激光雷达/惯性组合导航系统的一致性与最优估计问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以惯性导航为核心的各种组合导航技术正得到广泛的研究与应用。近年来,基于外部环境测量的组合导航模式,由于具有自主导航能力强的特点,已经成为重要的研究方向。在各种外部环境测量手段中,激光雷达具备高精度重现三维环境的能力,测量信息丰富,不受复杂电磁环境影响,采用激光雷达和惯性系统构成的组合导航系统在军事及民用领域都有巨大的应用潜力和广阔的发展前景。
     本文研究了基于地标量测的激光雷达/惯性组合导航算法,对其中的关键技术和科学问题进行了深入分析,包括:地标特征提取中包含的一致性问题及其优化技术、激光雷达和惯性导航系统的量测一致性问题,组合导航最优估计的可观性问题和地标混合观测下的全局状态估计问题。论文的主要工作与创新点如下:
     (1)研究了基于地标量测的激光雷达/惯性组合导航算法的基本方法,包括不同特征地标的量测方程构造、空间非线性量测的线性化滤波器建模、点云扫描的归化问题,并分析了激光雷达/惯性组合导航中主要的误差源及其对系统的影响。分析认为,一致性与最优估计问题是影响激光雷达/惯性组合导航的关键因素。
     (2)研究了参数化点云特征提取及其参数空间一致性优化方法。首先研究了基于模型驱动的空间平面和圆柱面提取方法,深入分析了三维Hough变换的特点,指出传统三维Hough变换存在参数空间分割不一致问题。在此基础上,提出了基于对偶空间分割的三维Hough变换,在不改变计算量的情况下实现了参数空间的一致完备分割,对偶空间分割充分利用了传统Gauss分割的有效线性逼近,通过坐标旋转和重定义实现半球参数空间在测地线意义上的完备且一致分割,从而避免了多值性问题,保证了特征提取的一致性。实验表明,对偶空间分割能够唯一、有效检测半球面上任意方向的参数化地标。
     (3)研究了多尺度一致的点云局部特征提取算法。首先分析点云平滑算法,证明多尺度几何流点云平滑方法等价于三维网格上的高斯核方法,然后利用几何流平滑方法建立多尺度点云,并通过特征曲率检测方法提取不同尺度下的几何局部特征。然后在多尺度几何局部特基础上研究了相应特征描述符和匹配方法,最终实现了多尺度一致的点云局部特征提取与匹配。实验表明,算法能够应用于复杂环境下的导航地标检测和匹配,所提取特征在旋转、平移、尺度变化下能够保持一致性。同时,相比传统依赖网格的特征提取算法,本文算法的计算开销大为减小
     (4)研究了激光雷达/惯性系统的量测一致性问题,即二者的精确空间关系标定算法。首先研究了激光雷达和惯性系统的标定几何原理;针对控制点标定模型,建立了扫描线量测修正模型,得到基于对标定区域扫描激光强度图的改正量测;利用修正后的控制点量测构建了多矢量旋转参数估计方程,引入Wahba姿态确定算法,将旋转参数求解转变为四元数优化问题,得到了旋转参数的全局最优解,避免了小角度假设带来的理论缺陷;并以此为基础分析了参数解的最优化问题。最后利用实际激光雷达数据进行了验证,实验结果表明,在大角度标定条件下,相比传统平差方法,算法能够提高6.71%的精度,并且在一定范围内随着噪声增加,优化算法的精度没有明显降低。
     (5)从理论上分析了激光雷达/惯性组合导航的可观性问题。利用非线性全局可观性分析方法,针对不同类型地标,从全局可观的角度推导出满足系统可观的地标观测集合,将传统LOS量测导航的可观性结论从局部可观推广到全局可观,放松了对地标观测的要求。数值仿真和实际实验说明本文得到的全局可观性结论可靠、有效,全局可观性分析方法对组合导航系统设计具有重要的理论价值。组合导航估计的结果表明,激光雷达/惯性组合导航系统的水平定位精度优于5m,姿态角精度优于0.1~o,能够满足实际使用需求。
     (6)深入研究了激光雷达/惯性组合导航系统中的全局状态估计算法。研究了基于绝对/相对地标混合观测的组合导航算法,在其中利用状态扩展实现导航参数和地标位置的全局状态估计;在此基础上,详尽分析了绝对/相对地标混合观测条件下相对地标的收敛性,指出单纯的相对地标估计为弱收敛,即多个地标之间的相对位置收敛,而具备绝对地标参与的混合观测中,地标能够强收敛到绝对位置。进一步,分析了混合观测条件下导航参数的收敛性,证明系统导航参数精度在混合观测条件下最优。数值仿真表明,混合观测组合导航具有明显优势,全局状态估计算法在全程精度和最终精度上都优于单纯观测绝对地标和单纯观测相对地标的传统算法。
Reasearchers have developed various of integrated navigation systems for large number of applications, which mainly designed with Inertial Navigation System as principal part. But systems using satelliates to aid INS suffer the problem of signal jamming and blocking. So independent integrated system, which sensing the environment to aid INS, are regarded as one potential solution. Compare to many kinds of senors, LIDAR(Light Detection and Ranging) is able to mapping 3D environment directly and accurately. So it is possible to integrate LIDAR and INS for precise navigation on military or civil area.
