同团队的研究结果不尽一致、甚至完全相反。
     目的为克服单个研究的局限性,我们采用Meta-分析的方法对VDR基因BsmI、TaqI、ApaI和FokI多态性与银屑病易感性的关系进行综合评价。
     方法系统检索所有2008年10月前在PubMed上发表的有关VDR基因BsmI、TaqI、ApaI和FokI多态性与银屑病关联分析的文献,然后按一定的标准选择合格的研究并从每个纳入研究中提取相关信息。对于任何一个FokI、ApaI、BsmI或TaqI多态位点,我们都进行基于等位基因、显性遗传模式和隐性遗传模式关联研究的Meta-分析。而对于每一种模式下的分析,我们除了在总的人群中进行分析外,还按不同种族在亚人群(高加索人群、东亚人群)中进行分析,也就是分层分析,以探索可能存在的种族特异性效应。通过固定或随机效应模型计算合并的危险比(Odds ratio,OR)。通过敏感性分析确定异质性并探索其来源。用漏斗图和Egger检验检测出版偏倚。
     结果对检索到的23篇相关文献按我们的纳入标准进行筛选,最终有9个研究符合我们的标准进入本Meta-分析。对于ApaI位点,基于等位基因及显性遗传模式关联研究的Meta-分析结果显示:在高加索人群中,等位基因a是银屑病发病的危险因素[分别为OR_(固定效应模型)=1.463(1.017-2.103),OR_(固定效应模型)=1.934(1.105-3.386)];在总的研究中,来自韩国的一个研究是异质性的主要来源,当排除该研究后,同样表现了这一趋势[分别为OR_(固定效应模型)=1.400(1.088-1.800),OR_(固定效应模型)=1.853(1.181-2.908)]。对于TaqI位点,基于等位基因关联研究的Meta-分析显示:在高加索人群中,等位基因t是银屑病发病的危险因素[OR_(固定效应模型)=1.344(1.033-1.749)]。而对于BsmI和FokI位点,无论在总人群、东亚人群还是高加索人群中,基于等位基因、显性遗传模式和隐性遗传模式关联研究的Meta-分析均显示不存在显著性关联。另外,本Meta-分析中任一位点关联研究的文献均不存在显著的发表偏倚。
     结论维生素D受体基因ApaI、TaqI多态位点是银屑病的易感位点,而BsmI、FokI多态位点则与银屑病不存在显著的关联;维生素D受体基因可能是银屑病的易感基因。
PartⅠAssociation between the PD1.3A/G polymorphism of the PDCD1 gene and Systemic Lupus Erythematosus:a meta-analysis
     Backgrounds Systemic lupus erythematosus(systemiclupuserythematosus,SLE, OMIM 152700) is a complex autoimmune disease,with contributions anticipated from genetic factors,environment,immune system disorders,sex hormones and other factors,and the genetic factors may be the root cause of the incidence of SLE. Through the use of whole-genome scan strategy,SLEB1-12 were identified as the susceptible loci.It is known that programmed cell death 1(PDCD1) gene locates in SLEB2.So far,the association of PDCD1 polymorphism(PD1.3A/G) with SLE has been widely investigated,but there are no unambiguous conclusions.
     Objectives To assess the combined evidence for the association between PD1.3A/G polymorphism and SLE,and to summarize the effect size of the polymorphism associated with susceptibility to SLE.
     Methods We surveyed studies on the PD1.3A/G polymorphism and SLE using comprehensive PubMed search up to May 2008.The retrieved literatures were screened according to the criteria and the eligible papers were entered into our study. Subsequently,the key data were extracted from each included study.Through sensitivity analysis,heterogeneity in the meta-analysis was assessed,and the source of which was also explored.A fixed-or random-effect model was choosed in the stratified meta-analysis based upon the heterogeneity analysis to calculate the combined odds ratio(OR),while publication bias was examined by funnel plot and Egger's test.We also computed the power for a given number of samples.
     Results A total of 20 datasets from 8 studies that met our inclusion criteria were included,15 of which were come from Europe and comprised of a total of 1 837 cases and 3 001 controls.Stratified meta-analysis demonstrated a significant association between PD1.3A and SLE among non-Spanish European descents(OR=1.290,95% CI=1.098-1.516;z=3.10,P=0.002),while a negative association was observed in Spanish population(OR=0.707,95%CI=0.537-0.930;z=2.48,P=0.013),that is, PG1.3G is the risk allele in the latter population(OR=1.414,95%CI=1.075-1.862; z=2.48,P=0.013).Both results have sufficient power to support these findings,and no publication bias presented in the studies analyzed.
     Conclusions This meta-analysis demonstrates a significant association between PDCD1 gene PD1.3A and SLE among non-Spanish European descents,while PD1.3G correlates with SLE susceptibility in Spanish population.PDCD1 gene may be a candidate gene of Systemic Lupus Erythematosus.
     PartⅡBsmI,TaqI,ApaI and FokI polymorphisms in the vitamin D receptor(VDR) gene and the risk of psoriasis:a meta-analysis
     Backgrounds 1,25-dihydroxyvitamin D_3[1,25(OH)_2D_3]and its analogs are effective for the treatment of psoriasis.Through the vitamin D receptor(VDR), 1,25(OH)_2D_3 inhibits proliferation and induces terminal differentiation of cultured human keratinocytes,and also modulate the immune system in a variety of ways.So far,most of the genetic studies that have investigated the association between psoriasis and VDR gene were performed in 4 polymorphisms:ApaI,BsmI,FokI and TaqI,but the results were much controversial or non-conclusive.
     Objectives To overcome the limitations of individual studies,a meta-analysis was conducted to assess the association between ApaI,BsmI,FokI and TaqI polymorphisms and psoriasis susceptibility.
     Methods All genetic association studies that investigated the association of the BsmI,TaqI,ApaI and FokI polymorphisms in the VDR gene with the development of psoriasis published before Oct 2008 were searched.All retrieved papers were selected according to the inclusion criteria and the eligibility ones were entered into our meta-analysis.For each included study,the informations,such as first author,year of publication,country where the trial was conducted,sample origin,numbers of cases and controls,and distributions of allele and genotype in both case and control groups, were extracted.For each of the 4 polymorphisms,we explored the significance of the associations for the allele contrast as well as the recessive and dominant models,and for each genetic contrast,in addition to the analysis among overall samples,subgroup analysis according to ethnicity was also considered for Caucasian and East Asian populations in order to estimate the possible ethnic-specific effect.The pooled odds ratio(OR) was calculated using a fixed- or a random-effects model.Heterogeneity was identified by sensitivity analysis and publication bias was examined by funnel plot and Egger's test.
     Results A total of 9 studies that met our inclusion criteria were included.For the ApaI polymorphism,both the allele contrast a vs.A and dominant models for allele a produced significant results in Caucasians[OR_(fixed-effect model)=1.463(1.017-2.103), OR_(fixed-effect model)=1.934(1.105-3.386),respectively],and also in overall samples [OR_(fixed-effect model)=1.400(1.088-1.800),OR_(fixed-effect model)=1.853(1.181-2.908), respectively]after removing Park et al's study which accounted for the heterogeneities.Regarding TaqI polymorphism,allele contrast t vs.T produced significant result in Caucasians[OR_(fixed-effect model)=1.344(1.033-1.749)].As for the BsmI and FokI polymorphisms,allele contrast,recessive and dominant models produced non-significant results in either Caucasians,East Asians or overall samples.
     Conclusions It seems from our meta-analysis that ApaI,TaqI polymorphisms, rather than BsmI,FokI polymorphisms in VDR gene,correlate with psoriasis.VDR gene might be a susceptibility gene of psoriasis.
引文
1 Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science, 2001,291:1304-51.
    
