复杂系统电磁兼容性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代电子系统信息化程度越来越高,电磁环境越来越复杂,具有多天线加载和线缆网敷设等特征的复杂系统电磁兼容分析的难度也越来越大。为了促进电磁兼容分析方法的发展,本文围绕天线互耦的分析方法和线缆网耦合的分析方法展开研究;并研究了降低复杂系统电磁兼容分析复杂性的方法论,搭建起复杂系统电磁兼容性分析的基本框架。
     第一部分,为了进行平台天线互耦的分析,研究了时域积分方程(TDIE)的时间递推方法(MOT)。阐述了MOT求解TDIE的一般过程,并用两类典型电磁兼容算例说明了MOT在电磁兼容方面的适用性。
     详细推导了物理光学和时域积分方程混合方法(PO-TDIE)的实现过程,研究了其在天线互耦分析中的应用问题。提出了针对电磁兼容问题的合理分区方法。
     为了克服PO电流近似带来的误差,提出了一致性绕射方法(UTD)修正的PO-TDIE混合方法。采用时域一致性绕射方法(TD-UTD)计算PO区中的边缘效应,修正激励项,在基本不增加计算量的同时提高PO-TDIE混合方法的计算精度,扩展了算法的应用范围。
     针对天线互耦问题,提出了UTD加速的TDIE方法。基于UTD的绕射理论,忽略作用十分小的源,只考虑一次或二次绕射项的作用,减小MOT递推公式右端向量和的计算量,从而提高MOT算法的计算速度。该算法需要合理地划分区域,将所有可能的低次绕射点都纳入计算;目标的绕射特性越明显,加速效果越好。
     第二部分,为了进行复杂系统线缆网的分析,详细阐述了多导体传输线(MTL)理论,给出了MTL的分布参数以及不同激励源条件下的电报方程。
     研究了求解传输线网络响应的频域方法——BLT方程。将BLT方程应用到任意布局传输线串扰的计算中,通过将传输线离散,在离散段的连接处引入理想节点的方法,将其等效为传输线网络来进行处理,为非平行情况的串扰分析提供了一种解决方案。另外,首次系统地给出了多导体传输线网络BLT方程的通用的构造方法,为复杂线缆网分析软件的编制奠定了理论基础。
     研究了求解传输线网络响应的时域方法——时域有限差分(FDTD)法。详细推导了集总源和分布源激励条件下的FDTD迭代公式。
     提出了求解非均匀传输线网络响应的时频结合方法——BLT-FDTD混合方法。将网络中的非均匀传输线采用FDTD方法求解,通过分离入射、反射波得到该段的S参数,并将此段作为节点加入到BLT方程的矩阵求解当中,最终得到传输线网络的终端响应。该方法克服了频域方法对非均匀情况的不适用问题和时域方法的高计算量问题,能够应用于复杂非均匀线缆网的计算当中。
     第三部分,对电磁拓扑理论进行研究。将复杂系统的电磁兼容分析分为拓扑分解、交互作用关联图的构造、传输函数的求解和系统响应的综合等四个步骤。将电子系统的电磁受扰问题分解为相对独立的子问题,降低整个问题理论分析的复杂性。然后,从电磁拓扑理论出发,结合电磁兼容分析的需求,提出了电磁干扰统一模型,采用多端口网络来统一描述干扰源、传播途径和敏感设备,给出了构造方法,并分析了其特性和应用能力。
     最后,以卫星系统为例,对论文的研究成果进行了应用分析,给出了复杂系统电磁兼容分析的一般步骤。并且,进行了系统级电磁兼容分析软件开发方面的探索,阐述了软件的设计思想、软件结构和实现方法。
The analysis of electromagnetic compatibility (EMC) characteristics of complex system is getting more and more difficult, due to the high level integration of modern electric systems and the complex electromagnetic environment. The purpose of this thesis is to develop the EMC analysis techniques of the most important interference paths: antenna coupling (front door) and wire coupling (back door); besides, a methodology which can reduce the calculation complexity is studied, and an EMC analyzing framework for complex system is established.
     In the first part of the thesis, for the mutual coupling analysis of the antennas on a platform, the marching-on in time (MOT) solver for time domain integral equation (TDIE) is studied. The general process of MOT solver is presented, and two kinds of typical EMC examples are provided to illustrate the applicability of the method. The theory of physical optics and TDIE hybrid method (PO-TDIE) is detailed elaborated, and the application problem in antenna EMC is studied. The computational error will stay in a low level, if the transmitter and the receiver together with their adjacent areas are partitioned into TDIE region.
     To overcome the error caused by the PO current approximation, a uniform geometrical theory of diffraction (UTD) enhanced PO-TDIE hybrid algorithm is proposed. UTD is applied to calculate the edge effect, to compensate the calculation error made by the PO current approximation. This method can improve the accuracy while maintaining the computational complexity, and the application range of PO-TDIE would be extended.
     For the antenna mutual coupling problems on electrically large platforms, in the basis of classical MOT solver, combining the diffraction ray tracing concept in UTD, a UTD enhanced TDIE algorithm is proposed. The sources which offer quite small contribution are ignored, and only the contribution of low-order diffraction areas is considered; therefore the computational complexity is reduced much. This method needs reasonable region partition, and all diffraction points should be included in the computation.