     In this dissertation, some key technologies of LIDAR/INS integrated system are offered, including consistency problem for 3D feateure detection, measurement consistency problem between LIDAR and INS system, global observability analysis and global steates estimation for integrated system. These four problems are tight parts for a whole. The main contributions include the following aspects:
     (1) The basic frame of integrated navigation is discussied, including measurements construction with three type landmarks, linearization model for filter, 3D points cloud transtition into key frame. Also the error source of integrated system is discussied. The analysis result indicates it is feasible to build the LIDAR aiding INS integetrated system.
     (2) Inorder to dectction regular landmarks such as patch or cylinder, the 3D Hough Transform is deeply analysed. For 3D case, the Hough Transform must divide the parameters on the spherical surface, but the Gaussian segmentation is only average on parameter space but not on sphere geodesic, which may cause singularity for patch’s or cylinder’s normal which point to high latitude area. If the singularity phenomena were appeared, the landmark detection is unconsistency. Then the dual segementation of sphere parameter is proposed to avoid the singularity phenomena, which divide the sphere into two approximate Gussian coordinates and define coordinates with different area and rotations. Based on dual segementation, the dual 3D Hough Transform can get complete and consistent segmentation for half sphere, then the landmark detection is nearly consistent for all area of sphere. The experiments show that dual 3D Hough Transform can dectect regular landmarks with arbitrary normal.
     (3) The dissertation discussed local interest point detector in points cloud with multi-scale consistency. The equivalence between Gaussian kernel on grid and the unorganized multi-scale geometry flow smoothing method is established. Based on multi-scale geometry flow smoothing, the interest point is detected with characteristic curvature, which is invariant to scale, rotation and transition. Also the descriptor of local curvature is proposed for points cloud matching. The experiment show that local interest point detector performs well in complicated environment.
     (4) The measurements consistency between LIDAR and INS is discussed, which also called calibration problem of integrated system. Firstly, the measurement geometry is proposed with control points and control area. Then the scan line correction algorithm is discussed for laser intensity image, which revise the raw control points to ground truth points. In order to slove the rotation matrix, the Wahba attitude determination alograthim is imported to estimate the matix with SO(3) restrict, which gets a global optimized result. The experiments using real LIDAR is implemented and the result shows that in large biases case, the algorithm can improve 6.71% accuracy than least squre method. Also with noise increase, the estimation is robust.
     (5) The newly theoretical analysis of nonlinear global observability of LIDAR/INS integrated system is propsed. Considering integrated system respectively with high precision INS and low precision INS, the dissertation gives the global observability conditions respectively for three types of landmarks. The result of observability extends the covariance anlyisis result of mutli-LOS(line of sight) observation and be more comprehensible than conventional conclusion. The observability analysis is straightforward and intuitionistic, which provide a theoretic fundation in designing the filter for integrated navigation. The simulation and experiments result shows that positioning accuracy of integrated navigation system is better than 5m, the attitude accuracy is better than 0.1o.
     (6) The hybrid estimation algorithm is propsed, which using global extended states to estimate both navigation states and landmark location. In conventional SLAM method, the location of landmarks can be estimated for revising the vehicle’s postion. For that LIDAR is a popular senor in SLAM, it is worthful to import this mehod into LIDAR/INS integrated navigation. The convergence of landmark in integrated navigation is discussed. The result shows that convergence in SLAM is weakly but this weakly convergence can transfer to strong convergence when there be observations of absolute landmarks. Furthermore, the strong convergence of landmarks can lead the location of vehicle to strong convergence, which improves the total location accurary for full navigation process. The simulation result shows the hybrid algorithm performs better than pure SLAM and pure integrated navigation mehod. Key Words:Integrated Navigation; LIDAR(Light Detection Radar); Strapdown Inertial Navigation System; System Consistency; 3D Interest Points Detection; Attitude Determination; Nonlinear Global Observability; Global States Extend; Estimation Convergence
引文
[1]董绪荣,张守信,华仲春. GPS/INS组合导航定位及其应用[M].长沙:国防科技大学出版社, 1998.
    [2]秦永元.惯性导航[M].北京:科学出版社, 2005.
    [3]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社, 1998.
    [4] HILIUTA A, LANDRY REJ, GAGNON FO. Fuzzy Corrections in a GPS/INS Hybrid Navigation System[J]. IEEE Transactions on Aerospace and Electronics System, 2004,40(2): 10.
    [5]徐帆,房建成.基于状态转移矩阵的SINS/星光组合速度位置误差估计方法[J].航天控制, 2007,125(6): 27~32.
    [6]许大欣.利用重力异常匹配技术实现潜艇导航[J].地球物理学报, 2005,48(4): 812~816.
    [7] Johnson AE, Ansar A, Matthies LH. A General Approach to Terrain Relative Navigation for Planetary Landing[C]: AIAA Conference and Exhibit, Rohnert Park, California, 2007.
    [8] T. J. Broida, Chandrashekhar S, Chellappa R. Recursive 3D moition estimation from a monoclular image sequence[J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1990,26(2): 18.
    [9] Kilian J, Haala N, English M. Capture and Evaluation of Airborne Laser Scanner Data[C]: IAPRS, Vienna. 1996.
    [10] Kremer J, Hunter G. Performance of the StreetMapper Mobile LIDAR Mapping System in "Real World" Projects[C]: Photogrammetric Week, Wichmann. 2007.