    2 Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001,409:860-921.
    
    3 Chakravarti A. Population genetics-making sense out of sequence. Nat Genet, 1999,21:56-60.
    
    4 Lander ES. The new genomics: global views of biology. Science, 1996,274:536-9.
    
    5 Hirschhora JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet, 2005,6:95-108.
    
    6 Marchini J, Donnelly P,Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet, 2005,37:413-7.
    
    7 A haplotype map of the human genome. Nature, 2005,437:1299-320.
    
    8 Cardon LR, Bell JI. Association study designs for complex diseases. Nat Rev Genet, 2001,2:91-9.
    
    9 Zheng G, Freidlin B, Li Z, et al. Genomic control for association studies under various genetic models. Biometrics, 2005,61:186-92.
    
    10 Devlin B, Roeder K. Genomic control for association studies. Biometrics, 1999,55:997-1004.
    
    11 Falk CT, Rubinstein P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann Hum Genet, 1987,51:227-33.
    
    12 Spielman RS, McGinnis RE,Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet, 1993,52:506-16.
    
    13 Egger M, Smith GD. Meta-Analysis. Potentials and promise. BMJ, 1997,315:1371-4.
    14 Fleiss JL, Gross AJ. Meta-analysis in epidemiology, with special reference to studies of the association between exposure to environmental tobacco smoke and lung cancer: a critique. J Clin Epidemiol, 1991,44:127-39.
    
    15 Sacks HS, Berrier J, Reitman D, et al. Meta-analyses of randomized controlled trials. N Engl J Med, 1987,316:450-5.
    
    16 Thacker SB. Meta-analysis. A quantitative approach to research integration. JAMA, 1988,259:1685-9.
    
    17 Zhang XJ, He PP, Wang ZX, et al. Evidence for a major psoriasis susceptibility locus at 6p21(PSORS1) and a novel candidate region at 4q31 by genome-wide scan in Chinese nans. J Invest Dermatol, 2002,119:1361-6.
    
    18 Sagoo GS, Tazi-Ahnini R, Barker JW, et al. Meta-analysis of genome-wide studies of psoriasis susceptibility reveals linkage to chromosomes 6p21 and 4q28-q31 in Caucasian and Chinese Hans population. J Invest Dermatol, 2004,122:1401-5.
    
    19 Bowcock AM. Psoriasis genetics: the way forward. J Invest Dermatol, 2004,122:xv-xvii.
    1 Tsao BP. Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol, 2004,16:513-21.
    
    2 Lindqvist AK, Steinsson K, Johanneson B, et al. A susceptibility locus for human systemic lupus erythematosus (hSLE1) on chromosome 2q. J Autoimmun, 2000,14:169-78.
    
    3 Magnusson V, Lindqvist AK, Castillejo-Lopez C, et al. Fine mapping of the SLEB2 locus involved in susceptibility to systemic lupus erythematosus. Genomics, 2000,70:307-14.
    
    4 Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity, 2000,13:277-85.
    
    5 Okazaki T, Maeda A, Nishimura H, et al. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A, 2001,98:13866-71.
    
    6 Carter L, Fouser LA, Jussif J, et al. PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. Eur J Immunol, 2002,32:634-43.
    
    7 Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 1999,11:141-51.
    
    8 Prokunina L, Castillejo-Lopez C, Oberg F, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet, 2002,32:666-9.
    
    9 Velazquez-Cruz R, Orozco L, Espinosa-Rosales F, et al. Association of PDCD1 polymorphisms with childhood-onset systemic lupus erythematosus. Eur J Hum Genet, 2007,15:336-41.
    10 Sigurdsson S, Nordmark G, Goring HH, et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet, 2005,76:528-37.
    
    11 Nielsen C, Laustrup H, Voss A, et al. A putative regulatory polymorphism in PD-1 is associated with nephropathy in a population-based cohort of systemic lupus erythematosus patients. Lupus, 2004,13:510-6.
    
    12 Johansson M, Arlestig L, Moller B, et al. Association of a PDCD1 polymorphism with renal manifestations in systemic lupus erythematosus. Arthritis Rheum, 2005,52:1665-9.
    
    13 Sanghera DK, Manzi S, Bontempo F, et al. Role of an intronic polymorphism in the PDCD1 gene with the risk of sporadic systemic lupus erythematosus and the occurrence of antiphospholipid antibodies. Hum Genet, 2004,115:393-8.
    
    14 Ferreiros-Vidal I, Gomez-Reino JJ, Barros F, et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus: evidence of population-specific effects. Arthritis Rheum, 2004,50:2590-7.
    