     In the second part of the thesis, for analyzing the cable networks of a complex system, multi-transmission line (MTL) theory is described in detail. The distributed parameters of MTL and the telegrapher’s equations are deduced.
     A method to solve the response of MTL network in frequency domain, BLT (Baum-Liu-Tesche) equation, is studied. Based on it, a method to calculate the crosstalk of arbitrary layout transmission line is proposed. The lines are cut into discrete pieces, ideal junction is imported to calculate the scattering parameters, and the transmission lines are equivalent to multiconductor transmission line network. The method offers a solution for the non-parallel lines’crosstalk. In subsequence, the construction method of BLT equation for MTL networks (MTLN) is presented, to the best of our knowledge, for the first time in China.
     Subsequently, a method to solve the MTLN in time domain, finite difference time domain (FDTD) method, is studied. The interative equations in lumped and distributed source conditions are deduced in detail.
     For the purpose to solve the nonuniform MTLN, a frequency domain-time domain combined method, BLT-FDTD, is proposed. The nonuniform parts in the network are solved by FDTD; then the incident wave and reflected wave are separated; the S parameters of these parts can then be obtained. In subsenquence, these parts will act as junctions in the operation on BLT equation; and finally the response of the whole network will be solved out. This method overcomes the inapplicability of the frequency domain methods and the high computational cost of time domain methods, and is capable in the computation of the Nonuniform cable networks.
     In the third part of this thesis, electromagnetic topology (EMT) is studied. The EMC analysis of a complex system is built up by the following four steps: the topological decomposition, the construction of interaction sequence diagram, the calculation of transfer functions and the integration of the responses in the whole system. The whole issue is decomposed into several relative independent ones; as a result, the complexity will be decreased. In subsequence, based on EMT, and in the requirement of EMC analysis, the electromagnetic interference uniform model (EMI-UM) is proposed. A kind of multi-port network is adopted to describe, uniformly, the interference sources, propagation paths and susceptible devices. The establishing method of EMI-UM is presented, and the characteristics and applicable capacity is analyzed.
     Finally, application analysis of the techniques studied in this thesis is depicted, according to taking a satellite system as an example; and general process of EMC analysis for complex systems is presented. Besides, efforts are made in the development of the system-level EMC analysis software. The design philosophy, architecture and the realization of the software are elaborated.
引文
[1]中华人民共和国国家军用标准. GJB 72A-2002电磁干扰和电磁兼容性术语[S]. 2003
    [2] Department of Defense Dictionary of Military and Associated Terms, Joint Publication 1-02. 2001, pp:177
    [3]刘培国,侯冬云.电磁兼容基础[M].北京:电子工业出版社,2008
    [4] Kodali V P.陈淑凤等译.工程电磁兼容原理、测试、技术工艺及计算机模型[M].北京:人民邮电出版社,2006
    [5] Fragnol N, et al. Advanced electromagnetic prediction tools for satellite EMC analysis [J]. IEE Colloquium on Circuit Design and Tools for EMC, 1995:3/1-3/10
    [6] Parmantier J P. First realistic simulation of effects of EM coupling in commercial aircraft wiring [J]. Computing&Control Engineering Journal, 1998: 52-56
    [7] Yee K S. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media [J]. IEEE Trans. Antennas propagat., 1966, 14: 302-307.
    [8] Bérenger J P. A perfectly matched layer for the absorption of electromagnetic waves [J]. J. Comput. Phys., 1994, 114(2):185-200
    [9] Namiki T. 3-D ADI-FDTD method: unconditionally stable time domain algorithm for solving full vector Maxwell’s equations.IEEE Trans. Microwave Theory Tech., 2000, 48:1743-1748.
    [10] Liu Q F, Chen F, and Yin W Y. An arbitrary-order LOD-FDTD method and its stability and numerical dispersion [J]. IEEE Trans. Antennas propagat., 2009, 57(8):2409-2417
    [11] Chen J, and Wang J G. A novel body-of-revolution finite-difference time-domain method with weakly conditional stability [J]. IEEE Microwave and Wireless Components Letters, 2008, 18(6):377-379
    [12] Kondylis G. D, Flaviis F D, Pottie G. J, and Itoh T. A memory-efficient formulation of the finite-difference time-domain method for the solution of maxwell equations. IEEE Trans. Microwave Theory Tech., 2001, 49(7):1310-1320.
    [13] Chen H L, and Chen B. Anisotropic-medium PML for ADI-BOR-FDTD method. IEEE Microwave and Wireless Components Letters, 2008, 18(4):221-223.
    [14] Shibayama J, et al. LOD-BOR-FDTD algorithm for efficient analysis of circularly symmetric structures [J]. IEEE Microwave and Wireless Components Letters, 2009, 19(2) 56-58
    [15] Liu B, et al. A new FDTD algorithm–ADI/R-FDTD [C]. Proc. 3rd International Symp. on Electromagnetic Compatibility, 2002, pp.250-253.