    [11] Shih T-Y, Airborne Lidar: The Technology and Development: National Chiao-Tung University, 2007.
    [12]李清泉,李必军,陈静.激光雷达测量技术及其应用研究[J].武汉测绘科技大学学报, 2000,25(5): 1~6.
    [13] Bailey T, Durrant-Whyte HF. Simultaneous localization and mapping (SLAM): Part II, State of theart[J]. IEEE Robotics and Automation Magazine, 2006,13(3): 108~127.
    [14] Haag MUd. Aiding Techniques for Integration of Ladar with Inertial Navigation System[C]: Position Location and Navigation Symposium, Indian Wells, USA, 2010.
    [15] Jackel L, DARPA’s LAGR and UPI Programs: DARPA, 2002.
    [16] Defense Advanced Research Projects Agency (DARPA) Grand Challenge. http://www.darpa.mil/grandchallenge/index.asp, [M]. 2007.
    [17] Kaula WM, Schubert G, Lingenfelter RE. Apollo Laser Altimetry and Inferences as to Lunar Structure[C]: the 5th Lunar Science Confernce. 1974.
    [18] Garvin JB, Bufton J, Blair JB. Observations of Earth's Topography from the Shuttle Laser Altimeter: Laser-pulse Echo-recovery Measurements of Terrestrial Surfaces[J]. Physic and Chemistry of Earth, 1988,23(9): 1053~1068.
    [19] Ellum CM. The Development of a Backpack Mobile Mapping System [D].calgary: University of Calgary, 2001.
    [20] Corp. S. Technology of SICK LMSs [M]. 2007.
    [21] Flood M. Commercial Lidar Technology: The Next Five Years[C]: ASPRS Conference, St. Louis. 2001.
    [22] Huising EJ, Pereira LMG. Errors and Accuracy Estimates of Laser Data Acquired by Various Lasr Scanning Systems for Topographic Applications[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998,53(4): 245~261.
    [23] Jim′enez AR, Seco F. A Short-range Ship Navigation System based on Ladar Imaging and Target Tracking for Improved Safety and Efficiency[J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2009,10(1): 186~215.
    [24] Mongeon RJ. Optical Doppler Radar System Using a Conically Scanned Laser Beam:USA[P].
    [25] Kraus K, Pfeifer N. Dtermination of Terrain Models in Wooded Areas with Airborne Laser Scanner Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998,53(4): 193~212.
    [26] Metzdorff WP, Eiber M. Linear Method of Navigation:United States [P].
    [27] Hicks AC. Terrain Navigation Apparatus Patent United States[P].
    [28] Handley RJ. Future Terrain Referenced Navigation Techniques Exploiting Sensor Synergy[C]: he European Navigation Conference, Graz, Austria. 2003.
    [29] Campbell JL. APPLICATION OF AIRBORNE LASER SCANNER - AERIAL NAVIGATION[D], 2006.
    [30] Honeywell, Precision Terrain Aided Navigation(PTAN): Honeywell Brochure, 2005.
    [31] Smearcheck MA. Investigation of Dual Airborne Laser Scanners for Detection and State Estimation of Mobile Obstacles in an Aircraft External Hazard Monitor[D]: Ohio University, 2008.
    [32] Campbell JL, Miller MM, Haag MUd, et al. Flash-LADAR Inertial Navigator Aiding[C]: ICRA. 2006.
    [33] Grejner-Brzezinska A, Terrain-based navigation:LiDAR-and terrestrial scanner supported navigation concept: Ohio University, 2008.
    [34] TOTH CK, GREJNER-BRZEZINSKA DA, LEE Y-J. RECOVERY OF SENSOR PLATFORM TRAJECTORY FROM LIDAR DATA USING REFERENCE SURFACES[C]: 14th Symposium on Geodesy for Getechnical and Structural Engineering, Lisbon, 2008.
    [35] Besl P, McKay N. A method for Registration of 3-D Shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(2): 239~256.
    [36] Dezert J. Joint probabilistic data association for autonomous navigation[J]. IEEE Transactions on Aerospace and Electronics Systems, 1993,29(4): 1975~1985.
    [37] Castellanos JA, Devy M, Tardos JD. Towards a topological representation of indoor environments: A landmark-based approach[C]: IEEE/RSJ International Conference on Intelligent Robots and Systems. 1999.
    [38] Choi Y-H, Lee T-K, Oh S-Y. A line feature based SLAM with low grade range sensors using geometric constraints and active exploration for mobile robot[J]. Auton Robot, 2008,(24): 13~27.
    [39] Bailey T. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments[D]: The University of Sydney, 2002.
    [40] Thrun S, Robotic Mapping: School of Computer Science, Carnegie MellonUniversity, 2002.
    [41] Newman PM. On the Structure and Solution of the Simultaneous Localisation and Map Building Problem[D]: The University of Sydney, 1999.
    [42] Brenneke C, Wulf O, Wagner B. Using 3D Laser Range Data for SLAM in Outdoor Environments[C]: IROS, 2003.
    [43] Kohlhepp P, Pozzo P, Walther M, et al. Sequential 3D-SLAM for mobile action planning[C]: IEEE/RSJ International Conference on Intelligence Robots and Systems, Sendai,Japan, 2004.
    [44] Nuchter A. Parallelization of Scan Matching for Robotic 3D Mapping[C]: ECMR, 2007.