    15 Ferreiros-Vidal I, D'Alfonso S, Papasteriades C, et al. Bias in association studies of systemic lupus erythematosus susceptibility due to geographical variation in the frequency of a programmed cell death 1 polymorphism across Europe. Genes Immun, 2007,8:138-46.
    
    16 Wang SC, Chen YJ, Ou TT, et al. Programmed death-1 gene polymorphisms in patients with systemic lupus erythematosus in Taiwan. J Clin Immunol, 2006,26:506-11.
    
    17 Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum, 1982,25:1271-7.
    
    18 Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum, 1997,40:1725.
    19 Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA, 2000,283:2008-12.
    
    20 MANTEL N, HAENSZEL W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst, 1959,22:719-48.
    
    21 Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ, 2003,327:557-60.
    
    22 Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997,315:629-34.
    
    23 Iwamoto T, Ikari K, Inoue E, et al. Failure to confirm association between PDCD1 polymorphisms and rheumatoid arthritis in a Japanese population. J Hum Genet, 2007,52:557-60.
    
    24 Lee SH, Lee YA, Woo DH, et al. Association of the programmed cell death 1 (PDCD1) gene polymorphism with ankylosing spondylitis in the Korean population. Arthritis Res Ther, 2006,8:R163.
    
    25 Reddy MV, Johansson M, Sturfelt G, et al. The R620W C/T polymorphism of the gene PTPN22 is associated with SLE independently of the association of PDCD1. Genes Immun, 2005,6:658-62.
    
    26 Ye DQ, Yin J, Li XP, et al. [The analysis on single nucleotide polymorphism of PDCD1 and systemic lupus erythematous susceptibility among han indigenous in Chinese population]. Zhonghua Liu Xing Bing Xue Za Zhi, 2005,26:698-701.
    
    27 Wang J, Yoshida T, Nakaki F, et al. Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci U S A, 2005,102:11823-8.
    
    28 James ES, Harney S, Wordsworth BP, et al. PDCD1: a tissue-specific susceptibility locus for inherited inflammatory disorders. Genes Immun, 2005,6:430-7.
    29 Kong EK, Prokunina-Olsson L, Wong WH, et al. A new haplotype of PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. Arthritis Rheum, 2005,52:1058-62.
    
    30 Prokunina L, Padyukov L, Bennet A, et al. Association of the PD-1.3A. allele of the PDCD1 gene in patients with rheumatoid arthritis negative for rheumatoid factor and the shared epitope. Arthritis Rheum, 2004,50:1770-3.
    
    31 Prokunina L, Gunnarsson I, Sturfelt G, et al. The systemic lupus erythematosus-associated PDCD1 polymorphism PD1.3A in lupus nephritis. Arthritis Rheum, 2004,50:327-8.
    
    32 Abelson AK, Johansson CM, Kozyrev SV, et al. No evidence of association between genetic variants of the PDCD1 ligands and SLE. Genes Immun, 2007,8:69-74.
    
    33 Thorburn CM, Prokunina-Olsson L, Sterba KA, et al. Association of PDCD1 genetic variation with risk and clinical manifestations of systemic lupus erythematosus in a multiethnic cohort. Genes Immun, 2007,8:279-87.
    
    34 Shinohara T, Taniwaki M, Ishida Y, et al. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics, 1994,23:704-6.
    
    35 Alarcon-Riquelme ME. Programmed death 1 gene polymorphism and systemic lupus erythematosus in different ethnic populations: comment on the article by Lin et al. Arthritis Rheum, 2005,52:363; author reply 363-4.
    
    36 Lin SC, Yen JH, Tsai JJ, et al. Association of a programmed death 1 gene polymorphism with the development of rheumatoid arthritis, but not systemic lupus erythematosus. Arthritis Rheum, 2004,50:770-5.
    
    37 Nielsen C, Hansen D, Husby S, et al. Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens, 2003,62:492-7.
    
    38 Wang Q, Ye D, Yin J, et al. Programmed cell death 1 genotypes are associated with susceptibility to systemic lupus erythematosus among Chinese. Arch Dermatol Res, 2008,300:91-3.
    39 Haak W, Forster P, Bramanti B, et al. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science, 2005,310:1016-8.
    
    40 Chikhi L, Destro-Bisol G, Pascali V, et al. Clinal variation in the nuclear DNA of Europeans. Hum Biol, 1998,70:643-57.
    
    41 Rosser ZH, Zerjal T, Hurles ME, et al. Y-chromosomal diversity in Europe is clinal and influenced primarily by geography, rather than by language. Am J Hum Genet, 2000,67:1526-43.
    
    42 Richards M, Macaulay V, Hickey E, et al. Tracing European founder lineages in the Near Eastern mtDNA pool. Am J Hum Genet, 2000,67:1251-76.
    
    43 Currat M, Excoffier L. The effect of the Neolithic expansion on European molecular diversity. Proc Biol Sci, 2005,272:679-88.
    
    44 Cavalli-Sforza LL. Genes, peoples, and languages. Proc Natl Acad Sci U S A, 1997,94:7719-24.
    
    45 Pritchard JK, Stephens M, Rosenberg NA, et al. Association mapping in structured populations. Am J Hum Genet, 2000,67:170-81.
    
    46 Satten GA, Flanders WD,Yang Q. Accounting for unmeasured population substructure in case-control studies of genetic association using a novel latent-class model. Am J Hum Genet, 2001,68:466-77.
    
    47 Hinds DA, Stokowski RP, Patil N, et al. Matching strategies for genetic association studies in structured populations. Am J Hum Genet, 2004,74:317-25.
    
    48 Devlin B, Roeder K. Genomic control for association studies. Biometrics, 1999,55:997-1004.
    
    49 Lutterbach B, Hiebert SW. Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. Gene, 2000,245:223-35.
    
    50 Wong HK, Kammer GM, Dennis G, et al. Abnormal NF-kappa B activity in T lymphocytes from patients with systemic lupus erythematosus is associated with decreased p65-RelA protein expression. J Immunol, 1999,163:1682-9.
    1 Nevitt GJ, Hutchinson PE. Psoriasis in the community: prevalence, severity and patients' beliefs and attitudes towards the disease. Br J Dermatol, 1996,135:533-7.
    
    2 Zhang X, Wang H, Te-Shao H, et al. The genetic epidemiology of psoriasis vulgaris in Chinese Han. Int J Dermatol, 2002,41:663-9.
    