    [16] Brüns H D, et al. Numerical Electromagnetic Field Analysis for EMC Problems [J]. IEEE Trans. Electromag. Compat., 2007, 49(2):253-262
    [17] Harrington R F. Filed computation by moment method [M]. Marlabar: FL:Krieger, 1982.
    [18] Graglia R D, Wilton D R, Peterson A F. Higher order interpolatory vector bases for computational electromagnetics. IEEE Trans. Antennas Propagat., 1997, 45 (3): 329-342.
    [19] Song J M, Chew W C. Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering [J]. Microwave Opt Tech. Let., 1995, 8(1):14-19.
    [20] Donepudi K C, Jin J M, and Chew W C. A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectrics bodies [J]. IEEE Antennas Propagat. Mag., 2003, 51(10):2814-2821.
    [21] Chew W C, Jin J M, Michielssen E, et al. Fast and efficient algorithms in computational electromagnetics [M]. London: Artech House, 2001
    [22] Zhao K Z, Rawat V, Lee J F. Domain Decomposition Methods for electromagnetic radiation and scattering analysis of multitarget problems [J]. IEEE Trans. Antennas propagat., 2008, 56(8):1488-1493
    [23] Lin yun, Hun Jun, Nie zai ping, Chen yong pin. Parallel Multi-Level Fast Multipole Algorithm with Combined Field Integral Equation on Distributed Memory System [C]. Asia-Pacific Conference Proceedings, 2005
    [24] Gan H and Chew W C. A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems [J]. J. Electromagn. Waves Appl., 1995, 9(10):1339–1357.
    [25] Bleszynski E, Bleszynski M, and Jarozewicz T. AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems [J]. Radio Sci., 1996, 31:1225–1251
    [26] Ewe W B, Li L W, Wu Q, and Leong M S. AIM solution to electromagnetic scattering using parametric geometry [J]. IEEE Antennas and Wireless propagat. Letter, 2005, 4: 107-111.
    [27] Nie X C, et al. Fast analysis of scattering by arbitrarily shaped three-dimensional objects using the precorrected-FFT method [J]. Microwave Opt. Tech. Lett., 2002, 34(6):438–442.
    [28] Thiele G A, and Newhouse T H. A hybrid technique for combining moment methods with the geometrical theory of diffraction [J]. IEEE Trans. Antennas propagat., 1975, 23(1):62-69
    [29] Wei X C, and Li E P. Efficient EMC Simulation of enclosures with aperturesresiding in an electrically large platform using the MM-UTD method [J]. IEEE Trans. Electromagnetic Compatibility, 2005, 47(4):717-722
    [30] Jacobus U, and Landstorfer F M. Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape [J]. IEEE Trans. Antennas propagat., 1995, 43(2):162-169
    [31] Jacobus U, and Landstorfer F M. Improvement of the PO-MoM hybrid method by accounting for effects of perfectly conducting wedges [J]. IEEE Trans. Antennas propagat., 1995, 43(10):1123-1129
    [32] Martin H C, Carey G F. Introduction to finite element analysis: Theory and application [M]. New York: McGraw Hill, 1973.
    [33] Cangellaris A C, et al. Point- matched time domain finite element methods for electromagnetic radiation and scattering [J]. IEEE Trans. Antennas propagat., 1987, 35(10):1160-1173
    [34] Jiao D, Ergin A, Shanker B, Michielssen E, and Jin J M. A fast time-domain higher-order finite-element-boundary-integral method for 3-D electromagnetic scattering analysis [J]. IEEE Trans. Antennas propagat., 2002, 50(9):1192-1202
    [35] Hoefer W. The transmission-line-matrix method: theory and applications [J]. IEEE Trans. Microwave Theory Tech., 1985, 33(10):882-893.
    [36] Johns P B, Beurle R L. Numerical solution of 2-dimensional scattering problems using a transmission-line matrix [J]. Proc. IEEE, 1971, 118(9):1203-1208
    [37] Johns P B. A symmetrical condensed node for the TLM method [J]. IEEE Trans. Microwave Theory Tech., 1987, 35(4):370-377
    [38] Scaramuzza R A, and Lowery A J. Hybrid symmetrical condensed node for the TLM method [J]. Electr. Letters, 1990, 26(3):1947-1949
    [39] Trenkic V, Christopoulos C. Theory of the symmetrical super-condensed node for the TLM method [J]. IEEE Trans. Microwave Theory Tech., 1995, 43(6):1342-1348
    [40] Trenkic V, Christopoulos C. Development of a general symmetrical condensed node for the TLM method [J]. IEEE Trans. Microwave Theory Tech., 1996, 44(12):2129-2135
    [41] Johns D P, Christopoulos C. Lossy dielectric and thin lossy film models for 3D steady state TLM [J]. Electr. Letters, 1993, 29(4):348-349
    [42] Ruehli A E . Equivalent circuit models for three-dimensional multiconductor sys tems [J]. IEEE Trans. Microwave Theory Tech., 1974, 22:216-221.
    [43] Ruehli A E, and Heeb H. Circuit models for three-dimensional geometries including dielectrics [J]. IEEE Trans. Microwave Theory Tech., 1992, 40:1507-1516.