    [45] Viejo D, Cazorla M. 3D plane-based egomotion for SLAM on semi-structured environment[C]: IEEE/RSJ International Conference on Intelligence Robotics and Systems, 2007.
    [46] Madhavan R, Messina E. Iterative Registration of 3D LADAR Data for Autonomous Navigation[C]: Proceedings of the IEEE Intelligent Vehicles Symposium, Columbus, , 2003.
    [47] Gilg A, Schmidt G. Landmark Oriented Visual Navigation of Mobile Robot[J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1994,41(4): 392~397.
    [48]徐启阳,杨坤涛,王新兵, et al.蓝绿激光雷达海洋探测[M].北京:国防工业出版社, 2002.
    [49] Fenton RC. LADAR-BASED POSE ESTIMATION ALGORITHM FOR DETERMINING RELATIVE MOTION OF A SPACECRAFT FOR AUTONOMOUS RENDEZVOUS AND DOCK[D]. Logan, Utah: UTAH STATE UNIVERSITY, 2008.
    [50] Hebert M, Vandapel N. TERRAIN CLASSIFICATION TECHNIQUES FROM LADAR DATA FOR AUTONOMOUS NAVIGATION[C]: ICRA. 2007.
    [51] Joerger M, Pervan B. Automous Ground Vehichel Navigation using Integrated GPS and Laser-scanner Measuremnt[C]: IEEE/ION PLANS, 2006.
    [52] Fekete SP, Klein R, Nüchter A. Online searching with an autonomous robot[J]. Computational Geometry, 2006,(34): 14.
    [53] Vandapel N, Raghavendra, Hebert DM. Experimental Results in Using Aerial LADAR Data for Mobile Robot Navigation[C]: The 4th International Conference on Field and Service Robotics, 2003.
    [54] Johnson A. Spin-Images: A Representation for 3-D Surface Matching[D]: Carnegie Mellon University, 1997.
    [55] Vandapel N, Hebert M, Finding Organized Structures in 3-D LADAR Data[R]. Pittsburgh,: The Robotics Institute Carnegie Mellon University 2004.
    [56] Johnson P, Unmanned aerial vehicle as the platform for lightweight laser sensing to produce sub-meter accuracy terrain maps for less than 5km: Columbia University, 2006.
    [57] Tungadi F, Kleeman L. Multiple Laser Polar Scan Matching with Application to SLAM[C]: IEEE/RSJ International Conference on Intelligence Robotics and Systems, 2008.
    [58] Grisetti G, Stachniss C. Learning Grid Maps with Rao-Blackwellized Particle Filters[C]: ECMR, 2007.
    [59] Guivant J, Nebot E, Baiker S. Autonomous Navigation and Map building Using Laser Range Sensors in Outdoor Applications[J]. Journal of Robotic Systems, 2000,17(10): 565~583.
    [60] Wang X, Toth C, Grejner-Brzezinska D, et al. INTEGRATION OFTERRESTRIAL LASER SCANNER FOR GROUND NAVIGATION IN GPS-CHALLENGED ENVIRONMENTS[C]: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Beijing 2008, Beijing,China, 2008.
    [61] Travis W, Simmons AT, Bevly DM. Corridor Navigation with a LiDAR/INS Kalman Filter Solution[C]: IEEE INTELLIGENT VEHICLE CONFERENCE,, LAS VEGAS, NEVADA, 2005.
    [62] Soloviev A, Bates D, Graas Fv. Tight Coupling of Laser Scanner and Inertial Measurements for a Fully Autonomous Relative Navigation Solution[J]. Journal of the Institute of Navigation, 2007,53(3): 124~133.
    [63] Soloviev A. Tight Coupling of GPS, Laser Scanner, and Inertial Measurements for Navigation in Urban Environments[C]: Proceedings of IEEE/ION Position Location and Navigation Symposium, Monterey,CA, 2008.
    [64] Soloviev A, Graas FV. Use of Deeply Integrated GPS/INS Architecture and Laser Scanners for the Identification of Multipath Reflections in Urban Environments[J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2009,3(5): 786~797.
    [65] Glennie C. Reign of Point Clouds - A Kinematic Terrestrial LIDAR Scanning System [J]. Inside GNSS, 2007,(3): 22~31.
    [66] Haag MUd, Zhu Z, Soloviev A, et al., Tightly-Integrated LADAR/INS Algorithm Development to Support Urban Operations: Ohio University, 2009.
    [67] Haag MUd, An Integrated LIDAR/IMU/GPS Navigation and Surveillance: Ohio University, 2004.
    [68]李德仁.移动测量技术及其应用[J].地理空间信息, 2006,4(4): 1~5.
    [69] SOLOVIEV A, HAAG MUD. Three-Dimensional Navigation with Scanning Ladars: Concept & Initial Verification[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010,46(1): 14~31.
    [70] Besl PJ, Jain RC. Three-dimensional object recognition[J]. ACM Computing Surveys, 1985,17(1): 17~36.
    [71] Levoy M, Whitted. T, The use of points as display primitives[R]. Chapel Hil: University of North Carolina, 1985.
    [72]张广军.机器视觉[M].北京:科学出版社, 2005.
    [73] Greenspan M, Boulanger P. Efficient and reliable template set matching for 3D object recognition[C]: 2nd International Conference on 3-D Digital Imaging and Modeling, Ottawa, Canada., 1999.