    3 Brandrup F, Holm N, Grunnet N, et al. Psoriasis in monozygotic twins: variations in expression in individuals with identical genetic constitution. Acta Derm Venereol, 1982,62:229-36.
    
    4 Duffy DL, Spelman LS,Martin NG. Psoriasis in Australian twins. J Am Acad Dermatol, 1993,29:428-34.
    
    5 Zhang X, Wang H, Te-Shao H, et al. Frequent use of tobacco and alcohol in Chinese psoriasis patients. Int J Dermatol, 2002,41:659-62.
    
    6 Capon F, Dallapiccola B,Novelli G. Advances in the search for psoriasis susceptibility genes. Mol Genet Metab, 2000,71:250-5.
    
    7 Elder JT, Nair RP, Guo SW, et al. The genetics of psoriasis. Arch Dermatol, 1994,130:216-24.
    
    8 Tomfohrde, J, Silverman, A, Barnes, R, et al. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science, 1994. 1141-5.
    
    9 Trembath RC, Clough RL, Rosbotham JL, et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet, 1997,6:813-20.
    
    10 Matthews D, Fry L, Powles A, et al. Evidence that a locus for familial psoriasis maps to chromosome 4q. Nat Genet, 1996,14:231-3.
    11 Capon F, Novelli G, Semprini S, et al. Searching for psoriasis susceptibility genes in Italy: genome scan and evidence for a new locus on chromosome 1. J Invest Dermatol, 1999,112:32-5.
    
    12 Nair RP, Henseler T, Jenisch S, et al. Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum Mol Genet, 1997,6:1349-56.
    
    13 Enlund F, Samuelsson L, Enerback C, et al. Psoriasis susceptibility locus in chromosome region 3q21 identified in patients from southwest Sweden. Eur J Hum Genet, 1999,7:783-90.
    
    14 Lee YA, Ruschendorf F, Windemuth C, et al. Genomewide scan in german families reveals evidence for a novel psoriasis-susceptibility locus on chromosome 19p13. Am J Hum Genet, 2000,67:1020-4.
    
    15 Zhang XJ, He PP, Wang ZX, et al. Evidence for a major psoriasis susceptibility locus at 6p21(PSORS1) and a novel candidate region at 4q31 by genome-wide scan in Chinese hans. J Invest Dermatol, 2002,119:1361-6.
    
    16 Veal CD, Clough RL, Barber RC, et al. Identification of a novel psoriasis susceptibility locus at 1p and evidence of epistasis between PSORS1 and candidate loci. J Med Genet, 2001,38:7-13.
    
    17 Balendran N, Clough RL, Arguello JR, et al. Characterization of the major susceptibility region for psoriasis at chromosome 6p21.3. J Invest Dermatol, 1999,113:322-8.
    
    18 Oka A, Tamiya G, Tomizawa M, et al. Association analysis using refined microsatellite markers localizes a susceptibility locus for psoriasis vulgaris within a 111 kb segment telomeric to the HLA-C gene. Hum Mol Genet, 1999,8:2165-70.
    
    19 Nair RP, Stuart P, Henseler T, et al. Localization of psoriasis-susceptibility locus PSORS1 to a 60-kb interval telomeric to HLA-C. Am J Hum Genet, 2000,66:1833-44.
    20 Fan X, Yang S, Huang W, et al. Fine mapping of the psoriasis susceptibility locus PSORS1 supports HLA-C as the susceptibility gene in the Han Chinese population. PLoS Genet, 2008,4:el000038.
    
    21 Capon F, Allen MH, Ameen M, et al. A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum Mol Genet, 2004,13:2361-8.
    
    22 Holm SJ, Carlen LM, Mallbris L, et al. Polymorphisms in the SEEK1 and SPR1 genes on 6p21.3 associate with psoriasis in the Swedish population. Exp Dermatol, 2003,12:435-44.
    
    23 Chang YT, Tsai SF, Lin MW, et al. SPR1 gene near HLA-C is unlikely to be a psoriasis susceptibility gene. Exp Dermatol, 2003,12:307-14.
    
    24 Sanchez F, Holm SJ, Mallbris L, et al. STG does not associate with psoriasis in the Swedish population. Exp Dermatol, 2004,13:413-8.
    
    25 Helms C, Cao L, Krueger JG, et al. A putative RUNX1 binding site variant between SLC9A3R1 and NAT9 is associated with susceptibility to psoriasis. Nat Genet, 2003,35:349-56.
    
    26 Samuelsson L, Stiller C, Friberg C, et al. Association analysis of cystatin A and zinc finger protein 148, two genes located at the psoriasis susceptibility locus PSORS5. J Invest Dermatol, 2004,122:1399-400.
    
    27 Donn RP, Plant D, Jury F, et al. Macrophage migration inhibitory factor gene polymorphism is associated with psoriasis. J Invest Dermatol, 2004,123:484-7.
    
    28 Rahman P, Bartlett S, Siannis F, et al. CARD15: a pleiotropic autoimmune gene that confers susceptibility to psoriatic arthritis. Am J Hum Genet, 2003,73:677-81.
    
    29 Reich K, Mossner R, Konig IR, et al. Promoter polymorphisms of the genes encoding tumor necrosis factor-alpha and interleukin-1beta are associated with different subtypes of psoriasis characterized by early and late disease onset. J Invest Dermatol, 2002,118:155-63.
    30 Hensen P, Asadullah K, Windemuth C, et al. Interleukin-10 promoter polymorphism IL10.G and familial early onset psoriasis. Br J Dermatol, 2003,149:381-5.
    
    31 Kingo K, Koks S, Nikopensius T, et al. Polymorphisms in the interleukin-20 gene: relationships to plaque-type psoriasis. Genes Immun, 2004,5:117-21.
    
    32 VANSCOTT EJ, EKEL TM. KINETICS OF HYPERPLASIA IN PSORIASIS. Arch Dermatol, 1963,88:373-81.
    
    33 Fry L, McMinn RM. Observations on mitosis in psoriatic epidermis. Br J Dermatol, 1970,82:19-22.
    
    34 Kragballe K, Gjertsen BT, De Hoop D, et al. Double-blind, right/left comparison of calcipotriol and betamethasone valerate in treatment of psoriasis vulgaris. Lancet, 1991,337:193-6.
    