    [44] Heeb H and Ruehli A E. Retarded models for PC board interconnects-or how the speed of light effects your SPICE circuit simulation [C]. Proc. IEEE Int. Conf.Comput. Aided Des., 1991, pp:70-73
    [45] Ruehli A E, Garrett, and Paul C R. Circuit models for 3D structures with incident fields [C]. Proc. IEEE Int. Symp. Electromagnetic Compatibility, 1992, pp28-32
    [46] Bennett C L. A technique for computing approximate impulse response for conducting bodies [D]. Ph.D. Lafayette, Indiana: Purdue Univ., 1968
    [47] Rao S M, Wilton D R, and Glisson A W. Electromagnetic Scattering by Surfaces of Arbitrary Shape [J]. IEEE Trans. Antennas propagat., 1982, 30(3): 409-418
    [48] Rao S M, Wilton D R. Transient scattering by conducting surfaces of arbitrary shape [J]. IEEE Trans. Antennas propagat., 1991, 39(1): 56-61
    [49] Vechinski D A, Rao S M. A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape [J]. IEEE Trans. Antennas propagat., 1992,40(6):661-665.
    [50] Sadigh A, Arvas E. Treating instabilities in marching-on-in-time method from a different perspective [J]. IEEE Trans. Antennas propagat., 1993, 41(12): 1695-1702.
    [51] Dodson S J, Walker S P, Bluck M J. Implicitness and stability of time domain integral equation scattering analysis [J]. Applied Computational Electromagnetics Society Journal, 1998, 13: 291-301.
    [52] Shanker B, Erigin A A, Aygun K, Michielssen E. Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation [J]. IEEE Trans. Antennas propagat., 2000, 48(7):1064-1074.
    [53] Jung B H, Chung Y S, Sarkar T K. Time-domain efie, mfie, and cfie formulations using laguerre polynomials as temporal basis functions for theanalysis of transient scattering from arbitrary shaped conducting structures [J]. Progress in Electromagnetics Research, 2003, 39: 1-45.
    [54] Pisharody G, Weile D S. Robust solution of time-domain integral equations using loop-tree decomposition and bandlimited extrapolation [J]. IEEE Trans. Antennas propagat., 2005, 53(6):2089-2098.
    [55] Abdulkadir C Y, Ergin A A. Exact evalution of retarded-time potential integrals for the RWG bases [J]. IEEE Trans. Antennas propagat., 2006, 54(5):1496–1502.
    [56] Taylor D J. Accurate and efficient numerical integration of weakly singular integrals in Galerkin EFIE solutions [J]. IEEE Trans. Antennas propagat., 2003, 51(7): 1630–1637
    [57] Lee J. Preconditioned iterative methods for solving dense linear systems from electromagnetic scattering applications [D]. Ph.D., Univ. Kentucky, 2004
    [58] Alléon G.. Sparse preconditioners for dense linear systems from electromagnetic applications [D]. Ph.D., l’Institut National Polytechnique de Toulouse, 2002
    [59] Walker S P. Scattering analysis via time domain integral equations: methods to reduce the scaling of cost with frequency [J]. IEEE Ant. Prop. Mag., 1997,39(5):13-20.
    [60] Ergin A, Shanker B, and Michielssen E. The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena [J]. IEEE Ant. Prop. Mag., 1999, 41(4):39-52
    [61] Aygün K, et al. A two-level plane wave time-domain algorithm for fast analysis of EMC/EMI problems [J]. IEEE Trans. Electromagnetic Compatibility, 2002, 44 (1): 152-164.
    [62] Y?lmaz A E, Jin J M, and Michielssen E. Time domain adaptive integral method for surface integral equations [J]. IEEE Trans. Antennas propagat., 2004, 52(10): 2692–2708
    [63] Ren M, et al. Coupled TDIE-PO method for transient scattering from electrically large conducting objects [J]. Electronics Letters, 2008, 44(4):258-260
    [64] Walker S P, and Vartiainen M J. Hybridization of curvilinear time-domain integral equation and time-domain optical methods for electromagnetic scattering analysis [J]. IEEE Trans. Antennas propagat., 1998,46(3):318-324
    [65] Walker S P, Leung C Y. Parallel computation of time domain integral equation analyses of electromagnetic scattering and rcs [J]. IEEE Trans. Antennas propagat., 1997, 45: 614-619.