    [74] Yoon JS, MyungSagong JS, Lee K-s. Feature extraction of a concrete tunnel line from 3D laser scanning data, 2009. 42: 97-105.[J]. NDT&E International 2009,(42): 97~105.
    [75] Wang C, Glenn NF. Integrating LiDAR Intensity and Elevation Data for Terrain Characterization in a Forested Area[J]. IEEE Geoscience and Remote Sensing Letters, 2009,6(3): 463~466.
    [76]章大勇,吴文启,吴美平, et al.基于三维Hough变换的机载激光雷达平面地标提取[J].国防科技大学学报, 2010,32(2): 130~134.
    [77] Loannou H, Laine D. Circle recognition through a 2D Hough transform and radius histogram[J]. Image and Vision Computing, 1999,17(1): 15~25.
    [78] Hough PVC. Method and Means for Recognizing Complex Patterns:United States[P].
    [79] Debnath L, Bhatta D. Integral Transforms and Their Applications. [M]. Chapman & All/CRC, 2007.
    [80] KRISHNAPURAM R, CASASENT D. Determination of Three-Dimensional Object Location and Orientation from Range Images[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989,11(11): 1158~1167.
    [81] Khoshelham K. EXTENDING GENERALIZED HOUGH TRANSFORM TO DETECT 3D OBJECTS IN LASER RANGE DATA,[C]: SPRS Workshop on Laser Scanning and SilviLaser Finland,Finland. 2007.
    [82] Lohani B, Singh R. Development of a hough transform based algorithm for extraction of buildings from actual and simulated LiDAR data[C]: Mapworld Forum, Hyderabad. 2007.
    [83] Shkolnisky Y, Averbuch A, 3D Fourier Based Discrete Radon Transform[R]. Tel Aviv , Israel: Tel Aviv University, 2004.
    [84] Censi A, Carpin S. HSM3D: feature-less global 6DOF scan-matching in the Hough/Radon domain[C]: ICRA. 2009.
    [85] Vasile AN, Marino RM. Pose-Independent Automatic Target Detection and Recognition Using 3D Laser Radar Imagery[J]. LINCOLN LABORATORY JOURNAL, 2005,15(1): 61~78.
    [86] Besl PJ, Jain RC. Intrinsic and Extrinsic Surface Characteristics[C]: Computer Vision and Pattern Recognition, 1985.
    [87] Haralick RM, Laffey TJ, Watson LT. Topographic Primal Sketch[J]. Journal of Robotics Reserach, 1983,2(1): 50~62.
    [88] Monga O, Benayoun, Using Partial Derivatives of 3D Images to Extract Typical Surface Featrues: INRIA, 1992.
    [89] Moemoli F, Sapiroy G. A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data[J]. Found Comput Math, 2005,(3): 313~347.
    [90] Ruggeri M, Saupe D. Isometry-invariant matching of point set surfaces[C]: Eurographics Workshop on 3D Object Retrieval. 2008.
    [91] Flint A, Dick A, Hengel Avd. Local 3D structure recognition in range images[J]. IET Comput Vission, 2008,2(4): 208~217.
    [92] Golovinskiy A, Kim VG, Funkhouser T. Shape-based Recognition of 3D Point Clouds in Urban Environments[C]: ICCV. 2009.
    [93] Jagannathan A. Segmentation and Recognition of 3D Point Clouds within Graph-theoretic and Thermodynamic Frameworks[D]. Boston: Northeastern University, 2005.
    [94] Pauly M, Keiser R, Gross M. Multi-scale feature extraction on point-sampled surfaces[C]: Eurographics Conference. 2003.
    [95] Sankaranarayanan J, Samet H, Varshney A. A fast all nearest neighbor algorithm for applications involving large point-clouds[J]. Computers & Graphics, 2007,31(2): 157~174.
    [96] Schnabel R, Wahl R, Wessel R, et al., Shape Recognition in 3D Point-Clouds[R]. Bonn: Institut für Informatik Universit?t Bonn, 2007.
    [97] Kalogerakis E, Nowrouzezahrai D, Simari P, et al. Extracting lines of curvature from noisy point clouds[J]. Computer-Aided Design, 2009,41(2): 282~292.
    [98] Blvd. S, LIDAR ACCURACY: Airborne 1 Corporation, 2005.
    [99] Vallet J. High Precision Lidar Mapping for Complex Mountain Topography[C]: 6th ICA Mountain Cartography Workshop. 1998.
    [100] Schenk T, Modeling and Analyzing Systematic Errors in Airborne Laser Scanners[R]. Ohio: Department of Civil and Environmental Engineering and Geodetic Scinece, 2001.
    [101] Krabill WB, Wright CW. Airborne Laser Mapping of Assateague National Seashore Beach[J]. Photogrammetric Engineering and Remote Secsing, 2000,66(1): 65~72.
    [102] Baltsavias EP. Airborne Laser Scanning: Basic Relationgs and Formulas[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 1999,54(3): 199~214.
    [103] Favey E. Investigation and improvement of airborne laser scanning technique for monitoring surface elevation changes of glaciers[D]. ETH.Zurich: Technische wissensch aften, 2001.
    [104] Burman H. Calibration and Orientation of Airborne Image and Laser Scanner Data Using GPS and INS[D]. Stockholm, 2000.