    35 Smith EL, Walworth NC,Holick MF. Effect of 1 alpha,25-dihydroxyvitamin D3 on the morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown in serum-free conditions. J Invest Dermatol, 1986,86:709-14.
    
    36 Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ, 2003,327:557-60.
    
    37 Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997,315:629-34.
    
    38 Dayangac-Erden D, Karaduman A,Erdem-Yurter H. Polymorphisms of vitamin D receptor gene in Turkish familial psoriasis patients. Arch Dermatol Res, 2007,299:487-91.
    
    39 Tiala I, Suomela S, Huuhtanen J, et al. The CCHCR1 (HCR) gene is relevant for skin steroidogenesis and dovmregulated in cultured psoriatic keratinocytes. J Mol Med,2007,85:589-601.
    
    40 Kittaka A, Saito N,Takano M. [Recent progress of study on vitamin D analogs]. Clin Calcium, 2006,16:1154-65.
    41 Wolters M. Diet and psoriasis: experimental data and clinical evidence. Br J Dermatol, 2005,153:706-14.
    
    42 Halsall JA, Osborne JE, Pringle JH, et al. Vitamin D receptor gene polymorphisms, particularly the novel A-1012G promoter polymorphism, are associated with vitamin D3 responsiveness and non-familial susceptibility in psoriasis. Pharmacogenet Genomics, 2005,15:349-55.
    
    43 Perakyla M, Malinen M, Herzig KH, et al. Gene regulatory potential of nonsteroidal vitamin D receptor ligands. Mol Endocrinol, 2005,19:2060-73.
    
    44 Lu J, Goldstein KM, Chen P, et al. Transcriptional profiling of keratinocytes reveals a vitamin D-regulated epidermal differentiation network. J Invest Dermatol, 2005,124:778-85.
    
    45 Zmuda JM, Cauley JA,Ferrell RE. Molecular epidemiology of vitamin D receptor gene variants. Epidemiol Rev, 2000,22:203-17.
    
    46 Mee JB, Cork MJ. Vitamin D receptor polymorphism and calcipotriol response in patients with psoriasis. J Invest Dermatol, 1998,110:301-2.
    
    47 Kontula K, Valimaki S, Kainulainen K, et al. Vitamin D receptor polymorphism and treatment of psoriasis with calcipotriol. Br J Dermatol, 1997,136:977-8.
    
    48 Michel G, Gailis A, Jarzebska-Deussen B, et al. l,25-(OH)2-vitamin D3 and calcipotriol induce IL-10 receptor gene expression in human epidermal cells. Infiamm Res, 1997,46:32-4.
    
    49 Carlberg C, Saurat JH. Vitamin D-retinoid association: molecular basis and clinical applications. J Investig Dermatol Symp Proc, 1996,1:82-6.
    
    50 Kragballe K. Calcipotriol: a new drug for topical psoriasis treatment. Pharmacol Toxicol, 1995,77:241-6.
    
    51 Binderup L, Bramm E. Effects of a novel vitamin D analogue MC903 on cell proliferation and differentiation in vitro and on calcium metabolism in vivo. Biochem Pharmacol, 1988,37:889-95.
    52 Ruggiero M, Gulisano M, Peruzzi B, et al. Vitamin D receptor gene polymorphism is not associated with psoriasis in the Italian Caucasian population. J Dermatol Sci, 2004,35:68-70.
    
    53 Okita H, Ohtsuka T, Yamakage A, et al. Polymorphism of the vitamin D(3) receptor in patients with psoriasis. Arch Dermatol Res, 2002,294:159-62.
    
    54 Saeki H, Asano N, Tsunemi Y, et al. Polymorphisms of vitamin D receptor gene in Japanese patients with psoriasis vulgaris. J Dermatol Sci, 2002,30:167-71.
    
    55 Kaya TI, Erdal ME, Tursen U, et al. Association between vitamin D receptor gene polymorphism and psoriasis among the Turkish population. Arch Dermatol Res, 2002,294:286-9.
    
    56 Lee DY, Park BS, Choi KH, et al. Vitamin D receptor genotypes are not associated with clinical response to calcipotriol in Korean psoriasis patients. Arch Dermatol Res, 2002,294:1-5.
    
    57 Park BS, Park JS, Lee DY, et al. Vitamin D receptor polymorphism is associated with psoriasis. J Invest Dermatol, 1999,112:113-6.
    
    58 Viitanen A, Karkkainen M, Laitinen K, et al. Common polymorphism of the vitamin D receptor gene is associated with variation of peak bone mass in young finns. Calcif Tissue Int, 1996,59:231-4.
    
    59 Xu J, Turner A, Little J, et al. Positive results in association studies are associated with departure from Hardy-Weinberg equilibrium: hint for genotyping error?. Hum Genet, 2002,111:573-4.
    
    60 Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature, 1994,367:284-7.
    