    [66] Aygün K, et al. A parallel PWTD accelerated time marching scheme for analysis of EMC/EMI problems [C]. IEEE Symp. Electromagnetic Compatibility, 2003, Vol.2: 863-866
    [67] Aygün K, et al. Analysis of PCB level EMI phenomena using an adaptive low-frequency plane wave time domain algorithm [C]. IEEE Symp. Electromagnetic Compatibility, 2000, Vol.1:295-300
    [68] Ba?c? H, et al. Fast and Rigorous Analysis of EMC/EMI Phenomena on Electrically Large and Complex Cable-Loaded Structures [J]. IEEE Trans. Electromagnetic Compatibility, 2007, 49(2):361-381
    [69] Ba?c? H, et al. EMC/EMI analysis of electrically large and multiscale structures loaded with coaxial cables by a hybrid TDIE-FDTD-MNA approach [C]. IEEE Symp. on Antennas propagat., 2005, Vol. 2B:14-17
    [70] Tesche F M. Topological concepts for internal EMP interaction [J]. IEEE Trans. on EMC, 1978, 20(1):60-64
    [71] Baum C E, Liu T K, and Tesche F M. On the Analysis of General Multi-conductor Transmission - Line Networks [J]. Interaction Notes, Note 350, 1978
    [72] Baum C E. Generalization of the BLT Equation [J]. Interaction Notes, Note 511, 1995
    [73] Baum C E. Renormalization of the BLT Equation [J]. Interaction Notes, Note 597, 2005
    [74] Parmantier J P, et al. Electromagnetic topology: junction characterization methods[J]. Interaction Notes, Note 489, 1990
    [75] Parmantier J P. An Efficient Technique to Calculate Ideal Junction Scattering Parameters in Multiconductor Transmission Line Networks [J]. Interaction Notes, Note 536, 1998
    [76] Parmantier J P, Ferrieres X. Various Ways to Think of the Resolution of the BLT Equation with an LU Technique [J]. Interaction Notes, Note 535, 1998
    [77] Baum C E. Including Apertures and Cavities in the BLT Formalism [J]. Interaction Notes, Note 581, 2003
    [78] Tesche F M,Butler C M.On the addition of EM field propagation and coupling effects in the BLT equation [J]. Interaction Notes, Note 558, 2003
    [79] Tesche F M, and Butler C M. Example of the Use of the BLT Equation for EM Field Propagation and Coupling Calculations [J]. Interaction Notes, Note 591, 2004
    [80] Baum C E. Scattering Matrices for Nonuniform Multiconductor Transmission Lines [J]. Interaction Notes, Note 596, 2005
    [81] Besnier P. Electromagnetic topology: investigations of nonuniform transmission line networks [J]. IEEE Trans. Electromagnetic Compatibility, 1995, 37(2):227-233.
    [82] Baum C E. Extension of the BLT Equation into Time Domain [J]. Interaction Notes, Note 553, 1999
    [83] Tesche F M. On the analysis of a transmission line with nonlinear terminations using the time-dependent BLT equation [J]. IEEE Trans. Electromagnetic Compatibility, 2007, 49(2):427-433.
    [84] Tesche F M. Development and use of the BLT equation in the time domain as applied to a coaxial cable [J]. IEEE Trans. Electromagnetic Compatibility, 2007, 49(1):3-11.
    [85] Ba?c? H, Yilmaz A E, and Michielssen E. FFT-Accelerated MOT-based Solution of Time-Domain BLT Equations [C]. IEEE Symp. on Antennas propagat., 2006, 1175-1184
    [86] Tesche F M, Liu T K. Use Manual and Code Description for QV7TA: a General Multiconductor Transmission Line Analysis Code [R]. LuTech, Inc. report, August, 1978.
    [87]马永健. EMC设计工程实务[M].北京:国防工业出版社, 2008
    [88]翟会清.复杂电磁系统中的混合及快速算法研究及其应用[D]. Ph.D.,西安:西安电子科技大学, 2004
    [89]赵勋旺.复杂电磁环境中快速多极子方法的研究与应用[D]. Ph.D.,西安:西安电子科技大学, 2008
    [90]项铁铭.机载平台天线电磁兼容性研究[D]. Ph.D.,西安:西安电子科技大学,2004
    [91]刘子梁. MoM-UTD混合方法和高阶矩量法关键技术研究及其在电磁问题中的应用[D]. Ph.D.,西安:西安电子科技大学, 2007
    [92]周斌.全向宽带天线研究及星载天线系统的电磁干扰分析[D]. Ph.D.,西安:西安电子科技大学, 2006
    [93]牛臻弋.复杂移动平台环境中天线辐射问题的快速算法研究[D]. Ph.D.,南京:东南大学, 2006
    [94]王文博.三维复杂介质体电磁问题快速算法及其应用研究[D]. Ph.D.,南京:东南大学, 2008
    [95]宗显政.平台与天线的一体化电磁建模及工程实践研究[D]. Ph.D.,成都:电子科技大学, 2008
    [96]阙肖峰.导体介质组合目标电磁问题的精确建模和快速算法研究[D]. Ph.D.,成都:电子科技大学, 2008
    [97]汪柳平.强电磁脉冲与有孔矩形腔耦合及地下强电线与地下管线之间互感系数相关研究[D]. Ph.D.,北京:北京邮电大学, 2008
    [98]石丹.传输线理论在电磁干扰防护技术中的若干应用[D]. Ph.D.,北京:北京邮电大学, 2008
    [99]丁大志.复杂电磁问题的快速分析和软件实现[D]. Ph.D.,南京:南京理工大学, 2006
    [100]任猛.时域边界积分方程及其快速算法的研究与应用[D]. Ph.D.,长沙:国防科技大学,2008
    [101]周东明.时域积分方程快速算法及其应用研究[D]. Ph.D.,长沙:国防科技大学,2006
    [102]刘锋.时域积分方程在分析金属/介质及场-路混合问题中的算法研究与应用[D]. Ph.D.,长沙:国防科技大学,2007
    [103]陈淑凤.航天器电磁兼容技术[M].北京:中国科学技术出版社,2007
    [104] Ergul O, and Gurel L. Hierarchical Parallelization of MLFMA for the Efficient Solution of Large-Scale Electromagnetics Problems [C]. Proceeding of EWS 2008: 3-14
    [105] Ufimtsev P Y. Elementary edge waves and the physical theory of diffraction [J]. Electromagnetics, 1991, 11:125-160
    [106] Keller J B. Geometrical theory of diffraction [J]. Journal of the Optical Society of America, 1962, 52(2):116-130
    [107] Kouyoumjian R G, and Pathak P H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface [J]. Proceedings of the IEEE, 1974,62(11):1448-1461
    [108] Polemi A, et al. Incremental theory of diffraction for complex source illumination [C]. First European Conf. Ant. Propag., 2006, pp:1-5
    [109] Kipp R A, and Miller M C. Shooting-and-bouncing ray method for 3D indoor wireless propagation in WLAN applications [C]. Proc. IEEE Int. Symp. Ant. Propag., 2004, 2:1639-1642
    [110] Ghione G, et al. Complex ray analysis of radiation from large apertures with tapered illumination [J]. IEEE Trans. Antennas propagat., 1984, 32(7):684-693
    [111]董健.边界积分方程及快速算法在分析复杂电磁问题中的研究与应用[D]. Ph.D.,长沙:国防科技大学,2005
    [112] Krumpholz M, Katehi L. MRTD: new time-domain schemes based on multiresolution analysis [J]. IEEE Trans. Microwave Theory Tech., 1996, 44(4):555-571.