    [105] Morin K, El-Sheimy N. Post-mission Adjustment Methods of Airborne Laser Scanning Data[C]: FIG XXII International Congress Washington DC. 2002.
    [106]张小红.机载激光雷达测量技术理论与方法[M].武汉:武汉大学出版社, 2007.
    [107] Wehr A. Detecting and Identifying Topographic Objects in Imaging Laser Altimeter Data[C]: Joint ISPRS Comission III/IV Workshop. 1997.
    [108] Schiele O. OPERATIONAL CALIBRATION OF AIRBORNE LASERSCANNERS BY USING LASCAL[C]: Proceedings of OEEPE Workshop on Airborne Laserscanning, Stockholm Sweden. 2004.
    [109] Guerreiro B, Silvestre C, Oliveira P, et al. Nonlinear and Geometric Optimization Methods for LADAR Calibration[C]: 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, May 19-23, 2008. 2008.
    [110] Kalman RE. Contributions to The Theory of Optimal Control[J]. Boletin de la Sociedad Matematica Mexicana, 1960,5: 102~119.
    [111] Bar-Itzhack IY, Berman N. Control Theoretic Approach to Inertial Navigation Systems [J]. AIAA Journal of Guidance, Control and Dynamics, 1988,11(3): 237~235.
    [112] JIANG YF, LIN YP. Error Estimation of INS Ground Alignment Through Observability Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992,28(1): 92~97.
    [113] Goshen-Meskin D, Bar-Itzhack IY. Observability Analysis of Piece-Wise Constant Systems-Part I: Theory[J]. IEEE Trans on Aerospace and Electronic Systems, 1992,28(4): 1056~1067.
    [114] Goshen-Meskin D, Bar-Itzhack IY. Observability Analysis of Piece-Wise Constant Systems-Part II: Application to Inertial Navigation In-flight Alignment[J]. IEEE Trans on Aerospace and Electronic Systems, 1992,28(4): 8.
    [115] Chen Z. Local Observability and Its Application to Multiple Measurement Estimation[J]. IEEE Transactions on Industrial Electronics, 1991,38(6): 491~496.
    [116]吴美平,胡小平.捷联惯导系统误差状态可观性分析[J].宇航学报, 2002,23(2): 54~57.
    [117] Lee JG, Park CG, Park HW. Multiposition Alignment of Strapdown Inertial Navigation System[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993,29(4): 1323~1328.
    [118]齐振恒.航空制导弹药导航系统技术研究[D].长沙:国防科技大学, 2010.
    [119] Hong S, Lee MH, Chun H-H, et al. Observability of Error States in GPS/INS Integration[J]. IEEE Trans on Vehicular Technology, 2005,54(2): 731~743.
    [120] Mirzaei FM, Roumeliotis SI. A Kalman Filter-Based Algorithm for IMU-Camera Calibration: Observability Analysis and Performance Evaluation[J]. IEEE TRANSACTIONS ON ROBOTICS, 2008,24(5): 14.
    [121] Rhee I, Abdel-Hafez MF, Speye JL. On the Observability of an Integrated GPS/INS During Maneuvers[C]: ION GPS 2002, Portland.
    [122] Wu Y, Tang Y, Zhang H. Comments and Further Results on "Observability of an Integrated GPS/INS during Maneuvers"[J]. IEEE Trans on Aerospace and Electronic Systems, 2010,46(3): 1566~1568.
    [123]程向红,万德钧,仲巡.捷联惯导系统的可观测性和可观测度研究[J].东南大学学报, 1997,27(6): 6~11.
    [124] Sun D, Crassidis JL. Observability Analysis of Six-Degree-of-Freedom Conguration Determination Using Vector Observations[J]. Journal of Guidance, Control, and Dynamics, 2002,25(6): 9.
    [125] BRYSON M, SUKKARIEH S. Observability Analysis and Active Control for Airborne SLAM[J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2008,44(1): 20.
    [126] Kim JH, Sukkarieh S. Autonomous airborne navigation in unknown terrain environments[J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2004,40(3): 15.
    [127] Ham FM, Brown RG. Observability, Eigenvalues, and Kalman Filtering 1983[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983,19(2): 269~273.
    [128] Wu Y, Goodall C, El-sheimy N. Self-calibration for IMU/Odometer Land Navigation: Simulation and Test Results[C]: ION International Technical Meeting, San Diego. 2010.
    [129] Wu Y, Wu M, Hu X, et al. Self-calibration for Land Navigation Using Inertial Sensors and Odometer: Observability Analysis[C]: AIAA Guidance, Navigation and Control Conference Chicago, Illinois, USA. 2010.
    [130] Tang Y, Wu Y, Wu M. INS/GPS Integration: Global Observability Analysis[J]. IEEE Transactions on Vehicular Technology, 2009,58(3): 14.
    [131] Wu Y, Zhang H, Wu M, et al. Observability of SINS Alignment: A Global Perspective[J]. to appear in IEEE Trans on Aerospace and Electronic Systems, 2010.
    [132] Durrant-Whyte HF, Bailey T. Simultaneous localization and mapping (SLAM): Part I, The essential algorithms[J]. IEEE Robotics and Automation Magazine, 2006,13(2): 99~108.
    [133] Smith R, Self M, Cheeseman P. Estimating Uncertain Spatial Relationships in Robotics[C], New York. Springer Verlag,, 1988.