    61 Carling T, Rastad J, Akerstrom G, et al. Vitamin D receptor (VDR) and parathyroid hormone messenger ribonucleic acid levels correspond to polymorphic VDR alleles in human parathyroid tumors. J Clin Endocrinol Metab, 1998,83:2255-9.
    62 Beaumont M, Bennett AJ, White DA, et al. Allelic differences in the 3' untranslated region of the vitamin D receptor gene affect mRNA levels in bone cells. (Abstract). Osteoporos Int, 1998,8:37.
    1 Zhang X,Wang H,Te-Shao H,et al.The genetic epidemiology of psoriasis vulgaris in Chinese Han.Int J Dermatol,2002,41:663-9.
    2 Krueger GG,Duvic M.Epidemiology of psoriasis:clinical issues.J Invest Dermatol,1994,102:14S-18S.
    3 Elder,J.T,Nair,R.P,Guo,S.W,et al.The genetics of psoriasis.Arch Dermatol,1994.216-24.
    4 Barker JN.Pathogenesis of psoriasis.J Dermatol,1998,25:778-81.
    5 Lomholt,G.PREVALENCE OF SKIN DISEASES IN A POPULATION;A CENSUS STUDY FROM THE FAROE ISLANDS.Dan Med Bull,1964.1-7.
    6 Hellgren,L.Psoriasis.A statistical,clinical and laboratory investigation of 255psoriatics and matched healthy controls.Acta Derm Venereol,1964.191-207.
    7 全国银屑病流行调查组.全国1984年银屑病流行调查报告.中华皮肤科杂志.1986.253.
    8 邵长庚.我国银屑病的流行与防治现状.中华皮肤科杂志,1996.75.
    9 Zhang X,Wang H,Te-Shao H,et al.Frequent use of tobacco and alcohol in Chinese psoriasis patients.Int J Dermatol,2002,41:659-62.
    10 McInnes,I.B,Gracie,J.A.Interleukin-15:a new cytokine target for the treatment of inflammatory diseases.Curr Opin Pharmacol,2004.392-7.
    11 Bowcock,A.M,Cookson,W.O.The genetics of psoriasis,psoriatic arthritis and atopic dermatitis.Hum Mol Genet,2004.R43-55.
    12 Tomfohrde J,Silverman A,Barnes R,et al.Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q.Science,1994,264:1141-5.
    13 Matthews D,Fry L,Powles A,et al.Evidence that a locus for familial psoriasis maps to chromosome 4q.Nat Genet,1996,14:231-3.
    14 Nair RP, Henseler T, Jenisch S, et al. Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum Mol Genet, 1997,6:1349-56.
    
    15 Trembath RC, Clough RL, Rosbotham JL, et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet, 1997,6:813-20.
    
    16 Capon F, Novelli G, Semprini S, et al. Searching for psoriasis susceptibility genes in Italy: genome scan and evidence for a new locus on chromosome 1. J Invest Dermatol, 1999,112:32-5.
    
    17 Enlund F, Samuelsson L, Enerback C, et al. Psoriasis susceptibility locus in chromosome region 3q21 identified in patients from southwest Sweden. Eur J Hum Genet, 1999,7:783-90.
    
    18 Lee YA, Ruschendorf F, Windemuth C, et al. Genomewide scan in german families reveals evidence for a novel psoriasis-susceptibility locus on chromosome 19p13. Am J Hum Genet, 2000,67:1020-4.
    
    19 Veal CD, Clough RL, Barber RC, et al. Identification of a novel psoriasis susceptibility locus at 1p and evidence of epistasis between PSORS1 and candidate loci. J Med Genet, 2001,38:7-13.
    
    20 Zhang XJ, He PP, Wang ZX, et al. Evidence for a major psoriasis susceptibility locus at 6p21(PSORS1) and a novel candidate region at 4q31 by genome-wide scan in Chinese hans. J Invest Dermatol, 2002,119:1361-6.
    
    21 Sagoo, G. S, Tazi-Ahnini, R, Barker, J. W, et al. Meta-analysis of genome-wide studies of psoriasis susceptibility reveals linkage to chromosomes 6p21 and 4q28-q31 in Caucasian and Chinese Hans population. J Invest Dermatol,2004. 1401-5.
    
    22 Bowcock, A. M. Psoriasis genetics: the way forward. J Invest Dermatol,2004. xv-xvii.
    23 Zheng, J, Jin, S,Shi, R. Confirmation of PSORS psoriasis susceptibility loci in a Chinese population. Arch Dermatol Res,2003. 14-8.
    
    24 Fan X, Yang S, Huang W, et al. Fine mapping of the psoriasis susceptibility locus PSORS1 supports HLA-C as the susceptibility gene in the Han Chinese population. PLoS Genet, 2008,4:e1000038.
    
    25 Davies, J. L, Kawaguchi, Y, Bennett, S. T, et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature, 1994.130-6.
    
    26 Gaffney, P. M, Kearns, G. M, Shark, K. B, et al. A genome-wide search for susceptibility genes in human systemic lupus erythematosus sib-pair families. Proc Natl Acad Sci U S A,1998. 14875-9.
    
    27 Jawaheer, D, Seldin, M. F, Amos, C. I, et al. Screening the genome for rheumatoid arthritis susceptibility genes: a replication study and combined analysis of 512 multicase families. Arthritis Rheum,2003. 906-16.
    
    28 van Heel, D. A, Fisher, S. A, Kirby, A, et al. Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Hum Mol Genet,2004. 763-70.
    
    29 Etzel, C. J, Chen, W. V, Shepard, N, et al. Genome-wide meta-analysis for rheumatoid arthritis. Hum Genet,2006. 634-41.
    
    30 Trembath, R. C, Clough, R. L, Rosbotham, J. L, et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet, 1997. 813-20.
    
    31 Ozawa, A, Miyahara, M, Sugai, J, et al. HLA class I and II alleles and susceptibility to generalized pustular psoriasis: significant associations with HLA-Cw1 and HLA-DQB1*0303. J Dermatol, 1998. 573-81.
    
    32 Vejbaesya, S, Eiermann, T. H, Suthipinititharm, P, et al. Serological and molecular analysis of HLA class I and II alleles in Thai patients with psoriasis vulgaris. Tissue Antigens, 1998. 389-92.
    33 Gladman, D. D, Farewell, V. T. The role of HLA antigens as indicators of disease progression in psoriatic arthritis. Multivariate relative risk model. Arthritis Rheum, 1995. 845-50.
    
    34 Gladman, D. D, Farewell, V. T, Kopciuk, K. A, et al. HLA markers and progression in psoriatic arthritis. J Rheumatol,1998. 730-3.
    
    35 Schatteman, L, Mielants, H, Veys, E. M, et al. Gut inflammation in psoriatic arthritis: a prospective ileocolonoscopic study. J Rheumatol,1995. 680-3.
    
    36 Zhang X, Wei S, Yang S, et al. HLA-DQA1 and DQB1 alleles are associated with genetic susceptibility to psoriasis vulgaris in Chinese Han. Int J Dermatol, 2004,43:181-7.
    
    37 Tiilikainen, A, Lassus, A, Karvonen, J, et al. Psoriasis and HLA-Cw6. Br J Dermatol, 1980. 179-84.
    
    38 Kundakci, N, Oskay, T, Olmez, U, et al. Association of psoriasis vulgaris with HLA class I and class II antigens in the Turkish population, according to the age at onset. Int J Dermatol,2002. 345-8.
    