    [113] Liu Q. The pseudospectral time-domain method: a new algorithm for solutions of maxwell’s equations[C]. IEEE Symp. on Antennas propagat., 1997, (1): 122-125.
    [114] Ergin A A, Shanker B, Michielsen E. The plane wave time domain algorithm for the fast analysis of transient wave phenomena [J]. IEEE Ant. Prop. Mag., 1999,41: 39-52
    [115] Canning F X. Transformations that produce a sparse moment matrix [J]. Electromagnetic Waves Appl., 1990, 4:983-993
    [116] Musolino A, and Raugi M. Dual formulations of a hybrid FEM/MOM method for nonlinear analysis[of EM fields] [J]. IEEE Trans. Magnetics, 1999, 35(3):1380-1383
    [117]盛新庆.计算电磁学要论(第二版) [M].安徽:中国科学技术大学出版社,2008
    [118] Rao S M. Time domain electromagnetics [M]. Academic press, 1999
    [119] M F Costa. Electromagnetic radiation and scattering from a system of conducting bodies interconnected by wires [D]. Ph.D., Syracuse University, 1983.
    [120] Chung Y S, Sarkar T K, Jung B H, et al. Solution of time domain electric field integral equation using the Laguerre polynomials [J]. IEEE Trans. Antennas propagat., 2004, 52(9):2319-2328.
    [121] Eleftheriades G V, and Mosig J R. On the Network Characterization of Planar Passive Circuits Using the Method of Moments [J]. IEEE Trans. Microwave Theory Tech., 1996, 44(3): 438-445.
    [122]戴振铎,鲁述.电磁理论中的并矢格林函数[M].武汉:武汉大学出版社,2005
    [123]谢拥军,等. Ansoft HFSS基础及应用[M].西安:西安电子科技大学出版社,2007
    [124]刘其中,等. GTD中绕射线的寻迹[J].西安电子科技大学学报, 1991, 18(3):45-54
    [125] Wang B Q, et al. Visual Discrete GTD Ray Path Tracing on Aircraft [C]. Proc. IEEE Symp., Microwave, Ant., Propagat., EMC, 2005
    [126] Ng K H, Tameh E K, and Nix A R. A New Heuristic Geometrical Approach for Finding Non-Coplanar Multiple Edge Diffraction Ray Paths [J]. IEEE Trans. Antennas propagat., 2006, 54(9):2669-2672
    [127] Kobidze G, Shanker B, Michielssen E. Hybrid PO-PWTD scheme for analyzing of scattering from electrically large PEC objects [C]. IEEE Symp. Antennas propagat., 2003, vol.3: 547-550
    [128] Sun E Y, Rusch W V T. Time-domain physical-optics [J]. IEEE Trans. Antennas propagat., 1994, 42(1):9-15
    [129] Veruttipong T W. Time domain version of the uniform GTD [J]. IEEE Trans. Antennas propagat., 1990,38(11):1757-1764
    [130] Rousseau P R, Pathak P H. Time-Domain uniform geometrical theory of diffraction for a curved wedge [J]. IEEE Trans. Antennas propagat., 1995, 43(12):1375-1382
    [131] Robinson M P, et al. Analytical formulation for the shielding effectiveness of enclosures with apertures [J]. IEEE Trans. Electromagnetic Compatibility, 1998, 40(3):240-248
    [132] Azaro R, et al. A circuital approach to evaluating the electromagnetic field on rectangular apertures backed by rectangular cavities [J]. IEEE Trans. Microwave Theory Tech., 2002, 50(10):2259–2264
    [133] Khan Z A, Bunting C F, and Deshpande M D. Shielding effectiveness of metallic enclosures at oblique and arbitrary polarizations [J]. IEEE Trans. Electromagnetic Compatibility, 2005, 47(1):112–122
    [134] Araneo R, and Lovat G. Fast MoM analysis of the shielding effectiveness of rectangular enclosures with apertures, Metal Plates, and Conducting Objects [J]. IEEE Trans. Electromagnetic Compatibility, 2009, 51(2):274-283
    [135] Liu Q F, et al. Accurate characterization of shielding effectiveness of metallic enclosures with thin wires and thin slots [J]. IEEE Trans. Electromagnetic Compatibility, 2009, 51(2):293-300
    [136] Chen J, and Wang J. A three-dimensional semi-implicit FDTD scheme for calculation of shielding effectiveness of enclosure with thin slots [J]. IEEE Trans. Electromagnetic Compatibility, 2007, 49(2):354-360