    [134] Frese U, Larsson P, Duckett T. A multilevel relaxation algorithm for simultaneous localization and mapping[J]. IEEE Transactions on Robotics, 2005,21(2): 196~207.
    [135] Frese U, Hirzinger G. Simultaneous Localization and Mapping-A Discussion [C], Seattle, WA. 2001.
    [136] Dissanayake MWMG, Newman P, Clark S, et al. A Solution to the Simultaneous Localization and Map Building (SLAM) Problem[J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001,17(3): 229~241.
    [137] Mourikis AI, Roumeliotis SI. Analysis of Positioning Uncertainty inSimultaneous Localization and Mapping (SLAM)[C]: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan.
    [138] Lee KW, Wijesoma WS, Javier IG. On the Observability and Observability Analysis of SLAM[C]: Proc IEEE/RSJ, International Conference on Intelligent Robots and Systems, 2006.
    [139] Andrade-Cetto J, Sanfeliu A. The Effects of Partial Observability When Building Fully Correlated Maps[J]. IEEE TRANSACTIONS ON ROBOTICS, 2005,21(4): 771~778.
    [140] Wang Z, Dissanayake G. Observability Analysis of SLAM Using Fisher Information Matrix[C]: International Conference on Control, Automation, Robotics and Vision, Hanoi, Vietnam. 2008.
    [141] Huang S, Dissanayake G. Convergence and Consistency Analysis for Extended Kalman Filter Based SLAM[J]. IEEE TRANSACTIONS ON ROBOTICS, 2007,23(5): 1036~1049.
    [142]季秀才.机器人同步定位与建图中数据关联问题研究[D].长沙:国防科学技术大学, 2008.
    [143] Willersa J, Jin M, Eksioglub B, et al. A post-processing step error correction algorithm for overlapping LiDAR strips from agricultural landscapes[J]. computers and electronics in agriculture, 2008,64(1): 183~193.
    [144] Petzold B, Axelsson P. Result of the OEEPE WG on Laser Data Acqusition[J]. International Archives of Photogrammetry and Remote Sensing, 2000,33(B3): 718~723.
    [145] Antonarakis AS, Richards KS, Brasington J. Object-based land cover classification using airborne LiDAR[J]. Remote Sensing of Environment, 2008,2008(1): 2988~2998.
    [146]汤勇刚.北斗载波相位时间差分捷联惯导组合导航及相关技术研究[D].长沙:国防科技大学, 2007.
    [147] Semple JG, Roth L. Introduction of Algebraic Geometry[M]. Oxford: Clarendon Press, 1949.
    [148]刘少创.机载激光测距—扫描成像制图系统的定位原理与误差分析[J].武汉测绘科技大学学报, 1999,24(2): 124~128.
    [149] SHOEMAKE K. Animating rotation with quaternion curves[C]: 12th annual conference on Computer graphics and interactive technique, 1985.
    [150] Wareham R, Cameron J, Lasenby J. Applications of conformal geometric algebrain computer vision and graphic[C]: Proceedings of Computer Algebra and Geometric Algebra with Applications. 2004.
    [151] Hide C, Moore T. Low Cost Sensors, High Quality Integration[C]: Proceedings of NAV/AIS04, London, 2004.
    [152] Seifert A, Kleusberg A. An Alternative Formulation for the Integration of GPS and INS Measurements[C]: ISPRS Workshop Theory, Technology, Methodology and Realities of Inertial / GPS Sensor Orientation, Castelldefels, Spain, 2003.
    [153]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制理论与方法[M].北京:科学出版社, 2009.
    [154] Brenner C. Building reconstruction from images and laser scanning[J]. International Journal of Applied Earth Observation and Geoinformation, 2005,6(2): 187~198.
    [155] Chen T, Chung K. An efficient randomized algorithm for detecting circles[J]. Computer Vision and Image Understanding, 2001,83(2): 172~191.
    [156]李智磊,翟宏琛,王明伟.一种可识别破碎图形的特殊广义Hough变换方法[J].物理学报, 2007,56(6): 3234~3239.
    [157] Rong CL, Wen. GT. Perspective-transformation-invariant Generalized Hough Transform for Perspective Planar Shape Detection and Matching[J]. Pattern Recognition, 1997,30(3): 383~396.
    [158]黎自强,滕弘飞.广义Hough变换:多个圆的快速随机检测[J].计算机辅助设计与图形学学报, 2006,18(1): 27~33.
    [159] Xu L, Oja E. Randomized Hough transform ( RHT) : basic mechanisms , algorithms , and computational complexities[J]. CVGIP : Image Understanding, 1993,57(2): 131~153.
    [160]孟道骥,梁科.微分几何[M].北京:科学出版社, 1999.
    [161]侯妙乐,赵学胜,陈军.球面数字空间下的基本拓扑模型[J].地理信息世界, 2004,2(2): 38~43.
    [162]严寒冰,胡事民.球面坐标下的凸组合球面参数化[J].计算机学报, 2005,28(6): 927~932.
    [163] Lohani B, Mishra RK. GENERATING LIDAR DATA IN LABORATORY: LIDAR SIMULATOR[C]: ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland. 2007.
    [164] Rohr K. On 3D differential operators for detecting point landmarks[J]. Image and Vision Computing, 1997,15(2): 219~233.
    [165] LAPTEV I. On Space-Time Interest Points[J]. International Journal of Computer Vision, 2005,64(2): 107~113.