    39 Cargill, M, Schrodi, S. J, Chang, M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet,2007. 273-90.
    
    40 Orru, S, Giuressi, E, Carcassi, C, et al. Mapping of the major psoriasis-susceptibility locus (PSORS1) in a 70-Kb interval around the corneodesmosin gene (CDSN). Am J Hum Genet,2005. 164-71.
    
    41 Nair, R. P, Stuart, P. E, Nistor, I, et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet,2006. 827-51.
    
    42 Allen, M, Ishida-Yamamoto, A, McGrath, J, et al. Corneodesmosin expression in psoriasis vulgaris differs from normal skin and other inflammatory skin disorders. Lab Invest,2001. 969-76.
    
    43 Elomaa, O, Majuri, I, Suomela, S, et al. Transgenic mouse models support HCR as an effector gene in the PSORS1 locus. Hum Mol Genet,2004. 1551-61.
    44 Asumalahti, K, Laitinen, T, Itkonen-Vatjus, R, et al. A candidate gene for psoriasis near HLA-C, HCR (Pg8), is highly polymorphic with a disease-associated susceptibility allele. Hum Mol Genet,2000. 1533-42.
    
    45 Gonzalez, S, Martinez-Borra, J, Del Rio, J. S, et al. The OTF3 gene polymorphism confers susceptibility to psoriasis independent of the association of HLA-Cw*0602. J Invest Dermatol,2000. 824-8.
    
    46 Martinez-Borra, J, Gonzalez, S, Santos-Juanes, J, et al. Psoriasis vulgaris and psoriatic arthritis share a 100 kb susceptibility region telomeric to HLA-C. Rheumatology (Oxford),2003. 1089-92.
    
    47 Chang, Y. T, Shiao, Y. M, Chin, P. J, et al. Genetic polymorphisms of the HCR gene and a genomic segment in close proximity to HLA-C are associated with patients with psoriasis in Taiwan. Br J Dermatol,2004. 1104-11.
    
    48 Holm, S. J, Carlen, L. M, Mallbris, L, et al. Polymorphisms in the SEEK1 and SPR1 genes on 6p21.3 associate with psoriasis in the Swedish population. Exp Dermatol,2003. 435-44.
    
    49 Rahman, P, Butt, C, Siannis, F, et al. Association of SEEK1 and psoriatic arthritis in two distinct Canadian populations. Ann Rheum Dis,2005. 1370-2.
    
    50 Sanchez, F, Holm, S. J, Mallbris, L, et al. STG does not associate with psoriasis in the Swedish population. Exp Dermatol,2004. 413-8.
    
    51 Asadullah, K, Eskdale, J, Wiese, A, et al. Interleukin-10 promoter polymorphism in psoriasis. J Invest Dermatol,2001. 975-8.
    
    52 Hensen, P, Asadullah, K, Windemuth, C, et al. Interleukin-10 promoter polymorphism ILIO.G and familial early onset psoriasis. Br J Dermatol,2003. 381-5.
    
    53 Kingo, K, Koks, S, Silm, H, et al. IL-10 promoter polymorphisms influence disease severity and course in psoriasis. Genes Immun,2003. 455-7.
    
    54 Wongpiyabovorn, J, Hirankarn, N, Ruchusatsawat, K, et al. Association of the interleukin-10 distal promoter (-2763A/C) polymorphism with late-onset psoriasis. Clin Exp Dermatol,2008. 186-9.
    55 Tsunemi, Y, Saeki, H, Nakamura, K, et al. Interleukin-12 p40 gene (IL12B) 3'-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. J Dermatol Sci,2002. 161-6.
    
    56 Capon, F, Di Meglio, P, Szaub, J, et al. Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum Genet,2007. 201-206.
    
    57 Liew, F. Y, McInnes, I. B. Role of interleukin 15 and interleukin 18 in inflammatory response. Ann Rheum Dis,2002. ii100-2.
    
    58 Bulfone-Pau, S. S, Bulanova, E, Pohl, T, et al. Death deflected: IL-15 inhibits TNF-alpha-mediated apoptosis in fibroblasts by TRAF2 recruitment to the IL-15Ralpha chain. FASEB J,1999. 1575-85.
    
    59 Ruckert, R, Asadullah, K, Seifert, M, et al. Inhibition of keratinocyte apoptosis by IL-15: a new parameter in the pathogenesis of psoriasis?. J Immunol,2000.2240-50.
    
    60 Villadsen, L. S, Schuurman, J, Beurskens, F, et al. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J Clin Invest,2003. 1571-80.
    
    61 Zhang, X. J, Yan, K. L, Wang, Z. M, et al. Polymorphisms in interleukin-15 gene on chromosome 4q31.2 are associated with psoriasis vulgaris in Chinese population. J Invest Dermatol,2007. 2544-51.
    
    62 Hebert, S. C, Mount, D. B,Gamba, G. Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family. Pflugers Arch,2004. 580-93.
    
    63 Hewett, D, Samuelsson, L, Polding, J, et al. Identification of a psoriasis susceptibility candidate gene by linkage disequilibrium mapping with a localized single nucleotide polymorphism map. Genomics,2002. 305-14.
    
    64 Lee, Y. A, Wahn, U, Kehrt, R, et al. A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet,2000. 470-3.
    65 Wang, Y, Kobori, J. A,Hood, L. The ht beta gene encodes a novel CACCC box-binding protein that regulates T-cell receptor gene expression. Mol Cell Biol,1993. 5691-701.
    
    66 Samuelsson, L, Stiller, C, Friberg, C, et al. Association analysis of cystatin A and zinc finger protein 148, two genes located at the psoriasis susceptibility locus PSORS5. J Invest Dermatol,2004. 1399-400.
    
    67 Mattei, M. G, Borg, J. P, Rosnet, O, et al. Assignment of vascular endothelial growth factor (VEGF) and placenta growth factor (PLGF) genes to human chromosome 6pl2-p21 and 14q24-q31 regions, respectively. Genomics, 1996. 168-9.
    
    68 Detmar, M, Brown, L. F, Claffey, K. P, et al. Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med,1994. 1141-6.
    
    69 Bhushan, M, McLaughlin, B, Weiss, J. B, et al. Levels of endothelial cell stimulating angiogenesis factor and vascular endothelial growth factor are elevated in psoriasis. Br J Dermatol,1999. 1054-60.
    