    [137] Paul C R. A simple SPICE model for coupled transmission lines [C]. IEEE Symp. Electromagnetic Compatibility, 1988
    [138] Dommel H W. Digital computer solution of electromagnetic transient in single and multiphase networks [J]. IEEE Trans. Power App. Syst., 1969, pp:388-398
    [139]毛军发,李征帆.非均匀传输线综合的特征法[J].电子学报,1996,24(5):22-25
    [140]卢斌先,王泽忠.外场激励下多导体传输线响应的节点导纳分析法[J].电工技术学报,2007,22(10):145-149
    [141]唐旻,马西奎.一种用于分析高速VLSI中频变互连线瞬态响应的精细积分算法[J].电子学报,2004,32(5):787-790
    [142] Lee K. Two parallel terminated conductors in external fields [J]. IEEE Trans. Electromagnetic Compatibility, 1978, 20(2):288-297
    [143]《数学手册》编写组.数学手册[M].北京:高等教育出版社,1979
    [144] Tesche F M, et al. EMC Analysis Methods and Computational Models [M]. John Wiley and Sons, New York, 1997
    [145] Taylor C D. The Response of a Terminated Two-Wire Transmission Line Excited by a Nonuniform Electromagnetic Field [J], IEEE Trans. Antennas propagat., 1965, 13(6):987-989
    [146] Agrawal A K, et al. Transient Response of Multiconductor Transmission Lines Excited by a Nonuniform Electromagnetic Field [J], IEEE Trans. Electromagnetic Compatibility, 1980, 22(2):119-129
    [147] Rashidi F. Formulation of Field-to-Transmission Line Coupling Equations in Terms of Magnetic Excitation Field [J]. IEEE Trans. Electromagnetic Compatibility, 1993, 35(3):404-407
    [148] Paul, C R. Analysis of multiconductor transmission lines. Wiley, New York, 1994
    [149]倪谷炎,罗建书,李传胪. Taylor与Agrawal模型的解析求解与模型比较[J].强激光与粒子束,2007,19(9):1521-1525
    [150]毛钧杰,何建国.电磁场理论[M].长沙:国防科技大学出版社,1998
    [151]王宝和.电磁拓扑中BLT方程的建立及应用研究[D].国防科技大学硕士学位论文, 2006
    [152]翁凌雯,运用BLT方程研究高功率微波的电磁干扰[J].强激光与粒子束, 2005, 17(8):1272-1276
    [153]王万金.基于电磁拓扑的印刷电路板电磁辐射与耦合计算[D].国防科技大学硕士学位论文, 2008
    [154] Khalaj-Amirhosseini M. Analysis of coupled or single Nonuniform transmission lines using Taylor’s series expansion [J]. Progress in Electromagnetics Research, 2006, PIER 60:107-117
    [155] Tesche F M, and Liu T K. Selected topics in transmission-line theory for EMP internal interaction problems [J], Interaction Notes, Note 318, 1977.
    [156] Butcher J C, and Chipman F H. Generalized Padéapproximations to the exponential function [J]. BIT 1992,32():118-130
    [157]毛军发,李征帆.传输线时域响应分析中的改进型NILT方法[J].电子学报,1995, 23(3):55-57
    [158] Richard G J, and Nakhla M S. Time-domain analysis of lossy coupled transmission line [J]. IEEE Trans. Microwave Theory Tech., 1990, 38(10):1480-1486
    [159]齐磊,崔翔.基于时域有限差分法的电缆系统电磁瞬态分析[J].电子学报, 2006, 34(3):525-529
    [160]张志军,王泽忠.含分布源传输线方程的时域求解[J].高电压技术, 2007, 33(6):164-167
    [161] Mimouni A, et al. Lighting–induced overvoltages on overhead lines: modelling and experimental validation [J]. J. Electrical Engneering. 2007, 58(3):146-151
    [162] IEEE guide on surge testing for equipment connected to low-voltage A C power circuits, IEEE C 62.45-1987, New York: Institute of Electrical and Electronics Engineers, 1987
    [163] Gustavsen B, and Semlyen A. Rational approximation of frequency domain responses by vector fitting [J]. IEEE Trans. Power Delivery, 1999, 14(3):1052-1061
    [164]赫崇骏,韩永宁,袁乃昌,何建国.微波电路[M].长沙:国防科技大学出版社,1999
    [165]尤承业.基础拓扑学讲义[M].北京:北京大学出版社, 1997
    [166] Baum C E. How to think about EMP interaction [C]. Proceedings of the 1974 Spring FULMEN Meeting, Kirtland AFB, 1974
    [167] Tesche F M, et al. Internal interaction analysis: topological concepts and needed model improvements [J]. Interaction Note Series, IN-248, 1975.