    [166] Viksten F, Nordberg K, Kalms M. Point-of-Interest Detection for Range Data[C]: CVPR. 2008.
    [167] Witkin AP. Scale-space filtering[C]: Proc 8th Int Joint Conf, Karlsruhe, Germany, 1983.
    [168] Lindeberg T. Feature detection with automatic scale selection[J]. Journal of Computer Vision, 1998,30(2): 77~116.
    [169] Koenderink J. The structure of images[J]. Biological Cybernetics, 1984,50: 363~396.
    [170] Lowe D. Distinctive image features from scale-invariant keypoints[J]. Journal of Computer Vision, 2004,2(60): 91~110.
    [171] Ke Y, Sukthankar R. PCA-SIFT: A more distinctive representation for local image descriptors[C]: CVPR, 2004.
    [172] Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(10): 1615~1630.
    [173] Bay H, Tuytelaars T, Gool LV. SURF: Speeded up robust features[C]: ECCV, 2006.
    [174] Barber CB, Dobkin DP, Huhdanpaa HT. The Quickhull Algorithm for Convex Hulls[J]. ACM Transactions on Mathematical Software, 1996,22(4): 469~483.
    [175] Taubin G. 1995[J]. Proceedings of SIGGRAPH, A signal processing approach to fair surface design: 8.
    [176]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社, 2000.
    [177] Kobbelt L. Discrete fairing[C]: Proceedings of the Eurographics/ACM SIGGRAPH, 1998.
    [178] Desbrun M, Meyer M, Schroder P, et al. Implicit fairing of irregular meshes using diffusion and curvature flow[C]: Proceedings of the Eurographics/ACM SIGGRAPH, 1999.
    [179] Perona P, Malik J. Scale-spaceandedgedetection using anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12(7): 629~639.
    [180] Unnikrishnan R, Hebert M. Multi-Scale Interest Regions from Unorganized Point Clouds [C]: IEEE Conf on Computer Vision and Pattern Recognition 2008.
    [181] Bajaj C, Xu G. Anisotropic diffusion of surface and functions on surfaces[J]. ACM Transactions on Graphics, 2003,22(1): 4~32.
    [182] Carreira-Perpin′an MA, Zemel RS. Proximity graphs for clustering and manifold learning[C]: Neural Information Processing Systems. 2004.
    [183]张义宽,张晓鹏,查红彬, et al. 3维点云的拓扑结构表征与计算技术[J].中国图象图形学报, 2008,13(8): 1576~1587.
    [184] Castellani U, Cristani M, Fantoni S, et al. Sparse Points Matching by Combining 3deMesh Saliency with Satatistical Descriptors[J]. Computer Graphics Forum, 2008,27(2): 10.
    [185] Nüchter A, Lingemann K, Joachim Hertzberg. 6D SLAM with Kurt 3D[J]. ROBOTICS TODAY, 2007,20(1): 25~31.
    [186] Fisher MA, Bolles RC. Random sample consensus: A Paradigm for model fitting with applications to image anaylsis and automated cartography[J]. Communications of ACM, 1981,24(6): 381~395.
    [187] SHUSTER MD. Constraint in Attitude Estimation, Part II: Unconstrained Estimation [J]. Journal of the Astronautical Sciences, 2003,52(1): 75~101.
    [188] Black HD. A Passive System for Determining the Attitude of a Satellite[J]. Journal of Guidance, Control, and Dynamics, 1964,2(7): 1350~1351.
    [189]林玉荣,邓正隆.基于矢量观测确定飞行器姿态的算法综述[J].哈尔滨工业大学学报, 2003,35(1): 8.
    [190] Wahba G. A Least Squares Estimate of Spacecraft Attitude[J]. SIAM Review, 1965,7(3): 409.
    [191] Shuster MD. The Generalized Wahba Problem[J]. The Journal of the Astronautical Sciences, 2006,54(2): 15.
    [192] Shuster MD. Filter QUEST or REQUEST[J]. Journal of Guidance, Control, and Dynamics, 2009,32(2): 3.
    [193] Julier SJ, Ulhmann JK, Durrant-Whyte HF. A new method for nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans on Automatic Control, 2000,45(3): 21.
    [194] Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Trans on Automatic Control, 2000,45(5): 18.
    [195] Chen C-T. Linear System Theory and Design[M]. Rinehart and Winston, Inc, 1999.
    [196] Rehbinde H, Ghosh BK. Pose Estimation Using Line-Based Dynamic Vision and Inertial Sensors[J]. IEEE Transactions on Automatic Control, 2003,48(2): 14.
    [197] D.H.Titterton, J.L.Weston. Strapdown Inertial Navigation Technology(Second Edition)[M]. Reston,VA: AIAA, Inc., 2004.
    [198] Simon D. Optimal State Estimation Kalman, Hinf, and Nonlinear Approaches[M]. Hoboken: John Wiley & Sons, Inc, 2006.
    [199] Kalman RE. New Methods in Wiener Filtering Theory[M]. New York: : JohnWeily & Sons Inc, 1963.
    [200]韩崇昭,朱洪艳,段战胜.多源信息融合[M].北京:清华大学出版社, 2006.
    [201] May S, Droeschel D, Holz D, et al. Three-Dimensional Mapping with Time-of-Flight Cameras[J]. Journal of Field Robotics, 2009,26(11-12): 934~965.