    70 Creamer, D, Allen, M, Jaggar, R, et al. Mediation of systemic vascular hyperpermeability in severe psoriasis by circulating vascular endothelial growth factor. Arch Dermatol,2002. 791-6.
    
    71 Detmar, M, Brown, L. F, Schon, M. P, et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol,1998. 1-6.
    
    72 Awata, T, Inoue, K, Kurihara, S, et al. A common polymorphism in the 5'-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes,2002. 1635-9.
    
    73 Young HS, Summers AM, Bhushan M, et al. Single-nucleotide polymorphisms of vascular endothelial growth factor in psoriasis of early onset. J Invest Dermatol, 2004,122:209-15.
    74 Watson, C. J, Webb, N. J, Bottomley, M. J, et al. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine,2000. 1232-5.
    
    75 Wang, Z, Liang, W, Zhang, B, et al. Single nucleotide polymorphisms of VEGF gene and Psoriasis risk. J Dermatol Sci,2008. 263-5.
    
    76 Barile, S, Medda, E, Nistico, L, et al. Vascular endothelial growth factor gene polymorphisms increase the risk to develop psoriasis. Exp Dermatol,2006. 368-76.
    
    77 Gonzalez S, Martinez-Borra J, Del Rio JS, et al. The OTF3 gene polymorphism confers susceptibility to psoriasis independent of the association of HLA-Cw*0602. J Invest Dermatol, 2000,115:824-8.
    
    78 Teraoka Y, Naruse TK, Oka A, et al. Genetic polymorphisms in the cell growth regulated gene, SC1 telomeric of the HLA-C gene and lack of association of psoriasis vulgaris. Tissue Antigens, 2000,55:206-11.
    
    79 Giardina E, Capon F, De Rosa MC, et al. Characterization of the loricrin (LOR) gene as a positional candidate for the PSORS4 psoriasis susceptibility locus. Ann Hum Genet, 2004,68:639-45.
    
    80 Parkinson J, Charon C, Baker BS, et al. Variation at the IRF2 gene and susceptibility to psoriasis in chromosome 4q-linked families. J Invest Dermatol, 2004,122:640-3.
    
    81 Mossner R, Kingo K, Kleensang A, et al. Association of TNF -238 and -308 promoter polymorphisms with psoriasis vulgaris and psoriatic arthritis but not with pustulosis palmoplantaris. J Invest Dermatol, 2005,124:282-4.
    
    82 Campalani E, Allen MH, Fairhurst D, et al. Apolipoprotein E gene polymorphisms are associated with psoriasis but do not determine disease response to acitretin. Br J Dermatol, 2006,154:345-52.
    
    83 Furumoto H, Nakamura K, Imamura T, et al. Association of apolipoprotein allele epsilon 2 with psoriasis vulgaris in Japanese population. Arch Dermatol Res, 1997,289:497-500.
    84 Ozkur M, Erbagci Z, Nacak M, et al. Association of insertion/deletion polymorphism of the angiotensin-converting enzyme gene with psoriasis. Br J Dermatol, 2004,151:792-5.
    
    85 Stuart P, Nair RP, Abecasis GR, et al. Analysis of RUNX1 binding site and RAPTOR polymorphisms in psoriasis: no evidence for association despite adequate power and evidence for linkage. J Med Genet, 2006,43:12-7.
    
    86 Capon F, Helms C, Veal CD, et al. Genetic analysis of PSORS2 markers in a UK dataset supports the association between RAPTOR SNPs and familial psoriasis. J Med Genet, 2004,41:459-60.
    
    87 Witkowska-Tobola AM, Szczerkowska-Dobosz A, Nedoszytko B, et al. Polymorphism of the TAP1 gene in Polish patients with psoriasis vulgaris. J Appl Genet, 2004,45:391-3.
    
    88 Vasku V, Vasku A, Izakovicova Holla L, et al. Polymorphisms in inflammation genes (angiotensinogen, TAP1 and TNF-beta) in psoriasis. Arch Dermatol Res, 2000,292:531-4.
    
    89 Halsall JA, Osborne JE, Pringle JH, et al. Vitamin D receptor gene polymorphisms, particularly the novel A-1012G promoter polymorphism, are associated with vitamin D3 responsiveness and non-familial susceptibility in psoriasis. Pharmacogenet Genomics, 2005,15:349-55.
    
    90 Ruggiero M, Gulisano M, Peruzzi B, et al. Vitamin D receptor gene polymorphism is not associated with psoriasis in the Italian Caucasian population. J Dermatol Sci, 2004,35:68-70.
    
    91 Saeki H, Asano N, Tsunemi Y, et al. Polymorphisms of vitamin D receptor gene in Japanese patients with psoriasis vulgaris. J Dermatol Sci, 2002,30:167-71.
    
    92 Kaya TI, Erdal ME, Tursen U, et al. Association between vitamin D receptor gene polymorphism and psoriasis among the Turkish population. Arch Dermatol Res, 2002,294:286-9.
    
    93 Okita H, Ohtsuka T, Yamakage A, et al. Polymorphism of the vitamin D(3) receptor in patients with psoriasis. Arch Dermatol Res, 2002,294:159-62.
    94 Park BS, Park JS, Lee DY, et al. Vitamin D receptor polymorphism is associated with psoriasis. J Invest Dermatol, 1999,112:113-6.
    
    95 Yoo, J. H, Choi, G. D,Kang, S. S. Pathogenicity of thermolabile methylenetetrahydrofolate reductase for vascular dementia. Arterioscler Thromb Vasc Biol,2000. 1921-5.
    
    96 Lesueur, F, Oudot, T, Heath, S, et al. ADAM33, a new candidate for psoriasis susceptibility. PLoS ONE,2007. e906.
    
    97 Tiilikainen A, Lassus A, Karvonen J, et al. Psoriasis and HLA-Cw6. Br J Dermatol, 1980,102:179-84.
    
    98 Asahina A, Akazaki S, Nakagawa H, et al. Specific nucleotide sequence of HLA-C is strongly associated with psoriasis vulgaris. J Invest Dermatol, 1991,97:254-8.