    [168] Baum C E. Electromagnetic topology: A formal approach to the analysis and design of complex electronic systems [J]. Interaction Notes, IN-400,1980
    [169] Baum C E. Electromagnetic topology: The theory of the electromagnetic interference control [J]. Interaction Notes, IN-478,1989
    [170] Baum C E. Sublayer Sets and Relative Shielding Order in Electromagnetic Topology [J]. Interaction Notes, IN-416,1983
    [171] Noss R S. Alternative Labeling Schemes in Electromagnetic Topology [J]. Interaction Notes, IN-433,1989
    [172] Noss R S. Planarity Criteria in Electromagnetic Topology [J]. Interaction Notes, IN-434,1989
    [173] Baum C E. On the Use of Electromagnetic Topology for the Decomposition of Scattering Matrices for Complex Physical Structures [J]. Interaction Notes, IN-454,1985
    [174] Clark L H, Baum C E. Realization of Sublayer Relative Shielding Order in Electromagnetic Topology [J]. Interaction Notes, IN-471,1988
    [175] Parmantier J P, et al. An Application of the Electromagnetic Topology Theory onthe Test-Bed Aircraft, EMPTAC [J]. Interaction Notes, IN-506,1993
    [176] Parmantier J P, et al. ETE III: Application of the Electromagnetic Topology Theory on the Emptac [J]. Interaction Notes, IN-527,1997
    [177] Harrington R F. Time-harmonic electromagnetic fields [M]. McGraw-Hill Book Co. 1961
    [178] Ricketts, et al. EMP Radiation and Protective Techniques, John Wiley & Sons, New York, 1976
    [179] Besnier P. Electromagnetic Topology: An Additional Interaction Sequence Diagram for Transmission Line Network Analysis [J]. IEEE Trans. Electromagnetic Compatibility, 2006, 48(4):685-692
    [180] Bethe H A. Theory of diffraction by small holes [J]. The physical review, 1944, 66(7) and (8), 163-182
    [181]路宏敏.电磁兼容性预测研究[D]. Ph.D.,西安:西安交通大学, 2000
    [182]戴丽,等.多层电磁屏蔽的电磁拓扑图分析方法[J].强激光与粒子束, 2006, 18(9):1524-1526
    [183]徐俊明.图论及其应用[M].合肥:中国科技大学出版社, 1998
    [184] Kirawanich P, and Islam N E. An electromagnetic topology approach: crosstalk characterization of the unshielded twisted-pair cable [J]. Progress In Electromagnetics Research, 2006, PIER 58:285-299
    [185] Kirawanich P, et al. A generic topological simulation scheme for studying aperture electromagnetic field interactions and cable couplings [J]. J. Appl. Phys., 2007, 102, 024902
    [186] Kirawanich P, et al. An electromagnetic topology method for cable interactions using a radiating dipole at apertures [J]. IEEE Ant. And Wireless Prop. Letters, 2006, 5:220-223
    [187] Kirawanich P, et al. A method to characterize the interactions of external pulses and multiconductor lines in electromagnetic topology based simulations [J]. J. Appl. Phys., 2004, 96(10):5892-5897
    [188] Kirawanich P, et al. Electromagnetic topology quasisolutions for aperture interactions using transmission line matrix [J]. J. Appl. Phys., 2006, 99, 044910
    [189] Kirawanich P, et al. Methodology for interference analysis using electromagnetic topology techniques [J]. Appl. Phys. Letters, 2004, 84(15):2949-2951
    [190] George Tzeremes P K, et al. Transmission lines as radiating antenna in sources aperture interactions in electromagnetic topology simulations [J]. IEEE Ant. Wireless Prop. Letters, 2004, 3:283-286
    [191] Parmantier J P. Numerical coupling models for complex systems and results [J]. IEEE Trans. Electromag. Compat., 2004, 46(3):359-367
    [192] Aygün K, et al. A fast hybrid field-circuit simulator for transient analysis of microwave circuits [J]. IEEE Trans.Microw. Theory Tech., 2004,52(2):573–583
    [193] Paul C R. Fundamentals of electric circuit analysis [M]. Wiley, New York, 2001
    [194] Carlsson J, et al. EMEC-An EM simulator based on topology [J]. IEEE Trans. Electromag. Compat., 2004, 46(3):353-358
    [195] Jithesh V, et al. TopExpert: a knowledge based software for EM topology based interaction modeling [C]. Proc. International Conf. Computational Intelli. Multimedia Appl., 2007, pp:38-42
    [196] Davenport E M, et al. MESAF: innovative intermediate level EMC system design software [C]. IEE New EMC Issues in Design: Techniques, Tools and Components Seminar, 2004, pp:33-38
    [197] http://www.femap.com
    [198] http://www.fftw.org
    [199] http://www.gigasoft.com
    [200] http://gid.cimne.com